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Abstract. In this article, we focus on a dynamic aircraft conflict res-
olution problem. The objective of an algorithm dedicated to dynamic
problems shifts from finding the global optimum to detecting changes
and monitoring the evolution of the optima over time. In the air traffic
control domain, there is added value in dealing quickly with the dynamic
nature of the environment and providing the controller with solutions
that are stable over time. In this article, we compare two approaches
of an evolutionary algorithm for the management of aircraft in a con-
trol sector at a given flight level: one is naive, i.e. the resolution of the
current situation is reset to zero at each time step, and the other is
memory-based, where the last population of the optimisation is stored
to initiate the resolution at the next time step. Both approaches are eval-
uated with basic and optimised operators and settings. The results are in
favour of the optimised version with explicit memory, where conflict-free
solutions are found quicker and the solutions are more stable over time.
Furthermore in the case of an external action, although the diversity
of the population could be lower with the memory-based approach, the
presence of memory does not appear to be a hindrance and, on average,
improves the solver’s responsiveness.

Keywords: Evolutionary Algorithm · Dynamic Optimisation Problem
· Aircraft Conflict Resolution

1 Introduction

Aircraft conflict resolution is operated by air traffic controllers based on a two-
dimensional representation of aircraft on a screen. The underlying problem has
been modelled in many different ways allowing various metaheuristics to give
efficient solutions, such as Evolutionary Algorithm (EA) [11], Ant Colony Opti-
misation [10], Particle Swarm Optimisation or Differential Evolution [28]. Math-
ematical models were also used to address this problem. In such models, the
hypotheses made on trajectory predictions were generally very restrictive in or-
der to allow mathematical resolution. For example, Pallottino’s approach [22]
used Mixed Integer Linear Programming and relied on constant speed trajec-
tories that are changed all at once. This is also the case in more recent papers
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from Vela, Escudero or Rey [29, 4, 24]. Constraint Programming methods [2]
and Maximum Clique Search in a graph [18] have also been explored in the last
decade, they can handle realistic models and perform well on small instances
on which the optimality can be proved. The most realistic models take into ac-
count uncertainties and operational constraints and are thus good candidates
for metaheuristics, because the trajectories need to be simulated to evaluate a
set of manoeuvres. Furthermore population based metaheuristics have the great
advantage to return a population of solutions instead of a single option. This
gives an opportunity to imagine an intelligent support tool for air traffic con-
trollers who could pick manoeuvre options in a pool of good solutions. Most of
the research on aircraft conflict resolution studied the static problem without
taking into account its dynamic over time. Indeed, aircraft constantly move in a
control sector. The conflict resolution problem is thus not static but must take
into account its dynamic aspect. Some changes can be modelled as continuous
such as the aircraft positions or the trajectory prediction evolution over time.
Other changes are discrete, such as the entrance of an aircraft in the control
sector or the exit of an aircraft from the sector. An air traffic controller can
suddenly decide to manoeuvre an aircraft. Because of these changes over time,
conflict resolution is a dynamic problem. Besides eliminating all conflicts, the
aim of conflict resolution is also to minimise delays and the number of aircraft
manoeuvred. For this reason, conflict resolution is a dynamic optimisation prob-
lem (DOP).

A first approach [8] studied the operational benefits of using a memory-based
EA (with basic crossover and mutation operators) and its impact on an air traffic
control point of view. This article focuses on the behaviour of an EA in such
a dynamic environment and introduces an optimised algorithm modifying the
crossover and mutation operators. We compare the basic and optimised versions
with or without a memory process on different levels of traffic densities. We also
address in this article the robustness of an automatic solver with external actions
on aircraft.

In part 2, we discuss the state of the art on the use of memory in EAs for
DOPs. Part 3 introduces the problem modelling. Part 4 details two algorithmic
adaptations of an EA for our problem. In part 5, two versions of the memory
management are described. Part 6 applies the different algorithmic versions on
three levels of traffic densities and discusses the effect of external actions on the
dynamic simulations.

2 EA for Dynamic Optimisation Problems

DOPs are most commonly described in two different ways: either by a succession
of static problems ([30], [5], [21]), or by a mathematical expression with time-
dependant parameters ([6],[31]). The simple search for an optimal solution is no
longer sufficient in a Evolutionary Dynamic Problem (EDP). Detecting changes
in the environment of the current problem and consequently in the objective
function are important points in the solution search.
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2.1 Naive approach

The most naive approach to solve Dynamic Optimisation Problems (DOPs) is to
reset the evolutionary process when a change occurs. A similar approach restarts
the population based on the convergence of EAs [17]. Hu and Eberhart describe
in [16] Rerandommisation PSO (RPSO) where all or part of the swarm is ran-
domly moved around in the search space when a change occurs. The shortcoming
of these approaches is that the past evolutionary material is not always used,
although this could accelerate convergence.

