
HAL Id: hal-04716938
https://hal.science/hal-04716938v1

Preprint submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Control of Walkers with Parallel Actuation
Ludovic de Matteis, Virgile Batto, Justin Carpentier, Nicolas Mansard

To cite this version:
Ludovic de Matteis, Virgile Batto, Justin Carpentier, Nicolas Mansard. Optimal Control of Walkers
with Parallel Actuation. 2024. �hal-04716938�

https://hal.science/hal-04716938v1
https://hal.archives-ouvertes.fr


Optimal Control of Walkers with Parallel Actuation

Ludovic De Matteı̈s1,2,∗, Virgile Batto1,3, Justin Carpentier2, Nicolas Mansard1,4

Abstract— Legged robots with complex kinematic architec-
tures, such as parallel linkages, offer significant advancements
in mobility and efficiency. However, generating versatile move-
ments for these robots requires accurate dynamic modeling
that reflects their specific mechanical structures. Previous
approaches often relied on simplified models, resulting in
sub-optimal control, particularly in tasks requiring the full
actuator range. Here, we present a method that fully models the
dynamics of legged robots with parallel linkages, formulating
their motion generation as an optimal control problem with
specific contact dynamics. We introduce 6D kinematic closure
constraints and derive their analytical derivatives, enabling the
solver to exploit nonlinear transmission and the consequent
variable actuator reduction. This approach reduces peak motor
torques and expands the usable range of actuator motion and
force. We empirically demonstrate that fully modeling the kine-
matics leads to superior performance, especially in demanding
tasks such as fast walking and stair climbing. Beyond serial-
parallel designs, our method also addresses motion generation
for fully-parallel walkers.

I. INTRODUCTION

Recent progress in biped locomotion result from the sound
combination of more mature motion generation techniques
and continuous improvements in robot design and hardware
[1]. Several advancements have recently demonstrated the
advantages of leveraging parallel kinematic chains to boost
the dynamic capabilities of robots [2]. This architecture
offers benefits like lighter lower limbs and improved impact
absorption [3] at the cost of introducing more complex
dynamics, [4] eventually making the robot more difficult to
simulate and control [5]. While robots like the ones presented
in Fig. 1 have already presented such hardware, effective
control methods for these systems, able of exploiting their
full actuator range, remain an open question.

The main historical approaches to gaited locomotion rely
on solving a reduced version of the system dynamics [6], [7],
[8] combined with inverse kinematics or task-space inverse
dynamics. Yet the state of the art recently shifted to whole-
body methods, either based on Model Predictive Control
(MPC) [9], [10] or on Reinforcement Learning (RL) [11]
where the locomotion decision does not rely on any heuristic
but rather on the full dynamical model of the poly-articulated
system [12], [13]. A first step in that direction was done in
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4 Artificial and Natural Intelligence Toulouse Institute, France
∗ Corresponding author: ludovic.de-matteis@laas.fr

Fig. 1: From top-left to bottom-right: Digit [18], Atrias [19],
Fourier GR1 [20], Unitree G1 [21], Tesla Optimus [22],
Kangaroo [23], Adam [24] and Disney bipedal robot [25].
Each red lock represents a visible closure of the kinematic
chain.

RL [14], but with the limiting hypothesis of a negligible
transmission inertia.

The main contribution of this paper is to derive a complete
modeling methodology to enable the simulation of closed
kinematic chain robots, mostly targeting MPC (although
these approaches are the same as those used in the sim-
ulator for RL). The dynamics of a poly-articulated robot
is governed by the unconstrained equations of motion and
founds efficient algorithms and their implementations in
the literature [15], [16], [17]. Recent works have proposed
general methods to write the dynamic of a system under
contact constraints, [13] and showed a general form of its
derivatives, [4], [12]. It is already accepted that closed-
kinematic constraints can be casted under the same abstract
scope as contact constraints, to be used in the same frame-
work [13].

