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Abstract

Stochastic optimization naturally appear in many application areas, including machine
learning. Our goal is to go further in the analysis of the Stochastic Average Gradient
Accelerated (SAGA) algorithm. To achieve this, we introduce a new λ-SAGA algorithm
which interpolates between the Stochastic Gradient Descent (λ = 0) and the SAGA algo-
rithm (λ = 1). Firstly, we investigate the almost sure convergence of this new algorithm
with decreasing step which allows us to avoid the restrictive strong convexity and Lipschitz
gradient hypotheses associated to the objective function. Secondly, we establish a central
limit theorem for the λ-SAGA algorithm. Finally, we provide the non-asymptotic Lp rates
of convergence.

Keywords: SAGA algorithm, decreasing step, almost sure convergence, asymptotic nor-
mality, non-asymptotic rates of convergence

1 Introduction

Our goal is to solve the classical optimization problem in Rd which can be written as

min
x∈Rd

f(x), (P)

where f is the average of many functions,

f(x) =
1

N

N∑
k=1

fk(x). (1)

This type of problem is frequently encountered in statistical learning and a standard way to
solve (P) is to make use of the Gradient Descent algorithm. However, in a large context, this
approach has a very high computational cost. This limitation has led to the development
of many stochastic algorithms for optimization (Nguyen et al., 2018; Bottou et al., 2018).

These new methods have taken a major role in recent advances of the neural networks.
Our goal is to go further in the analysis of the Stochastic Gradient Descent (SGD) algorithm
(Robbins and Monro, 1951) and the SAGA algorithm (Defazio et al., 2014). The standard
SGD algorithm is given for all n ⩾ 1, by

Xn+1 = Xn − γn∇fUn+1(Xn) = Xn − γn(∇f(Xn) + εn+1), (SGD)

where the initial state X1 is a squared integrable random vector of Rd which can be ar-
bitrarily chosen, ∇f(Xn) is the gradient of the function f calculated at the value Xn,
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εn+1 = ∇fUn+1(Xn) − ∇f(Xn) and (Un) is a sequence of independent and identically dis-
tributed random variables, with uniform distribution on {1, 2, . . . , N}, which is also in-
dependent from the sequence (Xn). Moreover, (γn) is a positive deterministic sequence
decreasing towards zero and satisfying the standard conditions

∞∑
n=1

γn = +∞ and

∞∑
n=1

γ2n < +∞. (2)

We clearly have from (1) that (εn) is a martingale difference sequence adapted to the
filtration (Fn) where Fn = σ(X1, . . . , Xn).
The SAGA algorithm is a stochastic variance reduction algorithm which was proposed ten
years ago in the pioneering work of Defazio et al. (2014). It slightly differs from the SGD
algorithm as it is given, for all n ⩾ 1, by

Xn+1 = Xn − γn

(
∇fUn+1(Xn)− gn,Un+1 +

1

N

N∑
k=1

gn,k

)
, (SAGA)

where the initial states X0 and X1 are squared integrable random vectors of Rd which can
be arbitrarily chosen, the initial value g1,k is given, for any k = 1, . . . , N , by g1,k = ∇fk(X0).
Moreover, the sequence (gn,k) is updated, for all n ⩾ 1 and 1 ⩽ k ⩽ N , as

gn+1,k =

{
∇fk(Xn) if Un+1 = k,

gn,k otherwise.
(3)

One can observe that in most of all papers dealing with the SAGA algorithm, the step
size is a fixed value γ which depends on the strong convexity constant µ and the Lipschitz
gradient constant L associated with f . This will not be the case here at all. Our work aims
to investigate the almost sure convergence as well as the asymptotic normality of the SGD
and SAGA algorithms with decreasing step sequence (γn) satisfying (2).

Our contributions.

The goal of this paper is to answer to several natural questions.

(a) Is it possible to study the convergence of the SAGA algorithm with decreasing step ?

(b) Can we relax the strong convexity and the Lipschitz gradient assumptions ?

(c) Can we prove a central limit theorem for our new version of the SAGA algorithm ?

(d) Is it possible to provide non-asymptotic Lp bounds for the SAGA algorithm ?

We shall propose positive answers to all these questions by extending (Defazio et al., 2014)
in several directions.

Organization of the paper.

The paper is structured as follows. Section 2 is devoted to the state of the art concerning
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the SGD and SAGA algorithms. In Section 3, we present our new version of the SAGA
algorithm which we shall call the λ-SAGA algorithm. Section 4 deals with the main results
of the paper. We establish the asymptotic properties of our λ-SAGA algorithm such as
the almost sure convergence and the asymptotic normality. Non-asymptotic Lp rates of
convergence are also provided. In Section 5, we illustrate our theoretical results by some
numerical experiments on real dataset. All technical proofs are postponed to the appendices.

2 Related work

The stochastic approximations, initiated by Robbins and Monro (1951) and Kiefer and Wol-
fowitz (1952), have taken a major role in optimization issues. The SGD algorithm, often
known as a special case of the Robbins-Monro algorithm, is probably the most standard
stochastic algorithm used in machine learning. The properties of this algorithm were inves-
tigated in several studies. The almost sure convergence results were established in (Robbins
and Siegmund, 1971; Bertsekas and Tsitsiklis, 2000; Duflo, 1996; Kushner and Yin, 2003;
Roux et al., 2012; Schmidt et al., 2017; Bottou et al., 2018). The convergence rates were
proven in (Kushner and Huang, 1979; Pelletier, 1998a; Nguyen et al., 2018; Liu and Yuan,
2022). The study of the asymptotic normality of stochastic approximations also appear in
several works such that (Sacks, 1958; Fabian, 1968; Duflo, 1996; Pelletier, 1998b; Zhang,
2016).

In a high-dimensional context, many accelerated algorithms were proposed in literature
in order to improve the Robbins-Monro algorithm performances (Polyak and Juditsky, 1992;
Fercoq and Richtárik, 2016; Defazio et al., 2014; Xiao and Zhang, 2014; Allen-Zhu, 2018;
Leluc and Portier, 2022). In this paper, we will focus on the SAGA algorithm first introduced
by Defazio et al. (2014) for the minimization of the average of many functions and which
is a well-known variance reduction method. This algorithm is a variant of the Stochastic
Average Gradient (SAG) method proposed earlier in (Roux et al., 2012; Schmidt et al.,
2017). It uses the concept of covariates to make an unbiased variant of the SAG method
that has similar performances but is easier to implement (Gower et al., 2020). The idea
behind the SAGA algorithm, is to make use of the control variates, a well-known technique
in Monte-Carlo simulation designed to reduce the variance of the SGD algorithm in order
to accelerate its convergence. This algorithm incorporates knowledge about gradients on all
previous data points rather than only using the gradient for the sampled data point (Defazio
et al., 2014; Palaniappan and Bach, 2016). This method requires a storage linear in N
(Gower et al., 2018). Several works have studied the convergence of the SAGA algorithm,
which is undoubtedly one of the most celebrated variance reduction algorithms.

Defazio et al. (2014) established that the SAGA algorithm converges in L2 at exponential
rate. This result has been shown by assuming that the function f is µ-strongly convex and
with L-Lipschitz gradient and by considering a fixed constant step γ which tightly depends
on the unknown values µ and L. The almost sure convergence of the SAGA algorithm was
not investigated in Defazio et al. (2014). More recently, it was shown by Poon et al. (2018)
that for a fixed constant step γ = 1/(3L), f(Xn) and Xn both converge almost surely to
f(x∗) and x∗ respectively, where x∗ is the unique point of Rd such that ∇f(x∗) = 0. This
algorithm has been also investigated in (Palaniappan and Bach, 2016; Defazio, 2016; Gower
et al., 2018; Qian et al., 2019) and there are now many variations on the original SAGA

3



Bercu, Fredes and Gbaguidi

algorithm of Defazio et al. (2014). For example, Qian et al. (2019) proposed a variant of the
SAGA algorithm that includes arbitrary importance sampling and minibatching schemes.