2.2 Implicit memory

In implicit memory approaches, a local memory is added to each chromosome
(e.g. adding characteristics specific to genes (redundant, recessive, etc.)). These
characteristics can be used, for example, to re-introduce past good solutions.
Diploid scheme [20] and triallelic scheme [13] have been introduced, respectively,
by Ng and Wong in 1995 and by Goldberg and Smith in 1987. The specific nature
of our problem, dealing with constantly moving aircraft, aircraft entrances and
exits, makes the use of an explicit memory more adapted for this problem.

2.3 Explicit memory

Explicit memory approaches save information, either in the structure of individ-
uals or in a memory external to the population, to preserve old elements of the
population. Several uses of this memory are possible. Unlike implicit memory,
the use of explicit memory is more controlled because it keeps information on
when and which memory elements are reused. A first intuitive approach was
introduced by Louis and Xu in 1996 [19] and consists of reusing old popula-
tion elements when a change of environment occurs, while initialising certain
chromosomes. In the same vein, in [26] authors introduce a short-term memory
of ancestors present in previous generations, and in [27] authors add some of
their ancestors locally to chromosomes when they are assessed as good. How-
ever, the effectiveness of these approaches is highly problem-dependent. Limits
appear particularly for significant changes in the environment, as in the classic
task planning problem where adding or removing a task considerably modifies
the location of the optimum.

In [23], good population elements and their associated environment are stored
periodically, then re-inserted when the environment changes. Instead of storing
good whole individuals, and potentially their associated environment, it is also
possible to store an abstract form of these individuals by recording their po-
sition in the search space. To do this, they first need to partition the search
space and then define a representation matrix for this space. Following this, a
spatial distribution of good individuals is obtained to guide the initialisation of
a future optimisation if a change occurs [25]. This approach seems to be more
useful for chaotic changes in the environment, whereas the crude safeguarding
of individuals appears to be more effective for regular or cyclical changes.



4 Degaugue, Durand, Gotteland

3 Problem Modelling

This section introduces the environment and the decision variables of our prob-
lem.

3.1 Environment

Let us consider a situation with n (∈ N) aircraft flying in an en-route sector.
The required separation between two aircraft is 5 nautical miles (NM) in the
horizontal plane or 1000 feet in the vertical plane. Two aircraft are in conflict
when there is a loss of separation in their predicted trajectories. Let us suppose
that all aircraft fly with constant speeds at the same flight level. Adding different
flight levels generally eases the problem because it gives more options to solve
conflicts. It also partitions the problem in different sub-problems that can often
be solved independently. For the sake of simplicity, we do not investigate this
aspect in this article. In order to comply with air traffic controllers behaviour,
our model takes into account uncertainties in the trajectory prediction. Many
realistic uncertainty models have been presented in previous work [1, 3]. Here
we use a simplified version of uncertainty described in [12] that increases the
size of the horizontal separation standard linearly with time in the prediction.
With such an uncertainty model, when looking too far ahead, many conflicts are
predicted but may never occur. In order to limit this phenomenon, we limit the
uncertainty growth to a time window: if t is the current time, uncertainties will
grow according to our model in the time window [t, t+T ] (T = 6 minutes in the
experiments) and will then be capped at their value at time t+T for subsequent
predictions. This helps focusing on short term conflicts while keeping long term
detection.

3.2 Decision variables

Our model considers heading change manoeuvres to solve conflicts. Here, a ma-
noeuvre is a α degree heading change, starting at time t0 and ending at time t1.
α is relative to the current heading. Once a manoeuvre is finished, the aircraft
heads toward its destination (see figure 1).

O

t0 t1

D

α

Fig. 1. Manoeuvre model for an aircraft flying from O to D.
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For each aircraft i, (t0i , t1i , αi) are bounded because of aerodynamic, sector
boundaries or time constraints. For instance, t0i can take values in [t0i , t0i ]. αi is
discretised with a step of 5 degrees in the range [−45◦, 45◦], which corresponds
to air traffic controllers practices.

Air traffic controllers only give one manoeuvre at a time to each aircraft. Once
the manoeuvre has started, only t1 can be modified (delayed or advanced to the
current time plus 60 seconds (S) at the earliest). In our model, a manoeuvred
aircraft can be manoeuvred again only once it is heading back to its destination
(between t1 and D on figure 1) but a second manoeuvre cannot be predicted
before the aircraft has finished its current one. This model complies to air traffic
controllers habits and favours a better balance of manoeuvres between aircraft.

