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Abstract

In this paper, we propose a new vision-based robot
control approach which is halfway between the clas-
sical position-based and image-based visual servoings.
It allows to avoid their respective disadvantages. For
a planar object, the homography between the feature
points extracted from two images (corresponding to
the current and desired camera poses) is computed at
each iteration of the control law. From this homog-
raphy, an approximate partial-pose, where the trans-
lational term is known only up to a scale factor, is
deduced. Using parameters of this partial pose and
image features, it is possible to design a closed-loop
control law controlling the six camera d.o.f. Contrar-
ily to the position-based visual servoing, our scheme
does not need any geometric 3D model of the object.
Furthermore and contrarily to the image-based visual
servoing, our approach ensures the convergence of the
control law in all the task space.

1 Introduction

Vision-based robot control using an eye-in-hand sys-
tem is generally performed using two different ap-
proaches [11, 8, 9]: position-based and image-based con-
trol systems. In a position-based control system, the
control error function is computed in the 3D Cartesian
space [10] (for this reason this approach can be called
3D visual servoing). The pose of the target with re-
spect to the camera, which describes its 3D position
and 3D orientation, is estimated from image features
corresponding to the perspective projection of the tar-
get in the image. Numerous methods exist to recover
the pose of an object (see [4] for example). They are all
based on the knowledge of a perfect geometric model
of the object and necessitate a calibrated camera to
obtain unbiased results. The main advantage of 3D vi-
sual servoing is that it controls the camera trajectory
in the Cartesian space, which allows to easily combine
the visual positioning task with obstacles avoidance
and/or joint limits and singularities avoidance. On
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the other hand, in an image-based control system, the
control error function is computed in the 2D image
space (for this reason this approach can be called 2D
visual servoing). This local approach is based on the
use of an image Jacobian (also called interaction ma-
trix [5]) and the control laws provide at each iteration
the camera velocity for minimizing the observed er-
ror in the image. This approach is known to be very
robust with respect to camera and robot calibration
errors [6]. However, the convergence is ensured only
in a region (quite impossible to determine) around the
desired position. Furthermore, the Cartesian trajec-
tory of the camera is uncontrolled, and some image
features may get out of the camera field of view during
the servoing, which generally gives rise to its failure.

The purpose of this paper is to design a new vi-
sual servoing system which combines the advantages
of 2D and 3D visual servoings and avoids their draw-
backs. We point out our attention to one of the typical
applications of visual servoing: positioning a camera
mounted on a robot end-effector relative to a target,
for a grasping task for instance. The positioning task
is divided into two steps. In the first off-line learning
step, the camera is moved to its desired position. The
image of the target corresponding to this position is ac-
quired and the extracted desired features are stored.
In the second on-line step, after the camera and/or the
target have been moved, the camera is commanded so
that the current features reach their desired position
in the image. In such application, the target geome-
try is not always precisely known. Furthermore, the
convergence has to be obtained in all the task space.

Our approach can be called 2D 1/2 visual servoing
since the control error function is computed in part
in the 3D Cartesian space and in part in the 2D im-
age space. More precisely, the homography between
the feature points extracted from two images (corre-
sponding to the current and desired camera poses) is
computed at each iteration. From the homography,
the rotation of the camera between the two views is
estimated. Consequently, the rotational control loop



can be decoupled from the translational one. A such
decoupled system allows to obtain the convergence in
all the task space. It must be emphasized that the use
of an homography does not need neither a 3D model
of the target (the method we actually use to estimate
the homography is however only valid for planar ob-
jects) nor a precisely calibrated camera. As far as the
camera translational displacement is concerned, it can
only be estimated up to a scale factor. It is there-
fore controlled using 2D image features and the ratio,
obtained from the homography, of the unknown de-
sired and current distances between the camera and
the target. Finally, in spite of the partial-pose estima-
tion, experiments show that the approach is robust to
calibration errors.

The paper is organized as follows. In Section 2 and
Section 3 we briefly recall 3D and 2D visual servoings
respectively. In Section 4 we present the 2D 1/2 visual
servoing approach. The experimental results are given
in Section 5.

