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Abstract

We consider a game with players who build links to exchange their
opinions on the relevant state and reduce their uncertainty on it.
Opinions transmit private signals with frictions (termed interpretation
noise) because the players hold imperfectly correlated subjective priors
on the state. Communication is limited to two rounds. For tractabil-
ity, we focus on an arbitrarily small correlation of priors and allow
for misspecified beliefs on a distant network. We find that player’s
uncertainty remaining after communication is given by- and decreas-
ing in: the number of his friends with only common connections, and
the total number of his local and distant friends. The egalitarian effi-
cient network is: a complete component if the interpretation noise is
sufficiently high, and a flower otherwise. It constitutes a Nash equi-
librium. We show numerically that these results may hold in general,
if the correlation of players’ priors is sufficiently weak. Furthermore,
egalitarian efficiency criterion may be replaced with utilitarian one.
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1 Introduction

Social networks contribute to diffusion of information and behaviors (Durlauf,
2004; Goyal 2007; Jackson, 2008; Topa and Zenou, 2015). Examples in the
literature include the adoption of new product or technology, health-related
behaviors, vote, school performance and delinquent behavior. A growing ev-
idence suggests that the speed and distance of diffusion through the network
depend on its features (see Jackson 2014 for a systematic discussion).

One prominent feature of social networks is clustering, that is, a high
proportion of individuals with a common connection connected to each other
(Jackson, 2008; Goyal 2007). There is no consensus in the literature re-
garding the impact of clustering on diffusion. The existing empirical studies
suggest that clustering helps diffusion, at least in some contexts. In Alatas
et al. (2016), clustering is associated with better diffusion of information
on the poverty status of community members. In Chami et al. (2017), dis-
tribution of deworming drugs in Ugandan villages went faster and further
when community medicine distributors had a high clustering coefficient. In
the controlled experiment by Centola (2010), health behavior diffused further
and faster across clustered-lattice artificially structured online networks than
across random networks.

Centola (2010) suggests that the reason is that in some contexts the adop-
tion of behavior or belief needs endorsement from multiple network neigh-
bours. Such diffusion process is termed “complex” contagion (Centola and

Macy 2007).! Diffusion of new agricultural technology in the field experiment

!Simple contagions (such as epidemics) refer to processes in which being in contact
once is sufficient for adoption. Simple contagions should grow more efficiently on random



by Beaman et al. (2021) is consistent with the model of complex contagion.
Why and when is the diffusion of information and behaviors governed by
complex contagion, creating a positive effect of clustering on diffusion?

We model a positive effect of clustering on diffusion, and we describe
how this effect shapes social networks. Our modeling approach is presented
and discussed in details in Section 2. We consider a game in which the
players have subjective imperfectly correlated priors on some relevant state
of nature. They build network links, receive private signals on the state and
truthfully announce their posterior expectations to direct network neighbours
in two successive communication rounds. A player’s disutility is measured
by subjective posterior variance (his remaining uncertainty about the state
after communication).

Section 3 relates a player’s disutility to the network architecture. Note
that the first announcements transmit signals with frictions (termed inter-
pretation noise) which are created by a player’s uncertainty about the other
players’ priors. However, if player A has some neighbour B with only local
connections (termed closed neighbour), A can deduce B’s prior by looking at
B’s reaction to the first announcements, which A also receives. This allows
A to learn B’s private signal (Lemma 1, following Sethi and Yildiz, 2012).

Learning from neighbours with distant connections (termed open neigh-
bours) is more complicated, because a player needs to account for various

correlations in his neighbours’ announcements.> To achieve tractability, we

networks than on clustered networks.

2First, both successive announcements by some neighbour reflect his prior. Second,
announcements by a pair of neighbours reflect their priors which are correlated. Fur-
thermore, their second announcements may both reflect the first announcement by their
distant common neighbour.



let a player hold the following, possibly misspecified, beliefs about his distant
network: if his two local neighbours have a common distant connection he
attributes this connection to either neighbour (but not both). Furthermore,
we focus on arbitrarily small correlation of priors.® In this setting, we find
a closed form expression for a player’s disutility (Proposition 1). It is a de-
creasing function of two numbers: the number of his closed neighbours, and
the joint number of his local and distant neighbors. We verify numerically
that this expression provides a fair approximation for a player’s disutility in
the generalised setting, with players who know their network and correlation
of priors taking higher values as long the correlation of priors lies below some
threshold.

Measuring a player’s disutility depending on his network, enables us to
ask which networks are the most efficient. Section 4 studies this question. For
tractability, we use the egalitarian welfare criterion. Proposition 2 character-
izes the egalitarian efficient network. It is composed of completely connected
clusters if the interpretation noise is sufficiently high (see Figure 3). Other-
wise, it is the network commonly termed a flower (see Figure 4). We show
numerically that this result may hold when the players know their local and
distant network and the correlation of their priors takes higher (but not too
high) values. Furthermore, we show it may extend to the (more common)
utilitarian efficiency criterion.