Despite a decade of research, several issues remain open on the SAGA algorithm. The
choice of the step γn is clearly one of them. The vast majority of the theory for the SAGA
algorithm relies on a fixed constant step γ depending on the values µ and L (Defazio
et al., 2014; Defazio, 2016; Palaniappan and Bach, 2016; Gower et al., 2018; Poon et al.,
2018; Gower et al., 2020). However, from a practical point of view, the values µ and
L are unknown and there is no guarantee on the convergence results established for this
algorithm. We shall propose here to make use of decreasing step sequence (γn) which
allows us to avoid these constraints and relax some classic assumptions such that the µ-
strong convexity. Moreover, to the best of our knowledge, no result about the asymptotic
normality of the SAGA algorithm is available in the literature so far.

3 The λ-SAGA algorithm

We introduce in this section the λ-SAGA algorithm which can be seen as a generalization
of the SAGA algorithm. We recall below the general principle of the Monte Carlo method
that gave birth to the λ-SAGA algorithm. Suppose that we would like to estimate the
expectation E[X] of a square integrable real random variable X. Let us also consider
another square integrable real random variable Y strongly positively correlated to X and
for which we know how to compute the expectation E[Y ]. Then, it is possible to find a
reduced variance estimator of E[X], given by Zλ = X−λ(Y −E[Y ]) with λ in [0, 1] (Defazio
et al., 2014; Chatterji et al., 2018). One can obviously see that E[Zλ] = E[X], which means
that Zλ is an unbiased estimator of E[X]. Moreover, V[Zλ] = V[X]+λ2V[Y ]−2λCov(X,Y ).
Hence, as soon as Cov(X,Y ) > 0, we can choose λ in [0, 1] such that V[Zλ] ⩽ V[X]. Now,
using this principle of variance reduction, the λ-SAGA algorithm is defined, for all n ⩾ 1,
by

Xn+1 = Xn − γn

(
∇fUn+1(Xn)− λ

(
gn,Un+1 −

1

N

N∑
k=1

gn,k

))
, (λ-SAGA)

where the initial states X0 and X1 are squared integrable random vectors of Rd which can
be arbitrarily chosen, the parameter λ belongs to [0, 1], and (γn) is a positive deterministic
sequence decreasing towards zero and satisfying (2).

One can establish a link between the SGD, SAGA and λ-SAGA algorithms. Indeed,
the λ-SAGA algorithm with λ = 0 corresponds to the absence of variance reduction and
reduces to the SGD algorithm. Furthermore, one can easily see that we find again the
SAGA algorithm by choosing λ = 1. The motivation to introduce and study the λ-SAGA
algorithm comes from our desire to propose a unified convergence analysis for the SGD and
SAGA algorithms and to investigate what happens in the intermediate cases 0 < λ < 1.
We shall now state the general assumptions which we will use in all the sequel.

Assumption 1. Assume that function f is continuously differentiable with a unique equi-
librium point x∗ in Rd such that ∇f(x∗) = 0.

Assumption 2. Suppose that for all x ∈ Rd with x ̸= x∗,

⟨x− x∗,∇f(x)⟩ > 0.
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Assumption 3. Assume there exists a positive constant L such that, for all x ∈ Rd,

1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2 ⩽ L∥x− x∗∥2.

These assumptions are not really restrictive and they are fulfilled in many applications.
One can observe that Assumption 2 is obviously weaker than the standard hypothesis
that each function fk for 1 ⩽ k ⩽ N is µ-strongly convex with µ > 0. Note also that
Assumption 3 ensures that at x∗, the gradient of all functions fk for any 1 ⩽ k ⩽ N , does
not change arbitrarily with respect to the vector x ∈ Rd. Such an assumption is essential for
convergence of most gradient-based algorithms; without it, the gradient would not provide a
good indicator of how far to move to decrease f . One can also observe that if each function
fk has Lipschitz continuous gradient with constant

√
Lk, then Assumption 3 is satisfied by

taking L as the average value of all Lk. The most interesting improvement here is that both
conditions are local in x∗ and sufficient for all of our analysis.

4 Main results

In this section, we present the main results of the paper. First of all, we provide an almost
sure convergence analysis for the λ-SAGA algorithm with decreasing step. After that, we
establish its asymptotic normality. Lastly, we conclude this section by focusing on non-
asymptotic Lp rates of convergence of this stochastic algorithm.

4.1 Almost sure convergence

Our first result deals with the almost sure convergence of the λ-SAGA algorithm.

Theorem 1. Consider a fixed λ ∈ [0, 1]. Assume that (Xn) is the sequence generated by the
λ-SAGA algorithm with decreasing step sequence (γn) satisfying (2). In addition, suppose
that Assumptions 1, 2 and 3 are satisfied. Then, we have

lim
n→+∞

Xn = x∗ a.s. (4)

and
lim

n→+∞
f(Xn) = f(x∗) a.s. (5)

Proof Recall that for all n ⩾ 1,

Xn+1 = Xn − γn

(
∇fUn+1(Xn)− λ

(
gn,Un+1 −

1

N

N∑
k=1

gn,k

))
.

Hence, the λ-SAGA algorithm can be rewritten as

Xn+1 = Xn − γn (Yn+1 − λZn+1) , (6)

where 
Yn+1 = ∇fUn+1(Xn),

Zn+1 = ∇fUn+1(ϕn,Un+1)−
1

N

N∑
k=1

∇fk(ϕn,k),
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and ϕn,k is the point such that gn,k = ∇fk(ϕn,k). As Fn = σ(X1, . . . , Xn) and the sequence
(Un) is independent of the sequence (Xn), we clearly have from (1) that

E[Yn+1|Fn] = ∇f(Xn) and E[Zn+1|Fn] = 0 a.s. (7)

As a consequence, (Zn) is a martingale difference sequence adapted to the filtration (Fn).
Hereafter, define for all n ⩾ 1,

Vn = ∥Xn − x∗∥2.

We obtain from (6) that for all n ⩾ 1,

Vn+1 = ∥Xn+1 − x∗∥2,
= ∥Xn − x∗ − γn(Yn+1 − λZn+1)∥2,
= Vn − 2γn⟨Xn − x∗, Yn+1 − λZn+1⟩+ γ2n∥Yn+1 − λZn+1∥2.

Moreover, we have from Jensen’s inequality and the fact that λ belongs to [0, 1] that

E[∥Yn+1 − λZn+1∥2|Fn]

= E[∥(Yn+1 −∇fUn+1(x
∗))− λ(Zn+1 −∇fUn+1(x

∗)) + (1− λ)∇fUn+1(x
∗)∥2|Fn]

⩽ 3E[∥Yn+1 −∇fUn+1(x
∗)∥2|Fn] + 3E[∥Zn+1 −∇fUn+1(x

∗)∥2|Fn]

+ 3E[∥∇fUn+1(x
∗)∥2|Fn].

(8)

First of all, we clearly have

E[∥∇fUn+1(x
∗)∥2|Fn] =

1

N

N∑
k=1

∥∇fk(x
∗)∥2 a.s. (9)

In addition, denote

An =
1

N

N∑
k=1

∥∇fk(ϕn,k)−∇fk(x
∗)∥2 and Σn =

1

N

N∑
k=1

∇fk(ϕn,k).

Since ∇f(x∗) = 0, we obtain by expanding the norm that

E[∥Zn+1 −∇fUn+1(x
∗)∥2|Fn] = An − ∥Σn∥2 a.s. (10)

Furthermore, define for all x ∈ Rd,

τ2(x) =
1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2.