This paper bridges the missing steps to enable whole-body
MPC for parallel mechanisms and experimentally demon-
strates the importance of accounting for the complete robot
model to exploit closed-loop actuation at best. In particular,
we show that, while basic flat ground locomotion can be
obtained while ignoring the transmission kinematic, it is
strongly limiting for reaching higher walking velocity or
climbing stairs. For such movements, using a simplified
serial chain model requires additional task-specific heuristics
(e.g., constraining the center of mass height, limiting joints
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range. . . ), involving dedicated tuning by an expert. More-
over, modeling the parallel kinematics allows us to obtain
movements by exploiting the full dynamic capabilities of
the hardware, while only modeling the serial chain implies
to pessimistically clamp the actuator range. Our work also
unlocks MPC for full-parallel kinematics - i.e. where no
approximate serial chain exists (e.g. the Disney bipedal robot
[25]) The contributions of this work can be summarized as
follows:

• We provide a way to efficiently compute the derivatives
of the dynamics of a robot involving closed-loop con-
straints (sec. III).

• We use this new dynamic to formulate and solve an
optimal control problem for the walk of a robot with
parallel actuation (sec. IV).

• We highlight the limitations of using a simplified model
of such a robot by comparing it to the complete mod-
eling over different motions (sec. V).

II. BACKGROUND

A. Optimal control

Optimal control of a multibody system consists in finding
the control inputs that minimize a given cost function while
satisfying the system dynamics and constraints. The multiple
shooting approach optimizes over both the control inputs and
the states at each discrete time step with the dynamics as an
explicit constraint, formulated as the following non-linear
program (NLP):

min
u, x

N−1∑
k

lk(x[k], u[k])dt+ lN (x[N ])

s.t. ∀k ∈ J0, N − 1K x[k + 1] = fk(x[k], u[k])

∀k ∈ J0, N − 1K ck(x[k], u[k]) ≤ 0

(1)

The cost function is usually defined as the sum of running
costs lk and a terminal cost lN . The functions fk and ck are
defining the system dynamics and constraints at time step
k, respectively. The case where f models a poly-articulated
system in contact is well-known and the derivations are
recalled next.

B. Multibody dynamics

The dynamic of a multibody system is well described by
the Lagrangian equation of motion:

M(q)q̈ + b(q, q̇) = τ(u) + Jc(q)
T f (2)

where M represents the generalized inertia matrix, b the non-
linear terms, q the generalized coordinates of the system, q̇
the generalized velocities1 and τ the torques applied on the
system joints, function of the controls u (usually, the controls
correspond to the motor joints torques and all other joints
torques are zero). The term f represents a force applied on
the system, where Jc is the Jacobian of the contact point.

1In our implementation, q typically contains quaternions for represent-
ing basis orientation and ball-joints configurations, hence the notation q̇,
although classical is abusive

For systems subject to mecanical constraints (such as foot-
ground contact or kinematics-closure), these forces f arrise
from the satisfaction of the constraints.

C. Dynamics subject to constraints

From Gauss principle of least action [26], [27], [28], the
acceleration q̈ of the system under contacts should be as
close as possible to its free acceleration q̈f , with respect the
the kinematic metric, while satisfying the contact constraints.
This can be rewritten as the following optimization problem:

min
q̈

∥q̈ − q̈f∥2M

s.t. Jcq̈ + a0 = 0
(3)

The constraint in (3) corresponds to the second-order time
derivatives of the constraint of contact, where a(q, q̇, q̈) =
Jcq̈+ a0(q, q̇) describes the relative acceleration of the con-
tact point, that we consider here - without loss of generality
- to be wanted to be zero, and where a0(q, q̇) = a(q, q̇, 0) =
J̇cq̇ is the acceleration due o the velocity only. Deriving first-
order optimality conditions, (3) boils down to:[

0 Jc
Jc

T M

]
︸ ︷︷ ︸

K

[
f
q̈

]
︸︷︷︸
y

=

[
−a0

τ(u)− b

]
︸ ︷︷ ︸

k

(4)

where f , the dual variables of the optimisation problem, are
the contact forces applied on the system. This system can be
solved to give q̈ and f given the state x =

(
q q̇

)
and the

controls. The solution y = K−1k to this problem exists and
is unique whenever the matrix K is invertible, which usually
happens when the matrix M is positive definite and when
the constraints are not redundant. Proximal resolution leads
to the least-square solution when Jc is not full rank [13].