Finally, in Section 5 we ask whether the players are going to build the
“right” network in equilibrium? We prove that the egalitarian efficient net-

work constitutes a Nash equilibrium, and numerically check the robustness

3Notice that it is not equivalent to ignoring correlations in announcements entirely
(formally, off-diagonal elements of the variance-covariance matrix are not null).
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of this result.

Related literature. We study networks, built in a decentralized man-
ner, and their efficiency which connects our work to sizable economic liter-
ature on strategic network formation (see surveys in Bloch and Dutta 2010;
Goyal 2007; Jackson 2005, 2008). This literature considers a variety of net-
work formation protocols. Bala and Goyal (2000) consider unilateral network
formation: a player links to any other player at a cost, and he receives some
benefit from connections. Hojman and Szeidl (2008) show that for a class
of benefits exhibiting decreasing returns to scale and decaying with network
distance (which includes the benefits from information transmission with
frictions), the unique Nash equilibrium is a periphery-sponsored “star”. We
model frictions in information transmission. Clustering helps reduce these
frictions, which is specific to our model.

Learning through links following the network formation stage brings us to
the literature on rational learning on a given network. Much of this literature
has focused on asymptotic learning, showing that Bayesian agents can learn
asymptotically if the network is common knowledge (see Gale and Kariv
2003; Mueller-Frank 2013). Li and Tan (2020) consider rational asymptotic
learning when communicating agents believe that their local network is the
entire network. Such beliefs create double counting of signals coming from
distant neighbours, which clustering helps avoid. Asymptotic learning is
possible if the network is a tree-like union of clusters. Unlike this literature,
we focus on finite-horizon learning and we provide a closed-form expression

for the quality of learning depending on the network architecture. Clustering



improves learning because interconnected players can deduce each other’s
(imperfectly correlated) priors from reactions to earlier announcements

This idea is due to Sethi and Yildiz (2012). They attribute public dis-
agreement to differentiated priors and show that there is no scope for dis-
agreement in “integrated societies” where everyone hears each other’s opin-
ions (completely connected networks).

Endogeneity of our communication network connects us to Sethi and
Yildiz (2016). They study how learning with subjective priors shapes ob-
servation patterns (represented by an oriented dynamic network). In their
setting, however, the priors are independent and better learning of neigh-
bours’ priors is achieved through repetitively soliciting opinions by the same
individual(s), not through clustering.

Finally, note that we study one possible reason for the prevalence of
clustering in social networks. The literature has highlighted other reasons,
such as the following. It may be easier to connect with friends of friends than
with random individuals (Jackson and Rogers 2005; Acemoglu et al. 2014).
Clustering may promote compliance with rules (Coleman 1988). Clustered
networks of informal favour exchanges may be more efficient because common

friendships provide additional incentives to behave cooperatively (Jackson et

al. 2012).

2 Basic model.

Set M of m players, indexed with ¢ € {1,...,m}, build a network in order to

communicate through its links.



Network formation. We consider simultaneous and unilateral net-
work formation protocol.* For simplicity, we model the cost of connection
as an opportunity - rather than a direct cost, assuming that each player is
endowed with a given connection capacity. Naturally, the players’ connection
capacities may differ (some people are better at forming friendships than oth-
ers) and these differences may shape the network they build. We put aside
these differences in order to focus on the effect of anticipated learning on
the network architecture: each player can connect with at most n € N other
players,® naturally we focus on n < m — 1.

Player ¢ chooses a subset of players L; C M, |L;| < n with whom he
connects. A pair of players becomes connected iff at least one of them links
to the other. Each profile of linking choices (L, ..., L,,) induces undirected
network g. We use common notation g;; € {0,1} for an indicator of a link
between players ¢ and j in network ¢: ¢;; = 1 indicates that players ¢ and j
are connected. We let player i be connected with himself, that is, ¢; = 1.

We use common notations®

Ni={jeM]|gy;=1}

for the local network neighbourhood of player ¢ and d; = |V;| for his “degree”.
We use notations

,— . .
N; = jeUNiNj\Nl

4 Appendix H shows that our results may hold under an alternative protocol with in-
vestments in links.

5Nevertheless, the efficient equilibrium network has unequal degree distribution for a
wide range of parameter values.

6Here and below, we do not reflect network-dependence of network-dependent variables
for notational convenience.



for the distant (distance-2) network neighbourhood of player i,” and d; = | N;|

for the number of his distant connections.

