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Abstract—Air traffic controllers (ATCO) work in an uncertain
environment where they operate traffic with a double objective
of minimizing flight times while ensuring safe separations, i.e.,
detecting and solving trajectory conflicts. They constantly face un-
certainties because of variable weather conditions, aircraft speeds,
or pilots response time. The development and acceptance of decision
support tools to help controllers perform a safe separation must
account for these uncertainties and align with operational practices
to ensure satisfactory user adoption. In this paper, we build
upon a previously published dataset of actual conflict resolutions
based on historical ADS-B data and flight plans. In this previous
work, we proposed a heuristic to detect deconfliction situations
among aircraft persistently deviating from their intended route.
Here, we extend our approach to previously overlooked areas
of the data. In particular, we apply a KNN-Median regression
approach to additional explanatory variables, and gain more insight
in the way ATCO cope with potentially conflicting traffic. The
most significant improvement is the ability to extract deconfliction
situations leveraging “direct-to” instructions.

Keywords—deconfliction; information extraction; ADS-B

I. INTRODUCTION

Managing safe and efficient operations in air traffic management
is a difficult and complex task. One of the main duties of
ATCO is to detect and resolve trajectory conflicts occurring
in the airspace under their responsibility, and issue necessary
instructions to pilots to maintain proper separation. Every pair
of aircraft must maintain a safe lateral and vertical separation
at any moment. The separation standards in the upper airspace
are 5 nautical miles (NM) laterally, and 1, 000 feet vertically.
A simultaneous violation of both constraints results in a loss of
separation which is a contributing factor for mid-air collision.

The critical task of detecting conflicts (i.e., anticipating sep-
aration losses) and solving them is still currently performed
by human operators. Many conflict detection and resolution
algorithms have been proposed in the literature, that could assist
the controllers in these tasks. However, the effectiveness of
these tools depends not only on their technical performance
but also on their acceptance among controllers. This acceptance
requires alignment with the cognitive processes inherent to their
operational practices.

Controllers have to deal with uncertainties on a variety of
parameters such as speed, wind velocity and pilots’ reaction
times, necessitating a critical margin of error in the separation
they maintain. For this reason, the standard separations alone do

not constitute satisfying thresholds for deconfliction. Aligning
with their work practices implies accurately estimating these
uncertainties and integrating them into decision-support tools.

Learning controller uncertainty models from data can be done
using datasets of deconflicted traffic situations. In [1], a genetic
algorithm is used to extract uncertainty models from artificial
or small experimental datasets. A motivation of our study is to
build large real-life datasets of deconflicted traffic situations that
could be used to learn realistic uncertainty models, or to identify
usual resolution strategies, among other potential purposes. In a
previous study [2], we proposed a heuristic method to extract
from historical ADS-B data the lateral trajectory deviations
resulting from deconfliction actions performed by ATCO. This
heuristic approach was based on the detection of lateral tra-
jectory deviations, i.e., trajectory segments not aligned with a
navaid of the intended route, and considerations on the predicted
lateral separations between neighbouring flights.

The threshold value allowing us to decide whether a lateral
deviation results from a deconfliction action was determined
using a KNN-Median Regression on the difference between
the actual and predicted separations. The idea was that lateral
deviations unrelated to deconfliction actions are as likely to
decrease the separation as to increase it, resulting in median
values close to zero. Conversely, lateral deviations resulting from
a deconfliction are expected to increase the separations with
the neighbouring aircraft, and to exhibit strictly positive median
values. This analysis allowed us to determine a threshold value
of 8 NM for the predicted separation between two neighbouring
flights, below which a lateral deviation is considered as resulting
from a deconfliction. This means that controllers are more
inclined to perceive a situation as potentially hazardous when
they anticipate that, without intervention from their part, it could
result in a separation falling below this threshold. Our previous
study focused on long deviations only and did not consider
deconfliction actions such as “direct-to” instructions, which do
not result in persistent lateral deviations.