One can observe that

E[∥Yn+1 −∇fUn+1(x
∗)∥2|Fn] = τ2(Xn) a.s. (11)

Putting together the three contributions (9), (10) and (11), we deduce from (8) that

E[∥Yn+1 − λZn+1∥2|Fn] ⩽ 3(τ2(Xn) +An + θ∗) a.s. (12)
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where

θ∗ =
1

N

N∑
k=1

∥∇fk(x
∗)∥2.

Consequently, it follows from (7) and (12) that for all n ≥ 1,

E[Vn+1|Fn] ⩽ Vn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n(τ
2(Xn) +An + θ∗) a.s. (13)

Furthermore, let (Tn) be the sequence of Lyapunov functions defined, for all n ⩾ 2, by

Tn = Vn + 3Nγ2n−1An. (14)

It follows from the very definition of the sequence (ϕn,k) associated with (3) that

E[An+1|Fn] =
1

N

N∑
k=1

E[∥∇fk(ϕn+1,k)−∇fk(x
∗)∥2|Fn],

=
1

N

N∑
k=1

(
1

N
∥∇fk(Xn)−∇fk(x

∗)∥2 +
(
1− 1

N

)
∥∇fk(ϕn,k)−∇fk(x

∗)∥2
)
,

=
1

N
τ2(Xn) +

(
1− 1

N

)
An, (15)

almost surely. Hence, we obtain from (13) and (15) that

E[Tn+1|Fn] = E[Vn+1|Fn] + 3Nγ2nE[An+1|Fn],

⩽ Vn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n(τ
2(Xn) +An + θ∗) + 3Nγ2nE[An+1|Fn]

= Vn + 3Nγ2nAn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n(2τ
2(Xn) + θ∗),

⩽ Vn + 3Nγ2n−1An − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n(2τ
2(Xn) + θ∗),

⩽ Tn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n(2τ
2(Xn) + θ∗). (16)

Additionally, we clearly have Vn ⩽ Tn almost surely and it follows from Assumption 3 that

τ2(Xn) ⩽ LVn ⩽ LTn.

Finally, we deduce from (16) that

E[Tn+1|Fn] ⩽ (1 + 6Lγ2n)Tn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2nθ
∗ a.s., (17)

which can be rewritten as

E[Tn+1|Fn] ⩽ (1 + an)Tn +An − Bn a.s.

where an = 6Lγ2n, An = 3γ2nθ
∗ and Bn = 2γn⟨Xn − x∗,∇f(Xn)⟩. The four sequences (Tn),

(an), (An) and (Bn) are positive sequences of random variables adapted to (Fn). We clearly
have from (2) that

∞∑
n=1

an < +∞ and

∞∑
n=1

An < +∞.
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Then, it follows from the Robbins-Siegmund Theorem (Robbins and Siegmund, 1971) given
by Theorem A.1 that (Tn) converges a.s. towards a finite random variable T and the series

∞∑
n=1

Bn < +∞ a.s. (18)

Consequently, (Vn) also converges a.s. to a finite random variable V . It only remains to
show that V = 0 almost surely. Assume by contradiction that V > 0. For some positive
constants a < b, denote by Ω the annulus of Rd,

Ω = {x ∈ Rd, 0 < a < ∥x− x∗∥2 < b}.

Let F be the function defined, for all x ∈ Rd, by

F (x) = ⟨x− x∗,∇f(x)⟩.

We have from Assumption 1 that F is a continuous function in Ω compact. It implies that
there exists a positive constant c such that F (x) > c for all x ∈ Ω. However, for n large
enough, Xn ∈ Ω, which ensures that γn⟨Xn − x∗,∇f(Xn)⟩ > cγn. Consequently, it follows
from (18) that

∞∑
n=1

γn < +∞.

This is of course in contradiction with assumption (2). Finally, we obtain that V = 0 almost
surely, leading to

lim
n→+∞

Xn = x∗ a.s.

By continuity of the function f , we also have (5), which completes the proof of Theorem 1.

4.2 Asymptotic normality

We now focus our attention on the asymptotic normality of the λ-SAGA algorithm with
decreasing step. In this subsection, we assume that f is twice differentiable and we denote
by H = ∇2f(x∗) the Hessian matrix of f at the point x∗.

Assumption 4. Suppose that f is twice differentiable with a unique equilibrium point x∗

in Rd such that ∇f(x∗) = 0. Denote by ρ = λmin(H) the minimum eigenvalue of H. We
assume that ρ > 1/2.

The central limit theorem for the λ-SAGA algorithm is as follows.

Theorem 2. Consider a fixed λ ∈ [0, 1]. Let (Xn) be the sequence generated by the λ-SAGA
algorithm with decreasing step γn = 1/n. Suppose that Assumption 4 is satisfied. Assume
also that

lim
n→+∞

Xn = x∗ a.s. (19)

8
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Then, we have the asymptotic normality

√
n(Xn − x∗)

L−→
n→+∞

Nd(0,Σ) (20)

where the asymptotic covariance matrix is given by

Σ = (1− λ)2
∫ ∞

0
(e−(H−Id/2)u)TΓe−(H−Id/2)udu,

with

Γ =
1

N

N∑
k=1

∇fk(x
∗) (∇fk(x

∗))T .

Proof The proof of Theorem 2 can be found in Appendix B.

Remark 1. It was proven in Theorem 1 that the almost sure convergence (19) holds un-
der Assumptions 1, 2, 3. It is obvious to see that Assumption 4 implies Assumption 1.
Consequently, Theorem 2 is also true when replacing (19) by Assumptions 2 and 3.

Many conclusions can be drawn from Theorem 2. First of all, if we assume that Γ is a
positive definite matrix, we obtain that our λ-SAGA algorithm with 0 ⩽ λ < 1, converges
towards a centered normal distribution with positive definite variance. However, as soon
as λ = 1, the limit distribution becomes a centered normal with variance Σ = 0, in other
words a Dirac measure. Thus, the asymptotic distribution of the SAGA algorithm has zero
variance and one can therefore try to understand it. In fact, the conditional variances of the
two terms of the martingale difference (εn) extracted from this algorithm, converge almost
surely to exactly the same matrix. Therefore, the conditional variance of (εn) vanishes
which explains the final result for the SAGA algorithm. Moreover, Theorem 2 clearly shows
the asymptotic variance reduction effect. Indeed, when λ grows to 1, we observe that the
variance Σ decreases and converges towards 0. Hence, for statistical inference purposes such
that hypothesis test and confidence interval, we can take λ just a little smaller than 1 to
reduce the variance with respect to SGD, but without canceling it.

4.3 Non-asymptotic convergence rates

In the same vein as Bach and Moulines (2011) for the Robbins-Monro algorithm, we shall
now establish non-asymptotic Lp convergence rates. Hence, our goal is to investigate, for
all integer p ⩾ 1, the convergence rate of E[∥Xn − x∗∥2p] for the λ-SAGA algorithm where
the decreasing step is defined, for all n ⩾ 1 by,

γn =
c

nα
, (21)

for some positive constant c and 1/2 < α ⩽ 1. First of all, we focus our attention on the
standard case p = 1 by analyzing our algorithm with a little more stringent condition than
Assumption 2.

9
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Assumption 5. Assume there exists a positive constant µ such that for all x ∈ Rd with
x ̸= x∗,

⟨x− x∗,∇f(x)⟩ ⩾ µ∥x− x∗∥2.

Although this is a strengthened version of Assumption 2, it is still weaker than the usual
µ−strong convexity assumption on the function f . This condition is sometimes called in
the literature the Restricted Secant Inequality.