D. Derivatives of the constrained dynamics

MPC typically uses gradient-based solvers to get the
solution of (1), which implies to evaluate the derivatives
of y with respect to x and u. In [4] the authors proposed
the derivatives of a robot in contact with its environment.
More recent work generalize these to arbitrary contacts [12],
[16]. Following these works, the gradient of y with respect
to z ∈ {q, q̇, u} can be reduced to:

∇zy = K−1

[
∂ a0

∂z
∂ ID
∂z

]
(5)

where the Inverse Dynamics (ID) function outputs the joint
torques creating acceleration q̈ under contact forces f .

ID(q, q̇, q̈, f) = Mq̈ + JT
c f + b (6)

The derivatives of these terms with respect to the controls
u will not be explicited in this paper as the first term is
independent on u and the second depends on the chosen
actuation model. The derivatives of ID when Jc are the joint
jacobians have been established [29] and are sufficient for
the case of a contact between the robot and its environment,
yet we will see that they are not sufficient in our case.
We can now introduce the main technical contribution of



this work, by proposing an effective form for the constraint
a = Jcq̈ + a0 representing the kinematic closure and by
exhibitting the corresponding ∂a0

∂z and ∂ID
∂z .

III. A CONSTRAINT MODELLING THE KINEMATIC
CLOSURE

A. Formulation of the constraint in acceleration

We consider the mechanical linkage between two bodies of
the robot, characterized by frames F1 and F2 rigidly attached
to each of them. We choose to write the 6D contact constraint
on the relative placement as:

Log (1M2) = 0 (7)

where 1M2 ∈ SE(3) is the rigid transformation between the
frames and Log is the retractation from SE(3) to R6 [30].
The first-order time derivative of this constraint can be
expressed as the difference in spatial velocities expressed
in a common frame. We choose as a convention to express
all quantities in the frame F1, giving the constraint:

νc =
1ν1 −1 X2

2ν2 = 0 (8)

where, following the notations introduced by Featherstone
[15], 1ν1 and 2ν2 are the spatial velocities of the two bodies
expressed in their respective frames, 1X2 is the Plücker
coordinate transform, i.e. the adjoint matrix of SE(3), from
F2 coordinates to F1 coordinates. In the same way, the
second-order time derivative of (7) can be expressed as the
derivative of the relative spatial velocity νc.

ac =
1a1 −1 X2

2a2 − [1ν2 −1 ν1]×
1ν2

= 1a2︸︷︷︸
γ1

− 1X2
2a2︸ ︷︷ ︸

γ2

+ [1ν1]×
1ν2︸ ︷︷ ︸

γ3

(9)

where the spatial cross-product [ν]× (small adjoint) is given
by

[ν]×≜

[
[ω]× [v]×
0 [ω]×

]
(10)

B. Differentiation of the acceleration constraint

As shown in (5), we need the derivatives of the terms
γ1, γ2 and γ3 with respect to the configuration vector q and
velocity q̇. The first of these derivatives yields directly:

∂γ1
∂q

=
∂1a1
∂q

=
1∂a1
∂q

(11)

Note that we make here a clear distinction between the terms
∂AaB

∂q and
A∂aB

∂q as explained in [15] (section 2.10). To
compute the derivative of the second term, we can use the
method proposed in [31] - i.e. we search the time derivatives
of γ2 under the form γ̇2 = Gq̇ to deduce ∂γ2

∂q = G.

∂γ2
∂t

=
∂1X2.

2a2
∂t

=
∂1X2

∂t
2a2 +

1X2
∂2a2
∂t

= [1(ν2 − ν1)]×
1X2

2a2 +
1X2

2∂a2
∂t

= −[1X2.
2a2]×

1(ν2 − ν1) +
1X2

2∂a2
∂t

(12)

which yields

∂γ2
∂q

= −[1X2
2a2]×(

1J2 − 1J1) +
1X2

2∂a2
∂q

(13)

We proceed in a similar way for the third and last term:

dγ3
dt

=
∂[1ν1]×

1X2
2ν2

∂t

= [
∂1ν1
∂t

]×
1ν2 + [1ν1]×(

∂1X2

∂t
2ν2) + [1ν1]×(

1X2
∂2ν2
∂t

)

(14)
which gives after development

∂γ3
∂q

= −[1ν2]×
1∂ν1
∂q

− [1ν1]×
(
[1X2.