In this study, we extend the analysis to other variables, in
particular the duration of the lateral deviation, and the time to
the closest point of approach (CPA) before combining them with
our 8 NM threshold on the predicted separation. The objective
is to filter out short deviations related to usual trajectory turns
from the short deviations related to a “direct-to” instruction.

The remainder of the paper is structured as follows: In Sec-
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tion II, we establish the background and context of our research.
The methodology employed to extract the dataset and perform
median regression is detailed in Section III. The results of our
study are presented in Section IV. Finally, in Section V, we
conclude with a summary of the main findings, and perspectives
for further research directions.

II. CONTEXT AND LITERATURE REVIEW

Solving air traffic conflicts requires conflict detection, which
itself relies on the availability of accurate trajectory predictions.
Prior works on trajectory prediction for conflict detection and
resolution introduced a variety of models, including polygonal
zones modelling the speed, time, and direction uncertainties of
manoeuvred aircraft [3], probabilistic models of the predicted
trajectory [4], [5], confidence intervals [6], and specialized
machine learning models for time-series data [7].

Detecting conflicts can be done in different ways, depending
on the underlying trajectory model. In a probabilistic framework
[4], [5], a probability of conflict is computed from the proba-
bilistic trajectory predictions, and conflicts can be considered
as critical beyond a certain probability threshold. When using
polygonal zones around nominal trajectory predictions [3], con-
flicts are detected when the uncertainty zones come closer than
the standard separation. Some machine learning methods bypass
trajectory prediction entirely. For instance, in [8], conflicts and
critical scenarios are simulated by modifying historical ADS-
B data from the OpenSky Network, with machine learning
employed to predict conflicts among the extracted trajectories.

Concerning conflict resolution, several methods have been
proposed in the literature. For instance, in [9], [10], mixed-
integer programming is applied to find optimum conflict res-
olutions, without considering trajectory prediction uncertainties.
In [11], the conflict resolution problem is modelled as a mini-
mum weight maximum clique problem and solved with a mixed-
integer linear programming method, without taking uncertainties
into account. Other approaches, such as Evolutionary Algorithms
(AE) [12], [13] or Ant Colony optimization [14] do not guarantee
the optimality of the solutions, but can compute good solutions
within a limited time budget. They can also easily accommo-
date more realistic uncertainty models. In [15], A Constraint
Programming approach is compared with an Evolutionary Algo-
rithm, taking speed and lateral uncertainties into account, using
pre-computed lateral manoeuvre combinations.

The above methods mostly address the conflict resolution
problem as an optimization problem—find the shortest path
to destination while avoiding conflicts—and heavily rely on
mathematical modelling. Other data-driven approaches focus on
the manoeuvres issued by the controllers, or their actions in
general, using large real-life datasets of past aircraft trajectories.
This is the case for [16] which uses unsupervised learning,
or [17], an approach based on the use of an auto-encoder
architecture and reconstruction error.

Developing decision tools to provide solutions to conflict
resolution problems raises acceptability issues. Human ATCO
are more likely to accept solutions that align with their own
thought process [18], [19]. Consequently, they might be more

prone to reject automated tools proposing solutions that do
not align with their usual practices and internal representations.
Several approaches have explored the possibility to use Machine
Learning to produce more realistic deconfliction suggestions. For
example, [20] uses a reinforcement learning method based on
deconflictions performed by real ATCO on simulated conflicts,
whereas [21] uses imitation learning with the objective to learn
from deconfliction manoeuvres in historical data.

In [1], a genetic algorithm is used to learn the uncertainty
parameters of the trajectory prediction, using datasets of ex-
amples of conflict resolutions. On artificial data with known
uncertainties, this method was able to find the lateral and speed
uncertainty parameters that were used to produce the data. It
also showed promising results on small datasets of human-made
resolutions obtained from real-time experiments. However, it has
not yet been experimented on large real-life historical datasets
of conflict resolutions, due to the unavailability of such data.

In [2], we made a first attempt at extracting such a dataset
from historical ADS-B and flight plan data. This previous study
focused on persistent lateral deviations from the intended route,
and characterized them as resulting from deconfliction actions
when the closest predicted separation with the neighbouring
traffic fell below a certain threshold and when the deviation
resulted in an increased separation. A KNN-Median regres-
sion method allowed us to extract the value of the separation
threshold (8 NM) from the data, based on considerations on the
median value of the difference between the actual and predicted
separations, as stated in the introduction.