Theorem 3. Consider a fixed λ ∈ [0, 1]. Let (Xn) be the sequence generated by the λ-SAGA
algorithm with decreasing step sequence (γn) defined by (21). Suppose that Assumptions 1,
3 and 5 are satisfied with 2cµ ⩽ 2α and 2cµ > 1 if α = 1. Then, there exists a positive
constant K such that for all n ⩾ 1,

E
[
∥Xn − x∗∥2

]
⩽

K

nα
. (22)

Proof The proof of Theorem 3 can be found in Appendix C.

Next, we carry out our analysis in the general case p ⩾ 1. It requires a strengthened version
of Assumption 3 given as follows.

Assumption 6. Assume that for some integer p ⩾ 1, there exists a positive constant Lp

such that for all x ∈ Rd,

1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2p ⩽ Lp∥x− x∗∥2p.

Theorem 4. Consider a fixed λ ∈ [0, 1]. Let (Xn) be the sequence generated by the λ-SAGA
algorithm with decreasing step sequence (γn) defined by (21) and such that the initial state
X1 belongs to L2p. Suppose that Assumptions 1, 5 and 6 are satisfied with pcµ ⩽ 2α and
cµ > 1 if α = 1. Then, there exists a positive constant Kp such that for all n ⩾ 1,

E
[
∥Xn − x∗∥2p

]
⩽

Kp

npα
. (23)

Proof The proof of Theorem 4 can be found in Appendix D.

Remark 5. It is easy to see that Assumption 6 also implies that for all x ∈ Rd,

(f(x)− f(x∗))p ⩽

√
Lp

2p
∥x− x∗∥2p. (24)

Then, it follows from Theorem 4 together with inequality (24) that there exists a positive
constant Mp = 2−pKp

√
Lp such that for all n ⩾ 1,

E
[
(f(Xn)− f(x∗))p

]
⩽

Mp

npα
. (25)

10
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5 Numerical experiments

Consider the logistic regression model (Bach, 2014; Bercu et al., 2020) associated with the
classical minimization problem (P) of the convex function f given, for all x ∈ Rd, by

f(x) =
1

N

N∑
k=1

fk(x) =
1

N

N∑
k=1

(log(1 + exp(⟨x,wk⟩))− yk⟨x,wk⟩) ,

where x ∈ Rd is a vector of unknown parameters, wk ∈ Rd is a vector of features and
the binary output yk ∈ {0, 1}. As stated, this problem is equivalent to the log-likelihood
maximization problem, where the aim is to find the parameter x∗ that maximizes the
probability of a given sample ((w1, y1), . . . , (wN , yN )), which follows a model depending only
on the unknown parameter x. To be more precise, our model has a Bernoulli probability
with parameter pk(x) following a logistic function for each k,

pk(x) =
exp(⟨x,wk⟩)

1 + exp(⟨x,wk⟩)
.

It is easy to see that f is twice differentiable and its Hessian matrix is given by

∇2f(x) =
1

N

N∑
k=1

pk(x)(1− pk(x))wkw
T
k .

Consequently, f has an unique equilibrium point x∗ and if we assume that the minimum
eigenvalue ofH = ∇2f(x∗) is greater than 1/2, Assumption 4 will be automatically satisfied,
and therefore Assumption 1 too. Moreover, one can observe that Assumptions 3 and 6 hold
with

Lp =
1

4pN

N∑
k=1

||wk||4p.

We conducted experiments on the MNIST dataset in order to present a visualisation of the
almost sure convergence in Theorem 1, the asymptotic normality in Theorem 2 and the L2

bound in Theorem 3. For the almost sure convergence, the training database considered
here includes N = 60000 images in gray-scale format and size 28 × 28. Each image wk is
therefore a vector of dimension d = 28× 28 = 784. Each of these images is identified with a
number from 0 to 9 and we divide it into a binary classification so that yk = 0 if {0, 1, 2, 3, 4}
and yk = 1 if {5, 6, 7, 8, 9}. The results concerning the convergence of the estimator Xn of
x∗ are illustrated in Figure 1. The convergence is ordered from slowest to fastest in an
increasing order with respect to λ ∈ {0, 0.5, 0.9, 1}.

11
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Figure 1: Convergence with γn = 1/n for 1.2M of iterations. Here we put “Gradient
evaluations” since instead of using ∥∇f(Xn)∥, we use the norm of the mean associated to
the lines in the matrix gn, ∥

∑N
k=1 gn,k∥/N . This quantity keeps track of the convergence

since it also converges to 0 and its lines converge to the gradients of the functions fk, that
is for each 1 ⩽ k ⩽ N , lim gn,k = ∇fk(x

∗) as n goes to infinity.

Moreover, to illustrate the asymptotic normality result, we use N = 100, the first 100
images in the MNIST dataset, and the distributional convergence

lim
n→∞

E(h(
√
n(Xn − x∗)))) = E(h(Nd(0,Σ))),

where h is defined, for all x ∈ Rd, by h(x) =

d∑
i=1

xi. It follows from Theorem 2 that

h(
√
n(Xn − x∗)))

L−→
n→+∞

N (0, σ2(λ)).

As the equilibrium point x∗ and the asymptotic variance σ2(λ) are unknown, we use estima-
tors from the standard Monte Carlo procedure. We denote for each fixed lambda σ̂ 2

n (λ) the
estimator of σ2(λ). Given the form of our function h, we deduce that the limiting variances
should be related as (1− λ)2σ2(0) = σ2(λ). The results are shown in Figure 2.

12
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(a) SGD (λ = 0), where σ2
n(0) ≈ 743.11 (b) 0.5-SAGA, where σ2

n(0.5) ≈ 5

(c) 0.9-SAGA, where σ2
n(0.9) ≈ 0.884 (d) SAGA (λ = 1), where σ2

n(1) ≈ 0.98

Figure 2: We used 1000 samples, where each one was obtained by running the associated
algorithm for n = 500000 iterations.

The main purpose of this plot is to represent the decreasing behavior of the variance
with respect to the parameter λ. Even though for the SAGA (λ = 1) we know that its
variance converges to zero, for finite n we can only see that it is shrinking with respect to n
to obtain at the limit a Dirac mass at 0. Here, the sample variances satisfy σ̂2

n(0.9) < σ̂2
n(1).

Nevertheless, they are still very close in the scale of the sample variance σ̂2
n(0) of the SGD.

We explain this as a consequence of the approximations and the fact that the models λ = 0.9
and λ = 1 are intimately related.

Finally, we present approximate results of the mean squared error E[∥Xn − x∗∥2]. For
that purpose, we suppose that Assumption 5 is satisfied so that Theorem 3 holds. We
run each algorithm for 100 epochs, where each epoch consists of 1000 iterations. In order
to approximate the expectation, we apply the standard Monte Carlo procedure with 1000
samples. Here, the approximation of x∗ is the result of running the SAGA algorithm for
40M iterations. The results are illustrated in Figure 3. The plot just give an intuition on
the behavior of the mean squared error, since the constant K in Theorem 3 is unknown.

13
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Figure 3: Mean squared error with respect to epochs. We confirm the decreasing order of
the mean squared error of Xn − x∗ with respect to λ and n.

6 Conclusion

Stochastic optimization is one of the main challenges of machine learning touching almost
every aspect of the discipline. Thus, in order to meet expectations, the SGD algorithm
has been studied at length. However, the advent of Big Data for model learning led to
the development of more sophisticated stochastic methods. In our study, we therefore
highlight the properties of the new λ-SAGA algorithm which is a generalization of the
SAGA algorithm. We were able to establish the almost sure convergence and the asymptotic
normality of this novel algorithm by using a decreasing step and without the strong convexity
and Lipschitz gradient assumptions. The other major contribution of our paper concerns
the convergence rates in Lp of the λ-SAGA algorithm. Finally, stochastic algorithms offer
multiple guarantees in terms of convergence and certainly promise to continue to have
profound impacts on the fast development of the machine learning field.
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Appendix A. Some useful existing results

We first recall the well-known Robbins-Siegmund Theorem (Robbins and Siegmund, 1971).