2 3D Visual Servoing

Let Fj be the coordinate frame attached to the target,
Fi and F5 be the coordinate frames attached to the
camera in its desired and current position respectively
(see Figure 1).

Figure 1: Modelisation of camera displacement for 3D
visual servoing

Knowing the coordinates, expressed in Fy, of at least
four points of the target [4], it is possible from their
measure in the image to compute the desired camera
pose (represented in Figure 1 by the transformation
matrix 1Ty) and the current camera pose (represented
in Figure 1 by the transformation matrix 2Ty). The
camera displacement 2T; to reach the desired position
is thus easily obtained (2T; =2 Tq (ITO)_I), and can
be performed either in open loop or, more robustly,
in closed loop by computing 2Ty at each iteration of
the control law. Finally, the control law has to be
designed in order that the image features used in the
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pose estimation always appear in the camera field of
view. This can not be guaranteed if the camera or the
robot are only coarse-calibrated. Let us also note that
if the camera is not accurately calibrated, or if the 3D
model of the considered object is not perfectly known,
the estimated current and desired camera poses will
be biased. However, this is not a drawback if a closed-
loop scheme is performed.

The corresponding block diagram of the 3D visual
servoing approach is given in Figure 2.

"
&"@—. Cartesian Q. VvV bt
- Control law obo
T
Model of
the target
Pose Features c
] imati . |=— Camera [—
Estimation Extraction

Figure 2: Block diagram of the 3D visual servoing

3 2D Visual Servoing

The control error function is now expressed directly in
the 2D image space (see Figure 3).

Figure 3: Modelisation of camera displacement for 2D
visual servoing

Let s be the current value of visual features observed
by the camera and s* be the desired value of s to be
reached in the image. The time variation of s is related
to camera velocity by [5]:

5=L(s,2)T (1)

where T = [ V. Q] is the camera velocity screw
and L(s, Z) is the interaction matrix related to s. For
example, if the chosen features are the coordinates
[u v ]T =[X/Z Y|Z ]T in the image of
a 3D point P of coordinates [ X Y Z ]T in the

S =



camera frame, the interaction matrix related to u and
v is given by:

where: e [ 10w ] o
v 0 -1 v
N A

The interaction matrix for more complex image fea-
tures can be found in [5]. The vision-based task e (to
be regulated to 0), corresponding to the regulation of
s to s*, is defined by:

e=C(s—5s%) (5)
where C is a matrix which has to be selected such that
CL(s, Z) > 0in order to ensure the convergence of the
control law. The optimal choice seems to consider C as
the pseudo-inverse L(s, Z)T of the interaction matrix.
The matrix C thus depends on the depth Z of each tar-
get point used in the visual servoing. An estimation of
the depth can be obtained using, as in 3D visual ser-
voing, a pose determination algorithm (if a 3D target
model is available), or using a structure from known
motion algorithm (if the camera motion can be mea-
sured). However, using this choice for C may lead the
system to near, or even reach, a singularity of the inter-
action matrix. Furthermore, the convergence may also
not be attained due to local minima reached because
of the computation by the control law of unrealizable
motions in the image [2].

Another choice is to consider C as a constant matrix
equal to L(s*, Z*)*, the pseudo-inverse of the interac-
tion matrix computed for s = s* and Z = Z*, where
Z* is an approximate value of Z at the desired camera
position. In this simple case, the condition for con-
vergence is however only satisfied in the neighborhood
of the desired position, which means that the conver-
gence may not be ensured if the initial camera position
is too far away from the desired one.

If an exponential convergence is desired (é = —)e
where X is a positive scalar), a simple control law is
given by [5]:

T =—-Xe=—-\C(s —s") (6)
The block diagram of the 2D visual servoing approach
is given in Figure 4.