Here, we focus on small, non-persistent lateral deviations from
the intended route, and extend our median analysis approach
to other variables to identify which of these deviations are
just routine turns between successive segments of the route,
and which ones might be more likely related to “direct-to”
instructions issued by a controller to avoid a conflict.

III. METHODOLOGY

A. Dataset

This study builds upon the foundation laid by [2], utilizing the
same ADS-B dataset corresponding to the AIRAC cycle 2207
(July 14 to August 10, 2022) within the bounds of the Air
Control Center of Bordeaux, France (LFBBBDX). This dataset
was sourced through the OpenSky Network [22]. Flight plan data
and navaid information were provided by the Air Navigation
Services and integrated into this dataset. Each flight is uniquely
identified and linked to its respective flight plan.

Formatting and manipulations on the dataset were carried out
using the Python library traffic [23]. Flights were filtered out of
anomalous data, resampled to one point per second to ensure
seamless operations between flights, and then filtered to retain
only portions within the bounds of Bordeaux ACC and above
20, 000 feet (FL 200).

Flights were then matched with their corresponding flight
plans, and segments of trajectories aligned with a navigational
beacon (navaid) were labelled accordingly. The complete filtered
and resampled dataset contains 78, 316 different trajectories.
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B. Deviations from the flight plan

(a) Real trajectory (b) With deviation

Figure 1: Two trajectories associated to the same flight plan.

The extraction of deconfliction actions relies on observing
deviations from the flight plan. It is typical in normal traffic
for aircraft to skip certain navaids in the flight plan, resulting in
flown trajectories that may not precisely align with their initial
flight plan. This is illustrated in Figure 1.

Both trajectories 1a and 1b are associated with the same flight
plan SOPIL BALAN EVPOK NARAK GAI LOMRA ROCAN
PUMAL. Although 1a does not successively align with each
navaid in its flight plan, it remains aligned with one of its navaids
at all times. This pattern is normal and should not be associated
with any abnormal event. For this reason, we consider a deviation
from the flight plan to be significant only if the aircraft is not
aligned with one of the navaids in its flight plan, indicating an
abnormal deviation from the expected trajectory and suggesting
an unexpected event. In Figure 1b, the orange portion shows
a typical example of a deviation as they are considered in this
paper. During these deviations, the aircraft either aligns with a
navaid that is not in its flight plan, or it does not align with any
navaid. Given the paper’s focus solely on lateral deviations, we
minimize the risk of introducing a potential vertical component
in deconfliction by exclusively extracting deviations where the
aircraft maintains a stable altitude within a threshold of 50 ft.

To ensure accuracy during the alignment check, we limit our
consideration to navaids from the flight plan that are within a
distance of 200 NM, with a precision angle of 2 degrees. In [2],
we focused only deviations longer than 120 seconds, assuming
that those below this threshold corresponded to standard turns
in the trajectory.

In Figure 2, we provide an illustration of a deviation identified
as a standard turn on the left, and on the right, a deviation
long enough to be incorporated into our earlier analysis. Short
deviations are very common in normal traffic and typically
correspond to standard turns in trajectories.

In this paper, we suspect that some of these short deviations
might be “direct-to” instructions could also be used to resolve
conflicts. To test this hypothesis, we lower our duration threshold

Figure 2: Example of a short deviation corresponding to a turn
in the trajectory (left), and of a longer deviation (right), with
deviated portions in orange

to include all deviations longer than 30 seconds, which will be
analysed in the following sections. The resulting dataset contains
14, 610 deviations.

C. Relation to surrounding traffic
Although we may attribute the lateral deviations extracted from
the trajectories to unexpected events, these may not necessar-
ily be linked to conflict resolution manoeuvres. To determine
whether a deviation was initiated to resolve a conflict or not, we
assess it in the context of potential interactions with surrounding
traffic.