Theorem A.1 (Robbins-Siegmund theorem). Let (Vn), (an), (An), (Bn) be four positive
sequences of random variables adapted to a filtration (Fn) such that

E[Vn+1|Fn] ⩽ (1 + an)Vn +An − Bn,

where
∞∑
n=1

an < +∞ and
∞∑
n=1

An < +∞ a.s.

Then, (Vn) converges almost surely towards a finite random variable V and

∞∑
n=1

Bn < +∞ a.s.

The next two lemma provide very useful inequality for non-asymptotic convergence rates.
The first lemma is given by Lemma A.3 in supplementary material of Bercu and Bigot
(2021), see also Theorem 1 in Bach and Moulines (2011).

Lemma A.1. (Bercu and Bigot, 2021). Let (Zn) be a sequence of positive real numbers
satisfying, for all n ⩾ 1, the recursive inequality

Zn+1 ⩽

(
1− a

(n+ 1)α

)
Zn +

b

(n+ 1)β
, (26)

where a, b, α and β are positive constants satisfying a ⩽ 2α, α ⩽ 1, 1 < β < 2 and β ⩽ 2α
with β < a + 1 in the special case where α = 1. Then, there exists a positive constant C
such that, for any n ⩾ 1,

Zn ⩽
C

nβ−α
. (27)

The second lemma is given without proof in Chen et al. (2024) in the special case p ∈ (0, 2],
see Lemma B.3 as well as the seminal paper Assouad (1975). We extend it to the case p
even and we propose a short proof for the sake of completeness.

Lemma A.2. Let p be a positive even integer . It exist two positive constant Cp and Dp

such that for any a, b ∈ Rd,

∥a+ b∥2+p ⩽ ∥a∥2+p + (2 + p)⟨a, b⟩∥a∥p + Cp∥a∥p∥b∥2 +Dp∥b∥2+p. (28)

Proof We prove Lemma A.2 by induction. For the base case p = 2, we have

∥a+ b∥4 =
(
∥a∥2 + 2⟨a, b⟩+ ∥b∥2

)2
= ∥a∥4 + 4(⟨a, b⟩)2 + ∥b∥4 + 4⟨a, b⟩∥a∥2 + 4⟨a, b⟩∥b∥2 + 2∥a∥2∥b∥2.
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It follows from Cauchy–Schwarz inequality that (⟨a, b⟩)2 ⩽ ∥a∥2∥b∥2. Moreover, we also
have 2⟨a, b⟩ ⩽ ∥a∥2 + ∥b∥2 which implies that 4⟨a, b⟩∥b∥2 ⩽ 2∥a∥2∥b∥2 + 2∥b∥4. Hence, we
obtain from these two inequalities that

∥a+ b∥4 ⩽ ∥a∥4 + 4⟨a, b⟩∥a∥2 + 8∥a∥2∥b∥2 + 3∥b∥4,

which leads to C2 = 8 and D2 = 3. Hereafter, assume that inequality (28) holds up to q ≥ 2
and let p = 2 + q. We have by induction

∥a+ b∥2+p = ∥a+ b∥2∥a+ b∥p = ∥a+ b∥2∥a+ b∥2+q

⩽
(
∥a∥2 + 2⟨a, b⟩+ ∥b∥2

)(
∥a∥2+q + (2 + q)⟨a, b⟩∥a∥q + Cq∥a∥q∥b∥2 +Dq∥b∥2+q

)
⩽ ∥a∥2+p + (2 + p)⟨a, b⟩∥a∥p + (Cq + 2p+ 1)∥a∥p∥b∥2 + (2Cq + p)∥a∥q+1∥b∥3

+Dq∥a∥2∥b∥p + Cq∥a∥q∥b∥4 + 2Dq∥a∥∥b∥p+1 +Dq∥b∥2+p

where the last inequality is the result of applying Cauchy-Schwarz inequality ⟨a, b⟩ ≤ ∥a∥∥b∥
for all the terms multiplied by ⟨a, b⟩ but the ones isolated in the second term. Furthermore,
it follows from Young’s inequality for products that

∥a∥q+1∥b∥3 = ∥a∥q+1∥b∥2(q+1)/p × ∥b∥3−2(q+1)/p ≤ ∥a∥p∥b∥2

p/(p− 1)
+

∥b∥p+2

p
,

∥a∥2∥b∥p = ∥a∥2∥b∥4/p × ∥b∥p−4/p ≤ ∥a∥p∥b∥2

p/2
+

∥b∥p+2

p/q
,

∥a∥q∥b∥4 = ∥a∥q∥b∥2q/p × ∥b∥4−2q/p ≤ ∥a∥p∥b∥2

p/q
+

∥b∥p+2

p/2
,

∥a∥∥b∥p+1 = ∥a∥∥b∥2/p × ∥b∥p+1−2/p ≤ ∥a∥p∥b∥2

p
+

∥b∥p+2

p/(p− 1)
.

Finally, we obtain (28) with Cp and Dp satisfying the system defined, for p ⩾ 4, by
Cp = 3p+

4

p

(
(p− 1)Cp−2 +Dp−2

)
Dp = 1 +

4

p

(
Cp−2 + (p− 1)Dp−2

)
with initial values C2 = 8 and D2 = 3, which achieves the proof of Lemma A.2.

Remark A.1. One can easily compute C4 = 39 and D4 = 18. Moreover, one can observe
that we always have Dp ⩽ Cp. Consequently, we can make use of (28) with Cp instead of
Dp.

Appendix B. Proof of Theorem 2

Proof The λ-SAGA algorithm can be rewritten as

Xn+1 = Xn − γn(∇f(Xn) + εn+1),
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where εn+1 = Yn+1 − λZn+1 with
Yn+1 = ∇fUn+1(Xn)−∇f(Xn),

Zn+1 = ∇fUn+1(ϕn,Un+1)−
1

N

N∑
k=1

∇fk(ϕn,k).

We already saw that (εn) is a martingale difference adapted to the filtration (Fn). Moreover,

E[εn+1ε
T
n+1|Fn] = E[Yn+1YT

n+1|Fn]− λE[Yn+1Z
T
n+1|Fn]− λE[Zn+1YT

n+1|Fn]

+ λ2E[Zn+1Z
T
n+1|Fn].

In addition, we clearly have that almost surely

E[Yn+1YT
n+1|Fn] =

1

N

N∑
k=1

∇fk(Xn) (∇fk(Xn))
T −∇f(Xn) (∇f(Xn))

T ,

E[Zn+1Z
T
n+1|Fn] =

1

N

N∑
k=1

∇fk(ϕn,k) (∇fk(ϕn,k))
T − 1

N2

(
N∑
k=1

∇fk(ϕn,k)

)(
N∑
k=1

(∇fk(ϕn,k))
T

)
,

E[Zn+1YT
n+1|Fn] =

1

N

N∑
k=1

∇fk(ϕn,k) (∇fk(Xn))
T − 1

N

N∑
k=1

∇fk(ϕn,k) (∇f(Xn))
T .