4 Algorithm versions

As first described by [15], the principle of an EA can be summarised as follows:
given an evaluation function (fitness) to maximise, we initially randomly create
a population of candidate solutions, and apply the fitness function as a measure
of quality. At each generation, a selection is performed on the population, fol-
lowed by crossovers and mutations between some individuals leading to a new
population composed of some good old elements and new ones. This process is
iterated until a good enough solution is found or a time limit is reached.

Two versions (basic BV, and optimised OV) of the algorithm are introduced
in this section. Basic BV uses the operators introduced in [8]. In the OV version,
we optimised the algorithm by defining new crossover and mutation operators,
favouring diversity and by applying a local optimisation at the end of the algo-
rithm in order to reduce as much as possible the current manoeuvres.

4.1 Population element structure

For a traffic situation including n aircraft, a population element e is a potential
solution of the problem composed of n genes where each gene i (gei ) is the ith

aircraft manoeuvre (te0i , t
e
1i , α

e
i ) with:

– te0i , the manoeuvre start time chosen for aircraft i;
– te1i , the manoeuvre ending time chosen for aircraft i;
– αe

i , the deviation angle chosen for aircraft i. If αe
i = 0, the aircraft i is not

manoeuvred.

4.2 Population element fitness

In this work, we have several metrics that can be sorted by priority:

1. Solve all the conflicts;
2. Minimise the number of manoeuvres;
3. Minimise the delay due to the manoeuvres;
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4. Start the manoeuvres as late as possible in order to avoid useless manoeu-
vres, given that detected conflicts can disappear over time with uncertainty
reduction.

As these different metrics are sorted, and given that the EA will provide us
with different solutions of the problem, we decided to stay in a mono-objective
definition of the problem, by defining a single fitness balancing the different
criteria.

Let us introduce for gene i of a population element e:

– dei the delay of the aircraft i due to the manoeuvre;
– lei = t0i − te0i where t0i is the maximum time allowed to start a manoeuvre.

lei = 0 if the aircraft i is not manoeuvred;
– Se the set of remaining conflicts in the population element e;
– Se

i the set of remaining conflicts involving aircraft i in element e;
– dc the conflict duration for a conflict c ∈ Se.

We introduce a local fitness as presented by Durand et al. in [9]. Each gene
i of a population element e has a local fitness fe

i , which is useful to improve the
crossover and mutation steps. fe

i is expressed as follows:

fe
i =


1

1+
∑

c∈Se
i

dc
if Se ̸= ∅

1 + 1
1+2×de

i+lei
else

Let us define tsc the starting time of conflict c ∈ Se. If a conflict remains, it
should start as late as possible. The global fitness of a population element e is
defined as follows:

F e =


1
2 − 1

2 (1+min
c∈Se

tsc)
+ 1

2 (1+
∑

c∈Se
dc)

if Se ̸= ∅

1
n

n∑
i=0

fe
i else

4.3 EA operators

Crossover: The crossover operator creates two new elements from two parent
elements. In the BV version, one is created by mixing the genes of the two parents
and the other by an arithmetic operation on the genes of the two parents. Let
us consider two population elements e1 and e2.

For the first child ea, we use the strategy described in [9] which consists in
using the partial separability of a population element’s fitness. For all i ∈ [|1, n|],
if fe1

i > fe2
i then geai = ge1i else geai = ge2i .

The second child eb is created by applying barycentres. For all i ∈ [|1, n|], let
us choose randomly λt0i

, λt1i
, λαi

∈ [−50, 100] and define:

teb0i = (λt0i
× te10i + (100− λt0i

)× te20i )÷ 100

teb1i = (λt1i
× te11i + (100− λt1i

)× te21i )÷ 100

αeb
i = (λαi

× αe1
i + (100− λαi

)× αe2
i )÷ 100
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The OV version emphasises the diversification role of the crossover operator
by randomly creating two new random population elements one time out of
three.

In both BV and OV versions, the population crossover rate pcross = 30% was
chosen following a former dedicated study [7].

Mutation: The mutation operator locally modifies one of the genes of a popu-
lation element. The gene is chosen according to the value of its local fitness in
order to focus on the worst values. A roulette wheel draw is performed on the
set M of genes that can still be modified. Let us consider a population element
e. If Se ̸= ∅, the probability for gene i ∈ M to be chosen is proportional to
1/min(1, fe

i ). When no conflict remains the probability for gene i ∈ M to be
chosen is proportional to 1/(fe

i − 1).
Once a gene i has been selected, we randomly modify te0i , t

e
1i or αe

i if the
aircraft does not yet have a manoeuvre in progress, and te1i if the aircraft is
already manoeuvred and can still be adjusted.