Let us consider aircraft A with the lateral deviation starting
at t1 and ending at t2. Since there is no indication that the
deviation is inherently intended to resolve a conflict occurring
before its conclusion, we will analyse the trajectory from t1 up
to a maximum time horizon of t1 + τ , with τ = 20 minutes.
This horizon can be adjusted if aircraft A exits Bordeaux ACC
airspace before t1 + τ or if a significant altitude change occurs.
Focusing solely on the stable portion of the deviation helps
eliminate bias introduced by the vertical component.

For another aircraft trajectory B to be deemed potentially
problematic for flight A, it must intersect the horizontal plane
where the deviation for A occurs within a relevant time frame.
However, aircraft B may not consistently fly at the same altitude
throughout this period. For example, it could simply intersect
with A’s horizontal plane while ascending or descending to
another flight level. Since B’s altitude can vary significantly
between t1 and t1 + τ , we consider only segments of B’s
trajectory within a specified altitude range around A’s altitude.
Ignoring irrelevant segments also implies that the examined
trajectories cannot be resampled without adding bias to the
analysis, therefore they may not be continuous. In this study,
we use an altitude interval of ±50 ft around A’s altitude.

Following this logic, each deviation extracted from our origi-
nal dataset will be associated with a set N of potentially relevant
neighbouring trajectory portions that meet the following criteria,
for each portion p:

t1 < p.timestamp < min(t2, t2 + τ) (1)

dev.altmin−marginalt < p.altitude < dev.altmax+marginalt (2)

Controllers evaluate the risk of conflict by forecasting future
aircraft trajectories and their potential closest points of approach.
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This entails identifying scenarios where an aircraft, denoted
as A, is deviated to avert a conflict, suggesting the presence
of another aircraft, denoted as B, that would have been too
close had the deviation not occurred. In our prior study [2], we
assumed that if aircraft A was deviated to resolve a conflict with
B, B would remain the closest aircraft to A in the final trajectory,
although further away than it would have in the absence of
deviation. Once B was identified, we used its trajectory to
predict the closest separation that would have occurred without
the deviation order and assess the possibility of conflict as
perceived by the controller.

However, there is no guarantee that, if A was deviated to
resolve a conflict, the initially avoided aircraft B would remain
the closest upon completion of the manoeuvre. Depending on the
extent of the deviation and the traffic geometry, another aircraft
could theoretically present a conflict without necessarily being
the closest to the final trajectory.

In this study, we opted to directly identify B as the trajectory
that comes closest with the prediction of A’s trajectory in the
absence of the deviation. This adjustment is expected to mitigate
any bias in our analysis related to the choice of the potential
conflicting trajectory.

D. Conflict risk estimation

Once we identified a deviation along with the corresponding
neighbouring trajectories that might be the cause for a conflict
resolution manoeuvre, we need to estimate the risk that a conflict
would have occurred in the absence of the deviation.

Using the flight plan information, we simulate the trajectory
starting just before the deviation, when the trajectory was still
aligned on one of the navaids in its flight plan. The simulated
trajectory Â maintains this alignment until it reaches the navaid,
then follows precisely the rest of the flight plan without skipping
any navaid, until t2+τ . The predicted speed is constant through-
out the simulation and corresponds to the aircraft’s average
speed from the last 20 minutes before it was deviated. Turns are
considered to occur instantaneously upon reaching each navaid,
no physical constraints are considered. We consider that the
aircraft maintains the altitude it had before deviating.

This is where our approach differs slightly from [2], which
estimated the predicted closest separation with the aircraft that
was the closest to the real trajectory. Here, we compute the
closest separation between the predicted trajectory and all the
neighbours in N . The selected neighbour B will be the one
with the closest minimum separation relative to the predicted
deviation-free trajectory.

In Figure 3, A is the blue trajectory, deviated on the orange
portion to avoid B, the green trajectory. This deviation lasts
7.15 minutes. The flight plan’s navaids are located by blue
crosses, and the grey-dashed line represents the prediction over
20 minutes, starting right before the deviation. On the visible
portions, both trajectories are on FL 370 i.e., 37, 000 ft. All
three plotted aircraft represent the position in each of the three
trajectories at the same time, which is the time when the
separation between TUI87H and RYR8J would have been the
closest without deviation.