We now claim that for all 1 ⩽ k ⩽ N

lim
n→+∞

ϕn,k = x∗ a.s. (29)

As a matter of fact, for a fixed value 1 ⩽ k ⩽ N , the probability that Un = k occurs for
infinitely many n. Consequently, (ϕn,k) is a sub-sequence of (Xn), since ϕn,k is updated
to Xn each time {Un = k}. Hence, the almost sure convergence (29) follows from (19).
Combining the almost sure convergence of (Xn) and (ϕn,k) towards x

∗ with the continuity
of ∇f given by Assumption 4, it follows that almost surely

lim
n→+∞

E[Yn+1YT
n+1|Fn] = Γ,

lim
n→+∞

E[Yn+1Z
T
n+1|Fn] = Γ,

lim
n→+∞

E[Zn+1YT
n+1|Fn] = Γ,

lim
n→+∞

E[Zn+1Z
T
n+1|Fn] = Γ,

where

Γ =
1

N

N∑
k=1

∇fk(x
∗) (∇fk(x

∗))T ,

which leads to
lim

n→+∞
E[εn+1ε

T
n+1|Fn] = (1− λ)2Γ a.s.
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Therefore, we obtain from Toeplitz’s lemma that

lim
n→+∞

1

n

n∑
k=1

E[εkε
T
k |Fk−1] = (1− λ)2Γ a.s.

In addition, we have for all n ⩾ 1

∥εn+1∥ ⩽ 2

(
max

k=1,...,N
∥∇fk(Xn)∥+ λ max

k=1,...,N
∥∇fk(ϕn,k)∥

)
. (30)

Hence, it follows from (30) that

∥εn+1∥4 ⩽ 128

(
max

k=1,...,N
∥∇fk(Xn)∥4 + λ4 max

k=1,...,N
∥∇fk(ϕn,k)∥4

)
. (31)

However, for all k = 1, ..., N , we have

∥∇fk(Xn)∥2 ⩽ 2∥∇fk(Xn)−∇fk(x
∗)∥2 + 2∥∇fk(x

∗)∥2,

which implies that

max
k=1,...,N

∥∇fk(Xn)∥2 ⩽ 2N
(
τ2(Xn) + θ∗

)
.

Consequently,

max
k=1,...,N

∥∇fk(Xn)∥4 ⩽ 4N2
(
τ2(Xn) + θ∗

)2
. (32)

By the same token,

max
k=1,...,N

∥∇fk(ϕn,k)∥4 ⩽ 4N2
(
An + θ∗

)2
. (33)

Hence, we obtain from (31), (32) and (33) that

∥εn+1∥4 ⩽ 512N2

((
τ2(Xn) + θ∗

)2
+ λ4

(
An + θ∗

)2)
,

which immediately implies that

E[∥εn+1∥4|Fn] ⩽ 512N2

((
τ2(Xn) + θ∗

)2
+ λ4

(
An + θ∗

)2)
a.s. (34)

Moreover, since Xn converges towards x∗, it follows that τ2(Xn) converges to 0 almost
surely. Combining this result with the almost sure convergence of An towards 0 and (34),
we find that

sup
n⩾1

E[∥εn+1∥4|Fn] < +∞,

which implies that for all ϵ > 0,

lim
n→+∞

1

n

n∑
k=1

E
[
∥εk∥21{∥εk∥⩾ϵ

√
n}|Fk−1

]
= 0 a.s.
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Finally, it follows from the central limit theorem for stochastic algorithms given by Theorem
2.3 in (Zhang, 2016) that

√
n(Xn − x∗)

L−→
n→+∞

Nd(0,Σ),

where

Σ = (1− λ)2
∫ ∞

0
(e−(H−Id/2)u)TΓe−(H−Id/2)udu,

which completes the proof of Theorem 2.

Appendix C. Proof of Theorem 3

Proof We already saw in (13) that for all n ≥ 1,

E[Vn+1|Fn] ⩽ Vn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3γ2n
(
τ2(Xn) +An + θ∗

)
a.s.

Hence, it follows from Assumption 5 that ⟨Xn − x∗,∇f(Xn)⟩ ⩾ µVn, which leads to

E[Vn+1|Fn] ⩽ (1− 2µγn)Vn + 3γ2n
(
τ2(Xn) +An + θ∗

)
a.s.

By taking the expectation on both side of this inequality, we obtain that for all n ≥ 1,

E[Vn+1] ⩽ (1− 2µγn)E[Vn] + 3γ2n
(
E[τ2(Xn)] + E[An] + θ∗

)
. (35)

Furthermore, we deduce from Corollary 7 in Appendix E below that there exist positive
constants b1 and b2 such that, for all n ⩾ 1, E[τ2(Xn)] ⩽ b1 and E[An] ⩽ b2. Consequently,
(35) immediately leads, for all n ⩾ 1, to

E[Vn+1] ⩽

(
1− a

(n+ 1)α

)
E[Vn] +

b

(n+ 1)2α

where a = 2µc and b = 3c24α(b1 + b2 + θ∗). Finally, we can conclude from Lemma A.1 that
there exists a positive constant K such that for any n ⩾ 1,

E[∥Xn − x∗∥2] ⩽ K

nα
,

which completes the proof of Theorem 3.

Appendix D. Proof of Theorem 4

Proof First of all, Theorem 4 follows from Theorem 3 in the special case p = 1. Hence,
we are going to prove Theorem 4 by induction on n ⩾ 1 for some integer p ⩾ 2 satisfying
Assumption 6. As the initial state X1 belongs to L2p, the base case is immediately true.
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Next, assume by induction that for some integer m which will be fixed soon, there exists a
positive constant Kp such that for all n ⩽ m,

E[∥Xn − x∗∥2p] ⩽ Kp

npα
. (36)

We have from (6) together with Lemma A.2 that it exists a positive constant Cp such that
for all n ⩾ 1,

V p
n+1 = ∥Xn+1 − x∗∥2p,

= ∥Xn − x∗ − γn(Yn+1 − λZn+1)∥2p,
⩽ V p

n − 2pγnV
p−1
n ⟨Xn − x∗, Yn+1 − λZn+1⟩+ Cpγ

2
nV

p−1
n ∥Yn+1 − λZn+1∥2

+ Cpγ
2p
n ∥Yn+1 − λZn+1∥2p.

Hence, it follows from (7) that

E[V p
n+1|Fn] ⩽ V p

n − 2pγnV
p−1
n ⟨Xn − x∗,∇f(Xn)⟩ (37)

+ Cpγ
2
nV

p−1
n E[∥Yn+1 − λZn+1∥2|Fn] + Cpγ

2p
n E[∥Yn+1 − λZn+1∥2p|Fn].

We already saw from (12) that

E[∥Yn+1 − λZn+1∥2|Fn] ⩽ 3
(
τ2(Xn) +An + θ∗

)
a.s.

which leads, via Assumption 6, to

E[∥Yn+1 − λZn+1∥2|Fn] ⩽ 3
(
L1/p
p Vn +An + θ∗

)
a.s.

Moreover, as in the proof of (8), we deduce from Jensen’s inequality that

E[∥Yn+1 − λZn+1∥2p|Fn] ⩽ 32p−1E[∥Yn+1 −∇fUn+1(x
∗)∥2p|Fn] (38)

+ 32p−1E[∥Zn+1 −∇fUn+1(x
∗)∥2p|Fn] + 32p−1E[∥∇fUn+1(x

∗)∥2p|Fn].

Hereafter, we clearly have

E[∥∇fUn+1(x
∗)∥2p|Fn] =

1

N

N∑
k=1

∥∇fk(x
∗)∥2p a.s. (39)

Moreover, denote

Ap,n =
1

N

N∑
k=1

∥∇fk(ϕn,k)−∇fk(x
∗)∥2p and Σn =

1

N

N∑
k=1

∇fk(ϕn,k).

It follows once again from Jensen’s inequality that

E[∥Zn+1 −∇fUn+1(x
∗)∥2p|Fn] ⩽ 22p−1

(
Ap,n + ∥Σn∥2p

)
a.s. (40)

However, we obtain from Holder’s inequality that ∥Σn∥2p ⩽ Ap,n. Consequently, inequality
(40) immediately leads to

E[∥Zn+1 −∇fUn+1(x
∗)∥2p|Fn] ⩽ 4pAp,n a.s. (41)
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Furthermore, define for all x ∈ Rd,

τ2p(x) =
1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2p.