In the BV algorithm, we randomly change one of the three parameters of
the manoeuvre of aircraft i. In the OV algorithm, if the current element e has
no conflict, we first try to remove the manoeuvre of aircraft i (set αe

i = 0). If it
creates a conflict we apply the former process.

In both BV and OV versions, the population mutation rate pmut = 40% was
chosen following a former dedicated study [7].

4.4 Sharing process

Keeping a diverse population is essential in a dynamic environment, and also
very useful to avoid premature local convergence of the EA. We use a cluster
based sharing process as described in [32] and [11].

The sharing process requires to define a distance between population ele-
ments. Therefore we consider three different manoeuvre directions (turn right,
turn left or do not turn) in order to match the way air traffic controllers un-
derstand different resolutions. We define the distance between two population
elements as the number of aircraft that are not manoeuvred in the same direction.
Two population elements are zero-distant if all of their aircraft are manoeuvred
in the same direction and thus belong to the same cluster. This defines the notion
of cluster, grouping all the individuals giving the same manoeuvre directions to
all their aircraft. There can be potentially up to 3n clusters. In the experiments,
considering the exponential growth of this number, and the constraints on ma-
noeuvres in progress, we will rarely find the maximum number of clusters in a
population. The sharing process helps control the diversity of the population.
Let C be the set of all clusters and fc the fitness of the best individual in a clus-
ter c ∈ C. Let cbest be the cluster in which the best individual in the population
is found and fbest its fitness. Our sharing process works in two steps. First, we
define a sharing rate sr ∈ [0; 1]. The best elements of all the clusters c which
respect equation 1 are automatically selected in the new population.
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fc ≥ sr × fbest (1) F e
s =

F e

card(c)
(2)

Adjusting sr is challenging. When sr is high, only the best clusters are pro-
tected in the selection process, whereas when sr is low, the algorithm is more
conservative.

The second step applies the selection process described in 4.5 to modified
fitness of the population elements. The modified fitness of an element of a cluster
c is given by equation 2: the fitness of a population element is divided by the
cardinal of its cluster.

4.5 Selection

The selection step is based on the stochastic remainder without replacement
method [14], taking into account the fitness Fs calculated during sharing.

4.6 Population size and Ending criterion

After a large number of experiments to check the quality of the convergence of
the EA (as explained in [7]), we selected the following parameters: the population
size is fixed to 200 and the algorithm is stopped after 200 generations, or when the
best fitness corresponds to a non-conflicting solution and has not been improved
during the last 20 generations. The EA can thus converge before reaching 200
generations.

4.7 Final optimisation

Some useless non-zero manoeuvres can appear and survive with the previous
operators (especially the crossover and sharing operators which preserve a large
population diversity). To eliminate these non-zero manoeuvres in the last gener-
ation, a final local optimisation is performed in the OV version on all individuals.
|α| and then t1 are decreased as much as possible (without creating new con-
flicts).

5 Memory Management

The traffic continuously evolves over time. Aircraft enter, leave and fly through
the sector. The goal is to avoid conflicts while minimising aircraft deviations. At
each time step (every 30 seconds in the experiments), every manoeuvre started
or starting in less than 1 minute is updated or applied. Manoeuvres starting in
more than 1 minute are ignored because they can be recalculated later.

5.1 Naive approach (NA)

In a classical EA initialisation, each population element is randomly created.
This strategy is used in the naive approach, NA in the following. The solver
only receives information about the current environment.
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5.2 Explicit memory approach (EMA)

The explicit memory approach stores all the population elements of the last
generation and reintroduces them to initialise the next resolution. Some previ-
ous solutions (respecting decision variable bounds at the previous step) may no
longer be correct. An aircraft may have been manoeuvred and cannot change
direction anymore, another may have finished a manoeuvre and is free to start
a new one. Furthermore, the number of decision variables may have changed if
some aircraft have left or entered the sector. In these cases, the genes repre-
senting the outgoing aircraft are deleted from the population elements and new
genes corresponding to incoming aircraft are randomly created.

5.3 Summary of the tested algorithms

In the experiments, we call BVNA and BVEMA the EA versions associated
with basic operators (crossover and mutation), and executed with either the NA
or EMA approaches. Similarly, we call OVNA and OVEMA the EA versions
associated with adapted operators, final optimisation and executed with either
NA or EMA. sr was experimentally adjusted at sr = 0.1, a low value favouring
a large diversity in the population.