2ν2]×(
1J2 − 1J1)

)
+ [1ν1]×

1X2.
2∂ν2
∂q

(15)
All these terms can accessed using rigid body dynamics
algorithms such as those included in Pinocchio [16]. As the
action matrices do not depend on q̇, the derivatives of ac
with respect to q̇ are direct and left to the reader.

C. Derivatives of Inverse Dynamic

We will now look at the derivatives of ID with respect to
q and q̇. Let us write the expression of ID as a function of
the forces applied on the joints. We will denote these forces
by ϕk and the corresponding joint Jacobians Jk for joint jk.

ID(q, q̇, q̈, f) = M(q)q̈ + b(q, q̇) +
∑
k

Jk(q)
Tϕk(q, f)

(16)
where the ϕk are typically expressed in the reference frame
of joint jk denoted by Fjk . We will now omit the depen-
dences to simplify the notation. The derivative with respect
to the q is given by:

∂ID

∂q
=

∂(Mq̈ + b)

∂q
+

∑
k

∂JT
k

∂q
ϕk +

∑
k

JT
k

∂ϕk

∂q
(17)

The first two terms are the classical Recursive Newton-Euler
Algorithm (RNEA) derivatives, which are well established
and implemented in the Pinocchio library [29], [16].

To compute the third term, we denote by j1 and j2 the
parent joints of F1 and F2. Following the choice of (9), the
force f arising from the constraint (7) is expressed in F1.
Considering that only f acts on the system, then all forces
ϕk are null except ϕ1 and ϕ2 which are:

ϕ1 = j1X∗
c1f

ϕ2 = −j2X∗
c2

c2X∗
c1(q)f

(18)

where X∗ is the Plücker transform on forces (dual adjoint),
j1Xc1 is the fixed placement of the contact frame F1 with
respect to the joint frame Fj1 (respectively j2Xc2 ) and c2Xc1

is function of q. We can see that ϕ1 is independent of q while
ϕ2 is not. Its derivative with respect to q is given by:

∂ϕj2

∂q
= −

∂ j2X∗
c1

∂q
f

= [j2X∗
c1f ]×

∗(J2 − j2Xj1J1)

(19)



where, J1, J2 are the joint jacobians respectivelly expressed
in F1 and F2 and the term [f ]×

∗ can be defined as follows:

[f ]×
∗ ≜

[
0 [flinear]×

[flinear]× [fangular]×

]
(20)

With the existing derivatives of RNEA [29], this completes
the computation of the derivative of the ID with respect to
q.

D. Implementation

We presented the computation of the derivatives of the
contact acceleration in the case of a 6D contact constraint,
which is sufficient for defining the closed loop dynamic of
a robot. An example of this application is proposed in the
following section and applied to solve OCPs on a closed loop
robot. Other definition of the constraint could be adopted
such as a 3D contact constraint acting only the position of
the contact frames only. The same method can be applied
for these other cases, with the only difference being the
definition of the constraint and its explicit differentiation.

The constrained dynamic with 6D contact constraints and
3D contact constraints have been implemented in C++ in the
Crocoddyl library. The current implementation can be found
in a fork on github [32] and will be merge to the main library.
The complete code for generating the examples presented in
the following section can also be found in Github [33].

IV. COMPLETE DESCRIPTION OF THE OCP

In this section, we give the complete description of the
locomotion OCP we used in our benchmarks, including the
description of the robot model.

A. Presentation of the robot

We have chosen to use in our benchmarks a mechanical
design featuring a main serial chain with non-trivial actuator
transmission. This corresponds to the main features of several
new biped robots unveiled in early 2024 (including Unitree
H1 and G1, electric Atlas, Adam and Kangaroo). On the
opposite, it does not fully matches the models of other
robots such as Digit or Kangaroo for which an approximate
serial chain can be defined but does not correspond to a
perfect equivalence (in particular the placement of the DoF
in the serial chain must be changed with respect to the real
robot). As the models of the robots of interest are not easily
available, we introduce a novel design, combining advantages
of H1 and Atlas, previously described. Our method is generic
and applies to other designs, including those for which
an equivalent serial chain does not exist, as shown in the
companion video.

This robot is available on GitHub [34] following the work
of [3]. An visual of the robot is shown in Fig. 2, revealing
the different kinematic closures of the knees and ankles.