As in the proof of Theorem 1, one can observe that

E[∥Yn+1 −∇fUn+1(x
∗)∥2p|Fn] = τ2p(Xn) a.s. (42)

Putting together the three contributions (39), (41) and (42), we obtain from (38) that

E[∥Yn+1 − λZn+1∥2p|Fn] ⩽ 32p−1(τ2p(Xn) + 4pAp,n + θ∗p) a.s. (43)

where

θ∗p =
1

N

N∑
k=1

∥∇fk(x
∗)∥2p.

Hence, Assumption 6 implies that

E[∥Yn+1 − λZn+1∥2p|Fn] ⩽ 32p−1(LpV
p
n + 4pAp,n + θ∗p) a.s. (44)

Therefore, we deduce from (37) and (44) that for all n ⩾ 1,

E[V p
n+1|Fn] ⩽

(
1 + 3L1/p

p Cpγ
2
n + 32p−1LpCpγ

2p
n

)
V p
n

− 2pγnV
p−1
n ⟨Xn − x∗,∇f(Xn)⟩+ 3Cpγ

2
nV

p−1
n (An + θ∗)

+ 32p−1Cpγ
2p
n (4pAp,n + θ∗p) a.s.

Furthermore, it follows from Assumption 5 that ⟨Xn − x∗,∇f(Xn)⟩ ⩾ µVn, which leads to

E[V p
n+1|Fn] ⩽

(
1 + 3L1/p

p Cpγ
2
n + 32p−1LpCpγ

2p
n − 2µpγn

)
V p
n

+ 3Cpγ
2
nV

p−1
n (An + θ∗) + 32p−1Cpγ

2p
n (4pAp,n + θ∗p) a.s. (45)

By taking the expectation on both side of this inequality, we obtain that for all n ≥ 1,

E[V p
n+1] ⩽

(
1 + 3L1/p

p Cpγ
2
n + 32p−1LpCpγ

2p
n − 2µpγn

)
E[V p

n ] + 3Cpγ
2
nE[AnV

p−1
n ]

+ 3Cpγ
2
nθ

∗E[V p−1
n ] + 32p−1Cpγ

2p
n (4pE[Ap,n] + θ∗p) (46)

We deduce from Corollary 9 in Appendix F below that there exists a positive constant dp
such that for all n ⩾ 1, E[Ap,n] ⩽ dp. The main difficulty arising here is to find a sharp

upper bound for the crossing term E[AnV
p−1
n ]. By using once again Holder’s inequality, we

have for all n ⩾ 1,

E[AnV
p−1
n ] ≤

(
E[Ap

n]
) 1

p
(
E[V p

n ]
) p−1

p
and E[V p−1

n ] ≤
(
E[V p

n ]
) p−1

p
. (47)
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Hence, it is necessary to compute an upper bound for E[Ap
n]. Nevertheless, one can observe

from Jensen’s inequality that we always have Ap
n ⩽ Ap,n, which leads that E[Ap

n] ⩽ dp.
Therefore, it follows from the induction hypothesis (36) together with (46) and (47) that

E[V p
n+1] ⩽

(
1 + ξn − 2µpγn

)
E[V p

n ] +
b

(n+ 1)α(p+1)
(48)

where ξn = 3L
1/p
p Cpγ

2
n + 32p−1LpCpγ

2p
n and

b = 2α(p+1)c2Cp

(
3K(p−1)/p

p

(
d1/pp + θ∗

)
+ cp−132p−1

(
4pdp + θ∗p

))
.

Hereafter, denote by m the integer part of the real number(3cCp

µp

)1/α(
L1/p
p + 32(p−1)

)1/α
.

One can easily check that as soon as n ⩾ m, ξn ≤ µpγn. Consequently, we find from (48)
that as soon as n ⩾ m,

E[V p
n+1] ⩽

(
1− a

(n+ 1)α

)
E[V p

n ] +
b

(n+ 1)α(p+1)
(49)

where a = pµc. Finally, we deduce from Lemma A.1 that there exists a positive constant
Kp such that for all n ⩾ 1,

E[∥Xn+1 − x∗∥2p] ⩽ Kp

(n+ 1)αp
,

which achieves the induction on n and completes the proof of Theorem 4.

Appendix E. Additional asymptotic result on the convergence in L2

The goal of this appendix is to provide additional asymptotic properties of the λ-SAGA
algorithm that will be useful in the proofs of our main results. First of all, we recall that
Vn = ∥Xn − x∗∥2,

An =
1

N

N∑
k=1

∥∇fk(ϕn,k)−∇fk(x
∗)∥2 and τ2(x) =

1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2.

Theorem 6. Consider a fixed λ ∈ [0, 1]. Let (Xn) be the sequence generated by the λ-SAGA
algorithm with decreasing step sequence (γn) satisfying (2). Suppose that Assumptions 1, 3
and 5 are satisfied. Then, we have almost surely

∞∑
n=1

γnVn < +∞,
∞∑
n=1

γnAn < +∞,
∞∑
n=1

γnτ
2(Xn) < +∞. (50)

In addition, we also have

∞∑
n=1

γnE[Vn] < +∞,

∞∑
n=1

γnE[An] < +∞,

∞∑
n=1

γnE[τ
2(Xn)] < +∞. (51)
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Proof Let us consider the same Lyapounov function used in the proof of Theorem 1 and
given by (14). We recall from inequality (17) that for all n ⩾ 1,

E[Tn+1|Fn] ⩽ (1 + 6Lγ2n)Tn − 2γn⟨Xn − x∗,∇f(Xn)⟩+ 3θ∗γ2n a.s. (52)

Let (Tn) be the sequence of Lyapunov functions defined, for all n ⩾ 2, by Tn = bnTn where

bn =

n−1∏
k=1

(
1 + 6Lγ2k

)−1
.

Since bn = bn+1(1 + 6Lγ2n), we obtain from (52) that for all n ⩾ 1,

E[Tn+1|Fn] ⩽ Tn − 2γnbn+1⟨Xn − x∗,∇f(Xn)⟩+ 3θ∗bn+1γ
2
n a.s.

Hence, it follows from Assumption 5 that for all n ⩾ 1,

E[Tn+1|Fn] ⩽ Tn − 2µγnbn+1Vn + 3θ∗bn+1γ
2
n a.s. (53)

Moreover, we clearly have from the right-hand side of (2) that (bn) converges to a positive
real number b, which implies that

∞∑
n=1

bn+1γ
2
n < +∞. (54)

Therefore, we deduce from the Robbins-Siegmund Theorem (Robbins and Siegmund, 1971)
given by Theorem A.1 that (Tn) converges almost surely towards a finite random variable
T and the series

∞∑
n=2

γnbn+1Vn < +∞ a.s.

which leads to
∞∑
n=1

γnVn < +∞ a.s. (55)

We also obtain from relation (55) and Assumption 3 that

∞∑
n=1

γnτ
2(Xn) < +∞ a.s. (56)

In addition, by taking the expectation of both sides of (53) and using a standard telescoping
argument, we find that

2µ

∞∑
n=2

γnbn+1E[Vn] ⩽ E[T2] + 3θ∗
∞∑
n=2

bn+1γ
2
n. (57)

Then, it follows from (54) and (57) that

∞∑
n=2

γnbn+1E[Vn] < +∞,
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which implies that
∞∑
n=1

γnE[Vn] < +∞.