Figure 3: Example of a detected deconfliction situation, with the
deviated trajectory in blue, the closest neighbouring trajectory in
green and the predicted trajectory in grey.

The closest separation between TUI87H and RYR8J, a.k.a.
min s is 19 NM, which is largely above the minimum lateral
separation of 5 NM. However, the overlapping grey and green
aircraft indicate that, in the absence of the deviation, a loss
of separation would have occurred. In this case, the closest
predicted separation min ŝ is 2 NM.

It is also apparent that, after the deviation, TUI87H does not
align to the closest navaid in its flight plan, but skips some of
them to align with a navaid that is further away. As mentioned in
Section III-B, this is not an abnormal behaviour, but underlines
the inexactitude of the flight plan-based prediction. Although
it gives us more nuance than a simple straight-line prediction
would, it may still be unrealistic in some situations.

Figure 3 gives a very clear example of deconfliction. Many
of the extracted deviations do not show such an obvious pattern.
Deviations which bring aircraft closer together, for example,
are not viewed as involved in a deconfliction action. However,
an increase of the closest separation between aircraft is not a
sufficient criterion, as Â and B could be distant enough for the
risk of loss of separation to be considered null. Following this
logic, in [2], we consider a situation as a resolved conflict if it
fits these two criteria:

min ŝ < min s and min ŝ ≤ S = 8 NM (3)

With S a threshold which represents the minimum separation
tolerated in practice, under which a controller would order a
separation manoeuvre. In an ideal scenario, with no additional
uncertainties inherent to controllers’ practices, S would be set
to the minimum lateral separation of 5 NM. A threshold close
to this minimum value would reflect a high-risk tolerance of the
operator in a given situation. Conversely, a much higher value
of S would indicate a more cautious operator. Our objective is
to estimate a realistic value for S that accounts for the added
uncertainties faced by controllers. It’s important to note that each
controller may have different thresholds, and various situations
may lead to different values for S. In the future, we plan to use
our dataset to better understand specific patterns associated with
these various controllers’ profiles.
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E. KNN algorithm

K-nearest neighbours (KNN) is a simple supervised learning
algorithm often used in classification and regression tasks. The
prediction for a given data point is computed by averaging
the target variable values of its k nearest neighbours in the
feature space. Closeness between data points in the feature
space is typically measured using a distance metric such as
Euclidean distance. This method leverages the idea that similar
data points tend to have similar target variable values, making
it a straightforward yet effective approach for regression tasks.
The choice of the parameter k determines the trade-off between
bias and variance in the model. A smaller value of k leads to a
more flexible model with higher variance but lower bias, while
a larger value of k results in a smoother prediction with lower
variance but potentially higher bias.

F. Median regression applied to conflict detection

Deconfliction manoeuvres aim to increase the separation be-
tween conflicting trajectories. On the other hand, unrelated ma-
noeuvres are not expected to follow this pattern. If a manoeuvre
is detected in a low-risk context where the predicted closest
separation is significantly high, we anticipate that it would
have an equal chance to either increase or decrease the closest
separation. Among the extracted deviations for which the closest
separation is above the acceptable risk threshold S, we thus
expect there to be roughly the same number of deviations in-
creasing the separation as there are decreasing it. Consequently,
the median variation in separation should be close to 0. When the
separation falls below S, the increase should be strictly positive,
with higher values indicating an increased risk and aiming to
maintain the separation above 5 NM, ideally exceeding S. To
verify this intuition formally, we use a K-nearest neighbours
(KNN) median regression method with k=100 neighbours, which
extends the conventional KNN algorithm. In our context, the
model predicts the median value of the difference between the
actual and predicted closest separation, leveraging the predicted
closest separation values.

IV. RESULTS

A. Previous findings

In Figure 4, we depict all the extracted situations involving
deviations lasting 30 seconds or more. Each point in the scatter
plot represents a deviation, with the x-axis denoting the predicted
closest separation, and the y-axis indicating the increase in
separation between the actual and predicted closest separations.