6 Experimental Results

6.1 Exercises

E

N

W

S

30◦

150◦210◦

330◦

entry
points

exit
points

•O

•

•

•

Fig. 2. Geometry of conflict scenario generation.
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Creation: We create 3 scenario sizes, involving on average 35 aircraft (Base-
line), 50 aircraft (Baseline+50%) and 70 aircraft (Baseline+100%) for around
one hour of simulation. The Baseline scenario is already much denser than the
current traffic encountered by air traffic controllers in real life. They can gen-
erally handle up to 30 aircraft, but on several independent flight levels. Each
aircraft is assigned a random speed between 385 kts and 550 kts, a random en-
try point O taken on a circle of 90 NM radius on the angle ain ∈ [210◦; 360◦] (see
figure 2), and an exit point D on the angle aout = ain − 180◦ ± Random(45◦).
We impose aout ∈ [30◦; 180◦] to avoid interactions between entering and exiting
aircraft. Air traffic control generally uses an analogue semi-circular rule for the
same purpose.

Fig. 3. Extracted situations from the Baseline (left) and the Baseline+100% (right)
scenarios.

Preliminary analysis: Figure 3 shows two extracted situations simulated with-
out resolution of the Baseline, on the left, and the Baseline+100%, on the right.
The aircraft are represented by the white squares, their velocity vectors by the
white lines and their previous positions by comets. The grey lines show the re-
maining trajectories and potential conflict zones are coloured in black. Current
conflicts are coloured in red. A higher traffic density increases the number of
potential conflicts.

6.2 First results

In a first experiment, we evaluate the combinations of the EA versions with and
without memory (BVNA, BVEMA, OVNA, OVEMA) on the three exercises
previously described. Each combination is run twenty times on each exercise,
using different random seeds to ensure the statistical validity of the results. We
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apply a Wilcoxon Rank Sum Test with continuity correction using R to compare
the results between two different versions. The returned statistical elements are
denoted by W and p.

Algorithm evaluation: The different simulations are compared using the fol-
lowing criteria:

– F : the fitness of the best element found at each resolution time step;
– |C|: the number of clusters at the end of each resolution;
– |C0|: the number of clusters without conflict at the end of each resolution;
– Gtot: the total number of generations for each resolution;
– Gc: the minimal number of generations before a non-conflicting solution is

found, at each resolution;
– |S|: the number of remaining conflicts at the end of the exercise.

Ideally, the higher F , |C| and |C0| are, and the lower Gtot, Gc and |S| remain,
the better the EA behaves.

Version BVNA BVEMA OVNA OVEMA
Criteria Baseline
µ(F ) 1.77 1.79 1.78 1.79
µ(|C|) 84.7 82.1 120 120
µ(|C0|) 59.9 54.2 64.0 59.8
µ(Gtot) 131 51.9 129 51.0
µ(Gc) 3.04 0.04 3.19 0.05∑

|S| 0 0 0 0
Criteria Baseline+50%
µ(F ) 1.76 1.72 1.77 1.76
µ(|C|) 80.8 79.2 112 112
µ(|C0|) 55.8 49.8 55.1 50.4
µ(Gtot) 135 66.7 136 61.1
µ(Gc) 4.86 0.71 4.22 0.68∑

|S| 0 0 0 0
Criteria Baseline+100%
µ(F ) 1.63 1.59 1.65 1.66
µ(|C|) 82.0 82.9 115 115
µ(|C0|) 51.0 45.1 53.1 50.4
µ(Gtot) 167 100 167 86.2
µ(Gc) 18.6 19.3 20.8 2.95∑

|S| 0 4 0 0
Table 1. Algorithmic results

Table 1 shows for the three traffic densities, and the four combinations of the
algorithm (BVNA, BVEMA, OVNA, OVEMA) the mean values on the 20 runs
of the mean values of criteria F , |C|, |C0|, Gtot and Gc on all the time steps of
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the simulation where a manoeuvre occurs. The sum of remaining conflicts over
the 20 runs of each exercise is shown in the last row

∑
|S|.

The criteria between BVNA and OVNA, and between BVEMA and OVEMA
improve in a majority of cases. For example in the Baseline+100% exercise, all
criteria improve between BVEMA and OVEMA (µ(F ) : 1.59 → 1.66 (W > 107, p
< 10−3), µ(|C|) : 82.9 → 115 (W > 106, p < 10−15), µ(|C0|) : 45.1 → 50.4 (W >
107, p < 10−14), µ(Gtot) : 100 → 86.2 (W > 107, p < 10−14), µ(Gc) : 19.3 → 2.95
(W > 107, p < 10−13) and

∑
|S| : 4 → 0). The increase of the total number

of clusters is notable. The new crossover operator creating new individuals one
time out of three in the OV version could explain this phenomenon. The number
of remaining conflicts drops to zero in the OV version.