For each leg, the first 3 motors are serial motors con-
trolling the hips degrees of freedom, next a motor controls
the knee through a 4-bars linkage and 2 motors on the calf
control the ankle. Each parallel actuation creates a reduction
ratio between the motors and the joints that depends on the

Fig. 2: Robot model used for our benchmark. Each red lock
represents a closure of the kinematic chain. In our model,
we represent the chain as a tree-like structure with added
contact constraints by splitting the bar in two at the lock
position and adding 6D contact constraints

Fig. 3: Variation of the reduction ratio of the knee actuation
with respect to the knee angle. The 0 angle corresponds to
a nominal configuration of the robot while positive angles
correspond to a stretched leg..

robot configuration. We show in Fig. 3 the variation of the
reduction ratio of the knee actuation with respect to the knee
angle.

The complete model including parallel linkages is com-
pared in the benchmark against a simplified model consider-
ing only the serial joints of the robot (hip, knee, and ankle
joints) and freezing the other joints in place. The non-serial
motors are fixed and fictive actuation is added on serial joints,
yielding a fully serial model with 6 actuated revolute joints
per leg.

B. Experimental protocol

For this study, we are interested in comparing trajectories
obtained by first, solving the OCP problem for the simplified
model of the robot and extending the obtained optimal
trajectory to the complete model (as explained in sec. IV-D),
and second by solving directly the OCP for the complete
model, with the dynamic under 6D closed-kinematic
constraints. These trajectory are referred to as ”simplified”
and ”complete” respectively. The former can be seen as a
trajectory obtained for a simplified model, that we would
want to directly apply to the robot by only solving for the
motor controls.

C. Optimal control problem

Both trajectories are optimized using the same optimal
control problem written in the form described in (1) using the



Crocoddyl library. The OCP is based on a predefined contact
pattern consisting 4 steps of alternating double support and
single support phases with costs taken from [10].

a) Regularisation costs: We regularize the controls
and the states around zero and a reference configuration
respectively, and the ground contact forces around 0 when
the foot is in the air, the weight of the robot when the foot
is in contact with the ground in single support phases and
half of it during double support phases.

b) Impact costs: As the dynamics of the robot under
contact only constraint the relative accelerations of the
contact points, we add soft constraints on the velocity and
placement of the foot at the end of single support phases to
ensure it lands flat, still, and at the correct height.

c) Target costs: The motion is defined by a COM ve-
locity target defined in a running cost and in the terminal state
regularization that accounts for the expected displacement.

d) Additional costs: Other costs are added to improve
the realism of the trajectory (foot fly-high, center of pressure,
forces in friction cones...). We do not present them here
but one can find their definition in the example codes.
Lastly, a cost penalizes the drift of the COM from its initial
height. The weight of the cost will be changed to emphasize
differences of behaviors between models.

D. From simplified model to complete model

As the leg is fully actuated and outside of singularities
of the parallel linkage, an trajectory of the simplified model
corresponds to a trajectory of the complete model whose mo-
tor torques can be evaluated. The simplified model trajectory
is defined by a sequence of states x

[k]
s = (q

∗[k]
s , q̇

∗[k]
s ) and

of controls u
[k]
s . The complete model trajectory is similarly

defined by the sequences x
[k]
c = (q

[k]
c , q̇

[k]
c ) and u

[k]
c , where

q
[k]
c =

(
q
[k]
s q

[k]
l

)
(respectively q̇c), describing that the

complete model state includes the simplified model state.
We propose to lift the simplified model trajectory into a
trajectory of the complete model including the motor torques,
by solving:

min
u[k],x

[k+1]
c

1

2
∥q[k+1]

s − q∗[k+1]
s ∥2 + 1

2
∥q̇[k+1]

s − q̇∗[k]s ∥2

s.t. x[k+1]
c = fk(x

[k]
c , u[k])

(21)
where the state x

[k]
c is known from the previous iteration

(assuming x[0] is known) and the targets are the expected
values for the serial part of the state, given by the simplified
trajectory. We can observe that problem (21) takes the form
of a 1-step optimal control problem and can therefore be
solved using the same solver.