The black line corresponds to the median of the difference
according to the predicted closest separation, as described in
the methodology above. The green-dashed line represents the
equation y = 5NM − x, meaning all points above this line
represent situations for which min s > 5NM. Points above this
line indicate situations where the separation remains above 5
NM. Conversely, points below the green line imply actual losses
of separation. Upon closer examination, it becomes apparent that
these occurrences are probably inconsistent, resulting from data
noise, rather than genuine instances where min s < 5NM.

Figure 4: Difference between actual and predicted minimum
separation as a function of the predicted closest separation.
The red-dashed line crosses the x-axis at 8 NM and the green-
dashed line at 5 NM.

With the vertical red-dashed line, we represent approximately
the point at which the median drops to 0 : it crosses the x-
axis at a significant value for our threshold S around 8 NM.
Below this threshold, the median difference consistently follows
a linear trend with the equation y = 8NM − x. For values
predicted closest separations above 8 NM, the median stagnates
around 0. This observation validates the hypothesized pattern and
establishes a threshold of S = 8 NM. Throughout the remainder
of this work, we regard this threshold as indicative of acceptable
risk from the controller’s perspective, signifying that deviations
below this value are most likely caused by deconfliction actions.

B. Analysis on duration criteria alone

Since the median regression showed interesting results for deter-
mining the separation threshold, we now explore whether we can
employ a similar methodology on other criteria. In this section,
we aim to establish a threshold for the minimum duration of
a deviation required to be considered a pertinent candidate for
conflict resolution.

Applying the same reasoning as previously, we consider that
if standard turns are unrelated to deconfliction manoeuvres, they
should neither increase nor decrease the minimum separation
between aircraft. Consequently, we expect to observe a median
value close to zero for small duration values.

In Figure 5, we represent the difference in minimum separa-
tion made by the deviation according to its duration, with the
median regression on 100 neighbours as a black line. The red-
dashed line corresponds to the 120-second threshold used in [2].

We observe a highly concentrated, roughly symmetrical clus-
ter for small values, which we hypothesize to be typical mi-
nor deviations associated with turns in the trajectory. For this
segment of the cluster, the median is close to zero, signifying
that deviations with these duration values are unlikely to either
increase or decrease the minimum separation. This aligns with
normal turns in the trajectory, which would be unrelated to
deconfliction manoeuvres. Up until a certain point, where data
becomes sparser, longer deviations are more likely to increase
the separation between aircraft than smaller ones. This result
appears to confirm that situations below 120 seconds are ir-
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Figure 5: Difference between actual and predicted minimum
separation as a function of the duration of the deviation

relevant and should not be regarded as potential deconfliction
manoeuvres. Considering the shape of the graph and depending
on the desired precision level, there could be room to extend
this threshold beyond 200 seconds.

Though it is technically possible to redirect an aircraft’s
alignment to another navaid to resolve a conflict, we do not
observe this trend in Figure 5. However, the point cloud around
short values for duration is very dense and, if this phenomenon
exists, it could be obscured by the sheer number of deviations
corresponding to standard turns. To explore this possibility
further, we conduct median regression analysis on the duration
of deviations occurring in high-risk scenarios, where the closest
predicted separation is below the threshold S.

C. Combination of thresholds on separation and duration

Figure 6: Difference between actual and predicted minimum
separation as a function of the duration of the deviation, after
applying the 8 NM threshold to the point cloud

Applying the S threshold to our initial deviations dataset
results in the selection of 3, 136 deviations. Visualizing the
impact of duration factors specifically for instances with a higher
risk of loss of separation, as shown in Figure 6, reveals a distinct

Figure 7: Examples of two detected deconfliction situations
resolved with “direct-to” manoeuvres

median profile, particularly for short deviations. Notably, the
median value peaks around durations of 30 seconds.

The arrangement of this point cloud implies the presence of
two distinct types of deconflictions in our dataset, some involv-
ing small deviations below 110 seconds and others featuring
longer deviations. We call this threshold for duration D.