4 2D 1/2 Visual Servoing

If » 3D points P; on a planar target are used, it is
well known that each image point p;, of coordinates
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Figure 4: Block diagram of the 2D visual servoing

[u v 1 ]T in the current camera frame Fb, is re-
lated to the corresponding image point pj, of coordi-

* *

nates [ u* ov* 1 ]T in the desired camera frame Fj,
by an homography such that [7]:
{j=0,1,2,....,.n—1} (7

where «; is a positive scalar and H is a (3 x 3) homog-
raphy matrix. More precisely, H can be written [7]:

a;pj = Hpj

T
H=R+n"—

- ®)

where R and t are the rotational matrix and the trans-
lational vector between the current camera frame I
and the desired camera frame Fj respectively (see Fig-

. T, .
ure 5), n* = [ n} n; n} | is the unit vector nor-
mal to the target plane 7 expressed in F; and d* is the

distance between the origin of F; and 7.

Figure 5: Modelisation of camera displacement for 2D
1/2 visual servoing

Let us remark that H is defined up to a scalar fac-
tor, therefore one of the unknown «; can be set to 1
without loss of generality (for example o = 1). Equa-
tion (7) is available for each feature point in the image,



thus, for n points, we have to solve a linear system of
3n equations and n + 8 unknowns: that is n — 1 un-
knowns o; ({j = 1,2,...,n — 1} since ap = 1), and 9
unknown elements of H. A minimum of four points is
needed to perform a linear estimation. Let us empha-
size that the estimation of H does not necessitate the
knowledge of the 3D position of the target points on
plane 7w, which makes unnecessary a 3D model of the
target.

After matrix H is computed, R, t/d* and n* can be
estimated [7]. Unfortunately, in the most general case
we have two different solutions. The indetermination is
eliminated by choosing the solution which is such that
the vector n* is as co-linear as possible with the desired
orientation of the camera optical axis. Let us note that
the translational vector t is estimated only up to a
scale factor since the desired distance d* is unknown.
3D visual servoing can thus not be employed. It is
possible to design a control law such that R and t/d*
respectively have to reach the identity matrix I and

[ 000 ]T (which thus implies the achievement of
the positioning task). However, such a control law
does not ensure that the considered object will always
remain in the camera field of view since it is only based
on 3D estimated parameters. Getting out of the image
may thus occur in the presence of important errors in
the intrinsic parameters of the camera or in the robot
Jacobian.

We have therefore preferred another more robust so-
lution. The block diagram of the 2D 1/2 visual servo-
ing approach is given in Figure 6. We now describe its
differents parts. Our control scheme is based on the
3D estimated rotation between F5 and F; (which has
to reach the identity matrix). We also use the ratio
r which controls the depth between the camera and
the target (and which has to reach the desired value
r* =1). Indeed, the distances d and d* are unknown,
but the ratio r = d/d* can easily be estimated using
R, t/d* and n*. We remark that the current normal
vector n to the plane w, expressed in F3, and the cur-
rent distance d between frame F5 and 7 can be written
in function of vector n* and distance d*:

n=Rn*

9)

d=d" +n"t (10)

From equations (9) and (10) we get:

d t t
r —=1+nT—=1+n*TRTE

T d* (11)

Finally, in order to control the 6 camera d.o.f and to
maintain the target in the camera field of view, we also
introduce the use of two independent visual features,
such as the image coordinates of a target point, which
can be controlled by using classical 2D visual servoing.
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Figure 6: Block diagram of the 2D 1/2 visual servoing

We first consider the control of the camera orienta-
tion. Let u be the rotation axis and 6 the rotation
angle obtained from the previous partial-pose estima-
tion. The rotational velocity of the camera €2 can be
expressed in function of the angular velocity 6 around
the axis of rotation u:

uf=Q (12)

The translational degrees of freedom are used to main-
tain the target in the image and to control the ratio
r between the current distance d and the desired dis-
tance d*. A point p* is chosen in the desired image,
such as for example the nearest from the image cen-
ter. As done for the 2D visual servoing, the chosen
features are its coordinates s = [ [T ]T in the im-
age. By using equations (1) and (2), the relationship
between the time variation of the chosen features and
the velocity of the camera is:

1
§= ELU(S)V + L, (s)2
where Z is the depth of the corresponding 3D point.
Since the 3D point belongs to the target plane w, Z
can be written as:

(13)

d
Z = —— 4
nTp (14)

and from equation (11), we get:

1_nTp_7

7z rd*  d*

(15)

where v = # can be computed from image measure-
ment and the partial-pose algorithm. Furthermore, by
derivating equation (11) with respect to time, we get:

n*T . .
= o (RTt + RTt) (16)
n*T . .
= = RY(t + RR't) (17)
nT .
= (E+xy) (18)
T
n
= ——V 1
pE (19)



since, from the fundamental kinematics equation, we
have t = —V — Q x t. Combining equation 19 to
equation (12) and equation (13), we get the following
system:

S 1
i =] #Me M [ . ] (20)
ufb 0 I
where:
-y 0 Yu
M, = 0 -y v (21)
—Ny —Ny —MNy
|' ) —(1+u?) w ]
M, = | (1+?) uv —u (22)
Lo 0 0 |
Equation (20) is similar to equation (1). The task

function approach [5] can thus be applied. If we de-
sire an exponential convergence of s towards s*, of r
towards r* = 1 and uf towards ué* = 0 (with decreas-
ing velocity \), we obtain:

S s —s*
7‘. ==\ r—-1 (23)
ub uf

From equations (20) and (23), the control law is given
by:

V]__ [aM —aMM S __Sl
Q |~ 0 I ’
uf
(24)
where M1, the inverse matrix of M,, is given by:
Ny + nyv _ nyu u
-1 _ __1 _gmv T, +’7Yzmu % (25)
v nTp _—
R Y v
—MNyg —Ty 1

The determinant of matrix M, is —y?(n”p). This de-
terminant is null only if the optical axis of the camera
belongs to plane 7 (in this singular case, all the im-
age points are collinear), which ensures the stability of
the system in all the task space (more precisely, the
half space in front of the target plane) if # and n are
correctly estimated.

We note that the positive scalar v only influ-
ences the time-to-convergence of the translational con-
trol loop. Indeed, if v is estimated as the positive
scalar 7 and vector n is well-estimated, the matrix

M 1(F)M,(y) = 21 is always definite positive. We
can also note that the camera translational velocity is
proportional to the desired distance d* between F5 and
m. An approximate value has thus to be chosen during

the off-line learning stage. However, this value has not
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to be precisely determined (by hand in the following
experiments) since it does not influence the stability
of the system, but only the time-to-convergence of the
translational velocity and the amplitude of the pos-
sible tracking error due to a wrong compensation of
the rotational motion. As far as the tracking error is
concerned, it is proportional to the rotational velocity
Q2 and thus disappears when the camera is correctly
oriented.

5 Experimental results

The control law has been tested on a seven d.o.f. in-
dustrial robot MITSUBISHI PA10 (at EDF DER Cha-
tou) and a six d.o.f. cartesian robot AFMA (at IRISA
- see Figure 7). The camera is mounted on the end-
effector of the robot. The target is a black board with
seven white marks (see Figure 8). The extracted vi-
sual features are the image coordinates of the center
of gravity of each mark. As far as camera calibration
is concerned, we have used the pixel and focal lengths
given by the constructor in order to compute the im-
age coordinates u and v from their measured values
in the image. The center of the image has been used
for the projection of the optical axis in the image. The
images corresponding to the desired and initial camera
position are plotted in Figure 8a and 8b respectively.

Figure 7: Experimental cell at IRISA

Classical 2D visual servoing has first been tested,
but without success due to the too much important



(a)

(b)

Figure 8: Images of the target for the desired (a) and
the initial (b) camera position

displacement between the initial and desired positions.
Matrix C of equation (5) was chosen always equal to
L*(s*, Z*) because Z cannot be calculated without a
geometric model of the target. The errors on the coor-
dinates of the center of gravity of each mark are given
in Figure 9. The corresponding trajectory in the image
is given in Figure 10.
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-300