V. COMPARISON OF THE MODELS

A. Flat ground walk

We consider a walking motion on a flat terrain with a
constant speed at 0.5m/s with an initial robot configuration
that places its base at 0.575 m above the ground. In this

situation, we compare the simplified trajectory to the com-
plete trajectory, taking into consideration the center of mass
trajectory, the foot trajectories and the motor controls.

Fig. 4: Feet trajectory for the simplified and complete tra-
jectories during the reference walk motion

Fig. 5: COM position trajectory for the simplified and
complete trajectories during the reference walk motion

Figures 4 and 5 show the comparison of the foot and the
COM trajectories for the simplified and complete trajectories.
The complex kinematics raises no difference in the foot
dynamics. The COM trajectories significantly differ with the
simplified model leading to undesirable elevation while the
complete modeling account for the knee variable reduction
and keep the COM low.

B. Variation of the COM penalization weight

Indeed, the parallel actuation prevents a full leg extension,
that the simplified model ignores. The COM elevation must
then be controlled with a dedicated cost. Varying this cost
leads to a range of robot performance for the simplified
model while the complete model is robust to it, as shown
in Fig. 6. Consequently, the simplified model may inconsid-
erately extend the leg leading to peak torque of the knee
motor, which we can not observe when only considering the
knee joint, as shown in Fig. 7.

C. Variation of the velocity command

Yet, tuning the COM elevation cost is difficult as its
importance must be adapted to the situation. We exemplify
it by changing velocity command of the OCP from 0.1m/s
to 0.7m/s (keeping the contact pattern unchanged and with
constant COM-elevation cost of 500). Figure 8 shows that



Fig. 6: COM position for the simplified and the complete
trajectory at different COM height weights. It is necessary
to carefully tune the COM-elevation cost when using the
simplified model

Fig. 7: Knee controls for the simplified and complete tra-
jectory at different COM height weights. The uncontrolled
COM elevation with the simplified model leads to peak
torque when the knee linkage approaches to singularity,
while the complete model enables the OCP to rather take
advantage of it

the COM height varies depending on the velocity command
for both models. On both models, the robot tends to walk
with a lower COM for higher velocities, allowing wider
steps. Yet the equilibrium height of the COM is again
different for the two models, with an overall higher COM
with using the simplified model. In addition of the previous
observation, this also reveals that the simplified model does
not account for the actual joints limits of the complete model.
Then, for higher velocities, the simplified model stretches the
leg too much and exceed the limit of feasibility for the knee
joint, yielding a trajectory that cannot be transferred to the
complete model (this occurs at 0.7 m/s and above for our
contact pattern). More generally, the complete model is able
to take advantage of the actuator variable reduction due to
the parallel linkage, hence leading to reasonable motor effort
independently of the walk speed (see Fig. 9.

D. Variation of the steps height

For a stairs climbing task, we observe similar results
as before, with the complete model using in a favorable

Fig. 8: COM position for the simplified and the complete
trajectory at different velocity commands

Fig. 9: Knee controls for the simplified and complete trajec-
tory at different velocity commands

way the capabilities of its actuator by working with higher
reduction ratio whenever high torques are needed. For higher
steps, the simplified model stretches its back leg too much,
yielding unfeasible trajectories for the complete model. We
do not present figures here as it would be redundant with the
previous analysis and refer the reader to the companion video
where various other movements are shown that emphasize
the capabilities of the OCP using the complete model.

VI. CONCLUSION

This paper presented the derivatives of the contact dy-
namic of a multi-body system with closed-loop constraints. It
allowed us to control robots with closed kinematic chains by
considering an underlying serial/tree-like chain and adding
bilateral contact constraints to closed the loop. The task is
written in the form of an Optimal Control Problem (OCP)
that we apply to control a biped in some walking tasks.
We also compared optimal trajectories obtained with a sim-
plified model, defined by the underlying serial chain of the
robot, to the complete model of the robot. We observed that
the simplified model can provide a good approximation of the
complete model and can be used to easily create a complete
model trajectory by solving several one-step OCPs. However,
we also emphasized that it can overlook some aspects of the
complete model of the robot, and yield sub-optimal solutions.
This occurs especially when the robot uses a wider range
of its capabilities, pushing the parallel actuation in non-



linear regions where their reduction ratio varies more. Future
work will focus on refining the simplified model to take into
consideration the actuators specificities and on generalizing
the method to more tasks and robots.
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