Out of the 9, 583 points in the original cloud for which
the duration is inferior or equal to D seconds, 492 points are
below the threshold of 8 NM for predicted minimum separation,
selecting only 5.1% of short deviations as potentially relevant in
deconfliction. This low percentage explains why this trend was
not detectable in Figure 5.

Figure 7 shows two examples of situations for which a small
deviation was detected and seems to be related to a deconfliction.
In these instances, the closest neighbouring aircraft was not
deviated. The absence of the detected deviation would have
resulted in a loss of separation with a minimum distance of
2.9 NM on the left, and 0.4 NM on the right. These two examples
confirm the existence of a type of deconfliction that leverages
direct manoeuvres to resolve conflicts.

Figure 8: Two false positive examples

The compact zone around difference values of 0 in Figure 6
implies that, even though the median is positive for small values,
a number of situations in this zone may still be unrelated to con-
flict resolution. Therefore, small deviations with no connection
to deconfliction are expected to remain in the dataset. Figure 8
illustrates two such scenarios, where the difference value is
minimal, with 0.2 on the left and 0.1 on the right.

An examination of these scenarios suggests that they are
not associated with deconfliction actions. In the first case, the
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green trajectory is deviated in a manner that suggests conflict
resolution. In the second case, the deviation is initiated at a time
when the aircraft are already moving away from each other. This
observation not only confirms the hypotheses presented in this
section, but also underling new criteria that will be discussed
and integrated to enrich our model in future research.

The conjugation of two different thresholds extracted with a
median regression on the difference made in separation by the
deviation revealed a type of deconfliction we had not considered
in previous research. However, the resulting dataset still contains
occurrences which are likely unrelated to deconfliction. In the
next subsection, we introduce a new variable to enhance our
analysis and filter out more negative instances.

D. Threshold on time to CPA

Figure 9: Difference between actual and predicted minimum
separation as a function of tCPA, after applying the heuristic
to the point cloud and a criterion of duration <110s

This time, we start from a dataset containing deviations with
a duration < D and with min ŝ < S. Within this dataset, we
identify an interesting pattern associated with the time to CPA.
The time to CPA, denoted tCPA, is defined as the total duration
between the initiation of the deviation and the moment of the
CPA between the predicted trajectory and the closest neighbour,
where the predicted separation is minimal. Again, we use a
KNN-Median regression on the values of difference, this time
according to tCPA. The results are shown in Figure 9.

We identify a dense cluster of points corresponding to a
median value for difference around 0 NM, which shows that,
for this specific dataset, instances for which tCPA is under 150
to 200 seconds are unlikely to significantly increase or reduce
the minimum separation between the aircraft.

We set the threshold TCPA to 200 seconds and use it to
filter the data, which removes 100 trajectories from the dataset.
After successively using three thresholds determined through
three median regressions using different variables, our final
dataset contains 392 occurrences. Figure 10 (page 7) shows a
comparison of the distribution of the datasets for tCPA < TCPA

(blue) and tCPA ≥ TCPA (orange).
This comparison shows that the newly eliminated 100 tra-

jectories form a dataset with a median for difference close
to 0, suggesting an unlikely link with conflict resolution. Still,
a few points are characterized with a higher value, showing that
some of the more relevant situations were also excluded by the
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Figure 10: Distribution of the difference according to tCPA

application of threshold TCPA. Some of these could be included
back by lowering the threshold, with the risk of including some
irrelevant instances.

E. Visual inspection of the resulting dataset

In the final step of our study, we conduct an inspection of our
results. With a final dataset containing 392 occurrences, we are
able to undertake a comprehensive visual examination. Within
this dataset, we identify 56 occurrences that are either unmis-
takable false positives or too ambiguous to draw conclusions
from. Better conclusions might be obtained with the help of ATC
experts, but at this stage, we determine that our method achieves
an accuracy rate of approximately 85.7% on our dataset.