Consequently, we get from Assumption 3 that

∞∑
n=1

γnE[τ
2(Xn)] < +∞. (58)

Furthermore, we already saw from (15) that for all n ⩾ 1,

E[An+1|Fn] =
1

N
τ2(Xn) +

(
1− 1

N

)
An a.s. (59)

For all n ⩾ 1, denote An = γnAn. Since γn+1 ⩽ γn, we obtain from (59) that for all n ⩾ 1,

E[An+1|Fn] ⩽ An +
1

N
γnτ

2(Xn)−
1

N
γnAn a.s. (60)

By considering the almost sure convergence (56), it follows once again from the Robbins-
Siegmund Theorem (Robbins and Siegmund, 1971) given by Theorem A.1 that (An) con-
verges almost surely towards a finite random variable A and the series

∞∑
n=1

γnAn < +∞ a.s.

Moreover, by taking the expectation of both sides of (60) and using a standard telescoping
argument, we obtain that

∞∑
n=1

γnE[An] ⩽ NE[A1] +
∞∑
n=1

γnE[τ
2(Xn)]. (61)

Finally, we deduce from (58) and (61) that

∞∑
n=1

γnE[An] < +∞,

which completes the proof of Theorem 6.

A straightforward application of Theorem 6, using the left-hand side of (2), is as follows.

Corollary 7. Assume that the conditions of Theorem 6 hold. Then, we have

lim
n→+∞

Vn = lim
n→+∞

An = lim
n→+∞

τ2(Xn) = 0 a.s.

Moreover, we also have

lim
n→+∞

E[Vn] = lim
n→+∞

E[An] = lim
n→+∞

E[τ2(Xn)] = 0.
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Appendix F. Additional asymptotic result on the convergence in Lp

As in the previous Appendix, our purpose is to establish additional asymptotic properties
of the λ-SAGA algorithm that will be useful in the proofs of our main results. First of all,
we recall that V p

n = ∥Xn − x∗∥2p,

Ap,n =
1

N

N∑
k=1

∥∇fk(ϕn,k)−∇fk(x
∗)∥2p and τ2p(x) =

1

N

N∑
k=1

∥∇fk(x)−∇fk(x
∗)∥2p.

Theorem 8. Consider a fixed λ ∈ [0, 1]. Let (Xn) be the sequence generated by the λ-SAGA
algorithm with decreasing step γn satisfying (2). Suppose that Assumptions 1, 5 and 6 are
satisfied. Then, we have almost surely

∞∑
n=1

γnV
p
n < +∞,

∞∑
n=1

γnAp,n < +∞,

∞∑
n=1

γnτ
2p(Xn) < +∞. (62)

In addition, we also have

∞∑
n=1

γnE[V
p
n ] < +∞,

∞∑
n=1

γnE[Ap,n] < +∞,
∞∑
n=1

γnE[τ
2p(Xn)] < +∞. (63)

Proof We are going to prove Theorem 8 by induction on p ⩾ 1. First of all, Theorem 8
follows from Theorem 6 in the special case p = 1. Hence, the base case is immediately true.
Next, assume by induction that Theorem 8 holds for some integer p − 1 with p ⩾ 2. We
recall from inequality (45) in the proof of Theorem 4 that for all n ⩾ 1,

E[V p
n+1|Fn] ⩽

(
1 + 3L1/p

p Cpγ
2
n + 32p−1LpCpγ

2p
n − 2µpγn

)
V p
n

+ 3Cpγ
2
nV

p−1
n (An + θ∗) + 32p−1Cpγ

2p
n (4pAp,n + θ∗p) a.s. (64)

However, it follows from Young’s inequality for products that almost surely

V p−1
n An ⩽

Ap
n

p
+

(p− 1)V p
n

p
. (65)

Moreover, one can observe from Jensen’s inequality that Ap
n ⩽ Ap,n almost surely. Combin-

ing the previous inequality with (65), it implies that

V p−1
n An ⩽

Ap,n

p
+

(p− 1)V p
n

p
. (66)

Furthermore, by putting together the inequalities (64) and (66), we obtain that

E[V p
n+1|Fn] ⩽

(
1 + 3

(
L1/p
p + 3p−1(p− 1)

)
Cpγ

2
n + 32p−1LpCpγ

2p
n

)
V p
n − 2µpγnV

p
n

+ 3Cpθ
∗γ2nV

p−1
n +

(
32p−14p + 3p−1

)
Cpγ

2
nAp,n + 32p−1Cpγ

2p
n θ∗p a.s. (67)

Let (Tp,n) be the sequence of Lyapunov functions defined, for all n ⩾ 2, by

Tp,n = V p
n +Nepγ

2
n−1Ap,n, (68)
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where ep = 32p−14p + 3p−1. By the definition (68), we have

E[Tp,n+1|Fn] = E[V
p
n+1|Fn] +Nepγ

2
nE[Ap,n+1|Fn] a.s. (69)

However, we deduce by the same arguments as in (15) that

E[Ap,n+1|Fn] =
1

N
τ2p(Xn) +

(
1− 1

N

)
Ap,n a.s. (70)

Hence, it follows from (67), (69) and (70) that

E[Tp,n+1|Fn] ⩽ Tp,n + 3Cp

((
L1/p
p + 3p−1(p− 1)

)
γ2n + 32(p−1)Lpγ

2p
n

)
V p
n − 2µpγnV

p
n

+ epγ
2
nτ

2p(Xn) + 3Cpθ
∗γ2nV

p−1
n + 32p−1Cpγ

2p
n θ∗p a.s. (71)

Additionally, we clearly have V p
n ⩽ Tp,n and Assumption 6 leads to

τ2p(Xn) ⩽ LpV
p
n ⩽ LpTp,n.

Finally, we obtain from (71) that

E[Tp,n+1|Fn] ⩽ (1 + an)Tp,n +∆n − 2µpγnV
p
n a.s., (72)

where ∆n = 3Cpθ
∗γ2nV

p−1
n + 32p−1Cpγ

2p
n θ∗p and

an = epLpγ
2
n + 3Cp

(
L1/p
p + 3p−1(p− 1)

)
γ2n + 32p−1LpCpγ

2p
n .

Since the sequence (γn) satisfies (2), it is easy to see that

∞∑
n=1

an < +∞.

Moreover, by the induction hypothesis, we have that

∞∑
n=1

γnV
p−1
n < +∞ a.s.,

∞∑
n=1

γnE[V
p−1
n ] < +∞.

(73)

From (73), one can immediately deduce that

∞∑
n=1

∆n < +∞ a.s.,

∞∑
n=1

E[∆n] < +∞.

(74)
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Therefore, one uses exactly the same lines as in the proof of Theorem 6 and the Robbins-
Siegmund Theorem (Robbins and Siegmund, 1971) given by Theorem A.1 to show that

∞∑
n=1

V p
n < +∞ a.s.,

∞∑
n=1

E[V p
n ] < +∞.

(75)

Hence, combining (75) with Assumption 6, one immediately deduces that

∞∑
n=1

τ2p(Xn) < +∞ a.s.,

∞∑
n=1

E[τ2p(Xn)] < +∞.

(76)

Finally, using once again the same arguments as in the proof of Theorem 6, we obtain that

∞∑
n=1

Ap,n < +∞ a.s.,

∞∑
n=1

E[Ap,n] < +∞.

, (77)

which achieves the proof of Theorem 8.

A useful consequence of Theorem 8, using the left-hand side of (2), is as follows.

Corollary 9. Assume that the conditions of Theorem 8 hold. Then, for all p ⩾ 1, we have

lim
n→+∞

V p
n = lim

n→+∞
Ap,n = lim

n→+∞
τ2p(Xn) = 0 a.s.,

and
lim

n→+∞
E[V p

n ] = lim
n→+∞

E[Ap,n] = lim
n→+∞

E[τ2p(Xn)] = 0.
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