Figure 9: Error on the coordinates of the image fea-
tures (pixels) versus iteration number using 2D visual
servoing
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Figure 10: Trajectory of target points in the image
using 2D visual servoing
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On the obtained plots, we can note the divergence of
the visual features, which induces the getting out of the
target outside the camera field of view, and thus the
failure of the 2D visual servoing. The corresponding
translational and rotational velocity are given together
in Figure 11.
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Figure 11: Translational velocity V (cm/s), rotational
velocity ) (dg/s) versus iteration number using 2D vi-
sual servoing

We now present the results obtained using our new
2D 1/2 visual servoing scheme. In the presented ex-
periment, d* is set to 20 cm. From the estimated ho-
mography, we get a partial estimation of the camera
displacement. For example, the estimated rotational
displacement, using the initial and desired images, was
Te = 29.6 dg, 7y, = -32.5 dg, 7, = 95.9 dg (while the
real displacement was r,= 28.1dg, r, =-34.0dg, r, =
96.1 dg). Similarly, the estimated direction of transla-

Tn _ _ iy, _ 3o _ i
= 0.19, = = 0.95, = 0.23 (while

[l
the real displacement was t, = -3.8 cm, t, = 23.6 cm,

Ly — 0.95,

[t]]
”tt—z” = —0.23. The used algorithm is thus quite precise

tion was
t, = -5.9 cm, which implies ”tt—”” = —0.15,

(maximal rotational error is around 2 dg, as well as the
angle error on the direction of translation) in despite
of the coarse calibration which has been used.

The exponential decreasing of the estimated rota-
tion, of ratio r = d/d* and of the coordinates u and v
of the target point in the image are given in Figure 12,
Figure 13 and Figure 14 respectively.

As can be seen on the plots, the obtained results are
particularly stable and robust. In this experiment, X is
set to 0.1. A smaller value just implies a slower time-
to-convergence. Higher values could also be chosen.
However, the system (whose rate is 10 Hz) becomes
unstable when A > 2.5.

A good approximation of d* reduces the amplitude
of the tracking error due to the rotational movement.
A such small perturbation can be observed in Figure
14 from iteration 120 to 250 where the tracking error is
approximately 3 pixels. Let us note that the tracking
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Figure 12: Rotation ué (dg) versus iteration number
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Figure 13: Ratio r = d/d* versus iteration number
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Figure 14: Error on the coordinates of the target cen-
ter of gravity (pixels) versus iteration number

error completely disappears (after iteration 250) when
the rotational motion has no more influence.

The outputs of the control law, V and €2 are given
in Figure 15.

4
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0 50 100 150 200 250 300 350 400

Figure 15: Translational velocity V (cm/s), rotational
velocity Q (dg/s) versus iteration number using 2D 1/2
visual servoing

Once again, we can note the stability and the ro-
bustness of the control law. Finally, the error on the
image coordinates of each target point is given in Fig-
ure 16 and the corresponding trajectory in the image
is given in Figure 17.
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Figure 16: Error on the coordinates of the image fea-
tures (pixels) versus iteration number using 2D 1/2
visual servoing

We can note the convergence of the coordinates to
their desired values (the control scheme is stopped
when maximal error is less than 0.5 pixels), which
demonstrates the correct achievement of the position-
ing task. Let us recall that these image coordinates are
only used to compute the homography between initial
and final camera positions.
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Figure 17: Trajectory of target points in the image
using 2D 1/2 visual servoing

6 Conclusion

In this paper, we have proposed a new approach to
vision-based robot control. Contrarily to the pose-
based approach, the proposed control law does not
need any geometric model of the target. Furthermore,
the domain of convergence for the 2D 1/2 visual ser-
voing (the half space in front of the target) is larger
than for the 2D visual servoing. Finally, experiments
show that a precise camera calibration is not needed.
This is due to the fact that the homography estimation
is iteratively performed in conjunction with a closed-
loop control law. The main hypothesis of our actual
scheme is that the image points used to estimate the
homography correspond to coplanar 3D points. Future
work will thus concern the generalization of homogra-
phy estimation in the case of any non-planar target
using algorithms such as those presented in [3] and [1].
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