Figure 11 depicts two typical examples ruled out as obvious
false positives. On the left, although we detected a turn in
RYR8BJ at navaid TOU, it was not a “direct-to” instruction.
In this case, it is the next turn, over navaid AGN and towards
MANAK, which resolves the conflict, increasing the separation
with min ŝ = 1.4 NM and min s = 7.6 NM. On the right part
of Figure 11, though the detected “direct-to” instruction over
CXI33XZ was properly detected, with min ŝ = 3.7 NM and
min s = 11.7 NM , the longer deviation, further on along the
trajectory, was likely the one which resolved the conflict. This
type of false positives may be easily addressed by considering
only the last deviations before the CPA.

Other potential mechanisms causing false positives will be
identified and addressed in subsequent research. Given our
methodology based on successive thresholds, we can also expect
a significant amount of false negatives. Our primary objective
is to filter out irrelevant situations rather than to capture every
possible deconfliction scenario.
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Figure 11: False positive examples, (deviated portions in orange).

This inspection of our results is only a first step towards a
more comprehensive and robust validation of our method. A
next step could be to ask ATC experts to validate our results,
which would require to replay the resulting traffic situations.
Alternatively, we might validate our method on an already la-
belled dataset, including ATCO’s instructions. The only publicly
available labelled dataset that we know of was recently made
available by the Swedish air navigation services [24].

V. CONCLUSION

In summary, we analysed a dataset of historical ADS-B trajec-
tories and utilized KNN-Median Regression to evaluate various
indicators derived from trajectory segments not aligned with any
navaid in the flight plan. The goal was to identify lateral devi-
ations attributable to deconfliction actions taken by ATCO. By
examining the median differences between actual and predicted
separations across different variables (such as closest predicted
separation, deviation duration, and time to the closest point of
approach), we established a significant threshold of 8 NM for
predicted separation. This finding aligns with an acceptable risk
threshold commonly employed in the community. Being able
to establish this value statistically is a strong indicator of the
practical relevance of our dataset and the associated median
regression method. Combining this threshold with other variables
allowed us to distinguish routine turns from small deviations
resulting from “direct-to” instructions. Specifically, we consid-
ered deviations lasting less than 110 seconds with a predicted
separation of less than 8 NM and a time to CPA exceeding
200 seconds. In future research, we aim to refine these heuristics
and to automate the extraction process further by incorporating
additional explanatory variables. We also plan to validate these
findings using a labelled dataset. This method could facilitate
the construction of catalogues featuring deconfliction actions
extracted from readily available unlabelled ADS-B data. Such
catalogues could serve various purposes, including identifying
common resolution strategies and modelling controller uncer-
tainties in the resolution process. Addressing these issues is
essential to ensure the acceptability of future conflict resolution
tools by human operators.

REFERENCES

[1] J.-B. Gotteland, S. Degaugue, and N. Durand, “Learning Uncertainty
Parameters for Tactical Conflict Resolution,” in Proc. of the 14th ATM
Research and Development Seminar, Sept. 2021.

[2] K. Gaume, X. Olive, D. Gianazza, R. Alligier, and N. Durand, “A Catalogue
of Deconfliction Actions Extracted from Historical ADS-B Data,” in Proc.
of the 11th OpenSky Symposium, 2023.

[3] G. Granger, N. Durand, and J.-M. Alliot, “Optimal resolution of en
route conflicts ,” in Proc. of the 4th USA/Europe Air Traffic Management
Research and Development Seminar, (Santa Fe, NM), 2001.

[4] R. A. Paielli and H. Erzberger, “Conflict Probability Estimation for Free
Flight,” Journal of Guidance, Control, and Dynamics, 1997.

[5] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic approach to
aircraft conflict detection,” IEEE Transactions on Intelligent Transportation
Systems, 2000.

[6] Z. Chen, D. Guo, and Y. Lin, “A deep gaussian process-based flight
trajectory prediction approach and its application on conflict detection,”
Algorithms, vol. 13, no. 11, 2020.

[7] C. Cheng, L. Guo, T. Wu, J. Sun, G. Gui, B. Adebisi, H. Gacanin,
and H. Sari, “Machine-learning-aided trajectory prediction and conflict
detection for internet of aerial vehicles,” Internet of Things Journal, 2022.
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