Averages of µ(F ) are similar for OVNA and OVEMA but differences appear
when looking at the number of generation and cluster criteria. Using memory
does not seem to penalise the diversity of the whole population. The constant
reuse of former population elements does not impact the total number of clusters.
However, even if the number of clusters |C| are similar, the number of clusters
without conflict remains slightly higher without memory, showing that starting
with a random population remains better for the diversity of acceptable solu-
tions. Keeping a high diversity is important in the eventuality of external actions
on aircraft. The main advantage of using memory is shown with the optimised
version for which µ(Gtot) and µ(Gc) decrease a lot with the use of memory.
For example, on the Baseline+100% exercise, the mean number of generations
necessary to find a conflict-free solution is divided by almost ten, dropping from
20.8 to 2.95 ( W > 107, p < 10−15). This last point could be very advantageous
if the EA was used to help an air traffic controller making decision in real time.

Aeronautical performances: Table 2 evaluates the following criteria on the
same simulations. The lower the criteria are, the better the aeronautical perfor-
mances are.

– M : the number of manoeuvres divided by the number of aircraft at the end
of each simulation;

– D: the average percentage of additional flight time per aircraft;
– V : the percentage of aircraft with varying manoeuvres planned. A manoeuvre

is varying if it has at least been planned in the opposite direction (turn right
then left or turn left then right) between two successive resolutions.

In the most of the cases, especially when the traffic density increases, OVNA
and OVEMA have better results than BVNA and BVEMA. When memory is
used, the OV version tends to minimise the number of manoeuvres performed,
but the manoeuvre durations are higher. The balance between these two criteria
is modified with the use of memory. This can be adjusted in the fitness definition.

The major observation here is the improved stability of the manoeuvres
planned by the conflict solver when memory is used. Indeed, for the most dense
exercise, criterion V drops from 33% (without memory) to 9% (with memory) (W
= 0, p < 10−7), showing that with memory, only 9% of the aircraft are planned
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Version BVNA BVEMA OVNA OVEMA
Criteria Baseline

M 0.28 0.28 0.30 0.28
D 1.06 1.18 1.18 1.11
V 14.1 9.11 12.5 7.14

Criteria Baseline+50%
M 0.28 0.32 0.27 0.27
D 1.23 2.10 1.30 1.55
V 17.7 7.82 14.1 6.54

Criteria Baseline+100%
M 0.64 0.62 0.59 0.54
D 3.08 3.91 2.84 3.55
V 42.1 20.8 33.3 9.04

Table 2. Aeronautical results

an opposite direction between two time steps. This could be a real advantage if
our EA had to help an air traffic controller make decisions over time.

6.3 External action impacts

In this section, we focus on the effect of external actions on EA resolutions.
At some time steps (every 300 seconds if possible, or more if not), a random
manoeuvre is associated with an aircraft (in the aircraft manoeuvring bounds)
and both the state of the environment and the resolution at the next time step are
saved. The main simulation is run using the OVEMA version. When an external
manoeuvre is applied, we compare two resolutions, OVNA and OVEMA at this
specific time step.

We randomly apply a manoeuvre to one aircraft that can still be manoeu-
vred. If this manoeuvre does not cause a conflict within the next three minutes,
it is added to the current solution, otherwise the process is repeated until an
acceptable manoeuvre is found. This random action is initiated if the EA has
at least one conflict-free solution at the current time and if at least one aircraft
can be manoeuvred.

In table 3, for each exercise, we evaluate the mean values of F , |C|, |C0|,
Gtot and Gc with the OVNA and OVEMA solvers. The percentage of times for
which one version is strictly better than the other is shown in the brackets next
to the mean value of the criteria.

The mean fitness is generally better with memory than without, and the
fitness is strictly better without memory only 11%, 17% and 27% of the time.
As previously, the major result concerns the number of generations necessary to
optimise a solution or to find a conflict-free solution. For the most dense scenario
(Baseline+100%), the total number of generations Gtot drops from 154 to 104
(W > 105, p < 10−15) with memory and the number of necessary generations
to find a conflict-free solution drops from 39 to 21 (W > 105, p < 10−15) with
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Baseline Baseline+50% Baseline+100%

Criteria OVNA OVEMA OVNA OVEMA OVNA OVEMA

µ(F ) 1.76 (11%) 1.84 (80%) 1.77 (17%) 1.76 (36%) 1.57 (27%) 1.6 (54%)

µ(|C|) 93 (40%) 99 (53%) 102 (40%) 101 (40%) 111 (46%) 111 (43%)

µ(|C0|) 57 (48%) 61 (42%) 57 (53%) 54 (30%) 49 (57%) 48 (26%)

µ(Gtot) 92 (5%) 47 (54%) 108 (24%) 70 (56%) 154 (10%) 104 (64%)

µ(Gc) 6 (6%) 2.4 (21%) 7.6 (3%) 5.4 (33%) 39 (5%) 21 (61%)
Table 3. Effect of external actions

memory. Using a memory approach has not prevented the EA to adjust to an
unexpected event.

7 Conclusion

In this article, we introduce an optimised version of an EA combined with a
memory process and compare it with a basic version on a very dense dynamic
conflict resolution optimisation problem. We define a new crossover operator to
help the EA keep a diverse population even when a memory process is used.
We also define a new mutation operator to keep reduced manoeuvres allowing
aircraft to remain free for future manoeuvres. We add a final optimisation process
to help remove useless manoeuvres and reduce delays. We use a cluster based
sharing process with a low sharing rate to make sure that the population covers
the search space as much as possible through the simulations.

Using an explicit memory process drastically reduces the total number of
generations and the number of generations necessary to find a conflict-free solu-
tion. It also reduces the variation of manoeuvres planned over time. These two
results are essential if such an algorithm was used to help air traffic controllers
make real time decisions in a dynamic environment.

We show that the memory based approach can handle external actions and
still quickly find good solutions despite the fact that old options are kept in the
population. This is an important point if such an algorithm should interact with
an air traffic controller making decisions that are not present in the manoeuvres
covered by the population.

For future research, it could be wise, at every time step, to run in parallel
the EA with several random seeds and keep the best solution found. This could
be tested and compared with or without memory. We could also imagine a hy-
brid version of the naive and explicit memory approaches, where only the best
element of each cluster at the last generation would be reintroduced in the next
population initialisation. The rest of the population could then be randomly
created which would favour some diversity in the population.

This work will be tested with air traffic controllers to measure the capacity
for collaboration between humans and a population based automatic solver and
the quality of interactions with such a memory based algorithm.



Memory Based EA for Dynamic Aircraft Conflict Resolution 15

References

1. Allignol, C., Barnier, N., Durand, N., Alliot, J.M.: A new framework for solving
en-routes conflicts. In: 10th USA/Europe Air Traffic Management Research and
Developpment Seminar (2013)

2. Allignol, C., Barnier, N., Durand, N., Gondran, A., Wang, R.: Large Scale
3D En-Route Conflict Resolution. In: ATM Seminar, 12th USA/Europe
Air Traffic Management R&D Seminar. Seattle, United States (Jun 2017),
https://enac.hal.science/hal-01592235

3. Allignol, C., Barnier, N., Durand, N., Gondran, A., Wang, R.: Large Scale 3D
En-Route Conflict Resolution. In: ATM Seminar, 12th USA/Europe Air Traf-
fic Management R&D Seminar. Seattle, United States (Jun 2017), https://hal-
enac.archives-ouvertes.fr/hal-01592235

4. Alonso-Ayuso, A., Escudero, L., Martin-Campo, F.: Collision avoidance in air traf-
fic management: a mixed-integer linear optimization approach. IEEE Transactions
on Intelligent Transportation Systems 12(1), 47–57 (2011)

5. Aragon, V.S., Esquivel, S.C.: A evolutionary algorithm to track changes of opti-
mum value locations in dynamic environments. Journal of Computer Science and
Technology 4(3), 127–134 (2004)

6. Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In:
in Dynamic, E.C., Environments, U. (eds.) Studies in Computational Intelligence,
vol. 51, pp. 129–152. Springer Berlin Heidelberg (2007)

7. Degaugue, S., Gotteland, J., Durand, N.: Algorithme évolutionnaire pour la réso-
lution, en continu, de conflits aériens. In: ROADEF (2023)

8. Degaugue, S., Durand, N., Gotteland, J.B.: Impact of Explicit Memory on Dy-
namic Conflict Resolution. In: 10th International Conference on Research in Air
Transportation (ICRAT 2022). p. paper 53. Tampa, United States (Jun 2022),
https://hal.science/hal-03878000

9. Durand, N., Alliot, J.M.: Genetic crossover operator for partially separable func-
tions. In: GP 1998, 3rd annual conference on Genetic Programming. Madison,
United States (Jul 1998), https://enac.hal.science/hal-00937718

10. Durand, N., Alliot, J.M.: Ant Colony Optimization for Air Traffic Conflict Res-
olution . In: ATM Seminar 2009, 8th USA/Europe Air Traffic Management Re-
search and Developpment Seminar. Napa, California, United States (Jun 2009),
https://enac.hal.science/hal-01293554

11. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using
genetic algorithms. In: Proceedings of the Symposium on Applied Computing,
Philadelphia. ACM (1996)

12. Durand, N., Gotteland, J.B., Matton, N.: Visualizing complexities: the
human limits of air traffic control. Cognition, Technology and Work
(Feb 2018). https://doi.org/10.1007/s10111-018-0468-0, https://hal-enac.archives-
ouvertes.fr/hal-01707751

13. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In: ICGA (1987)

14. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Reading MA Addison Wesley (1989)

15. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
press (1975)

16. Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and re-
sponse to dynamic systems. In: Proceedings of the 2002 Congress on Evolutionary



16 Degaugue, Durand, Gotteland

Computation. CEC’02 (Cat. No.02TH8600). vol. 2, pp. 1666–1670 vol.2 (2002).
https://doi.org/10.1109/CEC.2002.1004492

17. Krishnakumar, K.: Micro-Genetic Algorithms For Stationary And Non-
Stationary Function Optimization. In: Rodriguez, G. (ed.) Intelligent Con-
trol and Adaptive Systems. vol. 1196, pp. 289 – 296. International Soci-
ety for Optics and Photonics, SPIE (1990). https://doi.org/10.1117/12.969927,
https://doi.org/10.1117/12.969927

18. Lehouillier, T., Omer, J., Soumis, F., Desaulniers, G.: A flexible framework for
solving the air conflict detection and resolution problem using maximum cliques
in a graph (06 2015)

19. Louis, S., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling.
In: ISCA 11th Intl. Conf. on Computers and their Applications. pp. 99–102 (1996)

20. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance
change mechanism for non-stationary function optimization. (1995),
https://cir.nii.ac.jp/crid/1373949023319151361

21. P. Rohlfshagen, P.K.L., Yao, X.: Dynamic evolutionary optimisation: An analysis
offrequency and magnitude of change. In: Proceedings of the 2009 Genetic and
Evolutionary Computation Conference GECCO’09. pp. 1713–1720 (2009)

22. Pallottino, L., Féron, E., Bicchi, A.: Conflict resolution problems for air traffic
management systems solved with mixed integer programming. IEEE Transactions
on Intelligent Transportation Systems 3(1), 3–11 (2002)

23. Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of genetic algorithms.
In: Proceedings of the 5th International Conference on Genetic Algorithms. p.
84–91. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

24. Rey, D., Rapine, C., Fondacci, R., Faouzi, N.E.: Minimization of potential air
conflicts through speed regulation. Transportation Research Record: Journal of
the Transportation Research Board 2300, 59–67 (2012)

25. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions.
In: Proceedings of the 2008 Conference on Applications of Evolutionary Comput-
ing. p. 596–605. Evo’08, Springer-Verlag, Berlin, Heidelberg (2008)

26. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary envi-
ronments. In: Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406). vol. 3, pp. 1843–1850 Vol. 3 (1999).
https://doi.org/10.1109/CEC.1999.785498

27. Trojanowski, K., Michalewicz, Z., Xiao, J.: Adding memory to the evo-
lutionary planner/navigator. In: Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC ’97). pp. 483–487 (1997).
https://doi.org/10.1109/ICEC.1997.592359

28. Vanaret, C., Gianazza, D., Durand, N., Gotteland, J.B.: Benchmarking conflict res-
olution algorithms. In: ICRAT 2012, 5th International Conference on Research in
Air Transportation. Berkeley, United States (May 2012), https://hal.science/hal-
00863090, http://www.icrat.org//icrat/Author/CharlieVanaret669/FINAL-329-
cfp-Vanaret.pdf

29. Vela, A., Solak, S., Singhose, W., Clarke, J.: A mixed integer program for flight-
level assignment and speed control for conflict resolution. In: Proceedings of the
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference. IEEE (2009)

30. Weicker, K.: An analysis of dynamic severity and population size. Parallel Problem
Solving from Nature VI (2002)

31. Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable re-
location. IEEE Transactions on Evolutionary Computation 13(3), 500–513 (2009)



Memory Based EA for Dynamic Aircraft Conflict Resolution 17

32. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster
analysis methods in multimodal function optimization. In: Albrecht, R.F., Reeves,
C.R., Steele, N.C. (eds.) In proceedings of the Artificial Neural Nets and Genetic
Algorithm International Conference, Innsbruck Austria. Springer-Verlag (1993)