Players’ priors and signals. When the network is built, the players

receive independent private signals
s; = x + &;, where g; ~ N(0,7%)
on the relevant state of Nature x ~ N (0, 1).

Initially, the players have heterogenous imperfectly correlated priors about
the state z. Differentiated priors reflect differentiated manners in which the
players process new information. Say, each player ¢ considers a subset of
available historical facts to be relevant for understanding the state. His es-
timator of the state conditional on this subset of facts is his prior p; (see
discussion in Sethi and Yildiz, 2012).

Player ¢’s prior p; is his private information and he cannot directly com-
municate this information to the other players (he cannot describe to the
others the way in which he thinks). However, it is commonly known that the

players’ priors are distributed according to a joint normal distribution:

b= (p17 --->pm)T ~ N(07 UQH)? (1)

where II is m by m variance-covariance matrix with the following elements:®

1t g =1
Hﬂ_{p if j#L

"We do not introduce any notations for more distant connections because we will con-
sider only two rounds of communication.

8We assume that all off-diagonal elements of the variance-covariance matrix I are the
same. The alternative assumption would complicate expressions we use in the numerical
part of our analysis, without altering our results qualitatively. The analytical part of our
study focuses on arbitrarily weak (but not zero) correlation of priors (see below).
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For concreteness, we assume that correlation p is positive (following inter-
pretation of differentiated priors by Sethi and Yildiz, 2012, each player ¢
assigns a positive probability to any other player j paying attention to some
historical facts which ¢ considers relevant).

Conditional on his prior p;, player ¢ believes that the law of (x, (p;) e (€)jenm)

denoted P; is a multidimensional normal distribution given by
P; = N(pi, 1) @ N (pp;1,II) @ N'(0, 721)

where 1 = (1,1,..., 1), I denotes m by m identity matrix and Il is m by m
matrix with the following elements:
= {02(1—P2) if j=1
]._.[ — 2 . .

o’p(l—p) if j#L
Hereafter, £; denotes the law (or conditional law) of some variable under P,
E; denotes the expectation under P; , V; denotes the variance under P; and

C, denotes the covariance under P;.

Communication. Our communication protocol follows Sethi and Yildiz
(2012) and earlier literature on public (dis)agreement. However, we reduce
communication channels to network links. Furthermore, we assume that the
number of communication rounds is finite, to reflect the players’ impatience.
This makes our analysis technically challenging,” so we limit communication
to two rounds (¢t = 1,2). This limitation comports nicely with Mobius et
al. (2015) who find that information travels no further than two steps in the

conversation network.

9The analysis of the case in which the number of communication rounds is unlimited is
simplified by the following fact: any player learns all distributed information if the players
form a circle or a wheel (details available upon request).
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Hence, after receiving their signals on the state, the players communicate
with local network neighbours in discrete time periods. In each period they
simultaneously announce their true beliefs summarized by an estimator of
the state.!®

The first announcement A;; by player ¢ to his network neighbors is his

estimator of the state conditional on his private signal:
Ai,l = Ez (ZL’ | Si) .

After the first round of communication, player 7 rationally updates his beliefs
upon the announcements received from his local network neighbours. His
second announcement A; 5 is his expectation of the state conditional on his

private signal and the first announcements by his local neighbours:

Aio =B (x| 55, {Ajn|Jj € Ni}).

Payoffs. After the second round of communication with his neighbours,
player i updates, once again, his beliefs about the state and the other play-
ers’ priors. We assume that his disutility or loss is equal to his remaining
uncertainty about the state x, measured by his subjective posterior variance

of the state:
li(g) =V, (96 | Siy {Aj,t | JEN;, t= 172}7 /g\) (2)

For example, we could think of player ¢ taking private action resulting in
a loss which is equal to the perceived squared distance between his action

and the optimal action given by the state x. Notice that a payoff equal to

10They cannot transmit the set of “tagged” announcements received from their neigh-
bours or announce their priors.

10



a constant less loss (2) measures a player’s confidence in his action, which
comports nicely with the psychological literature indicating confidence in

private actions as a source of happiness (see Maslow, 1943).

Beliefs about network. A player’s updating after the second round
of communication is complicated by the need to account for various correla-
tions: Successive announcements by i’s neighbour j are correlated because
they both reflect j’s prior. All announcements by #’s neighbours j and [ are
correlated because they reflect their priors which are correlated. Further-
more, j and [ may have common neighbour  on the distance from ¢ which
creates an additional source of correlation in their second announcements.

For tractability, we allow the players to hold the following, possibly mis-
specified, beliefs § about their network g¢.!'! Any player i knows his local
neighbourhood. However, if his neighbours j and [ are both linked with
player r on distance 2 from ¢, player ¢ accounts for only one of these links,
either between r and j or between r and [ (it does not matter for the payoff
which of the two links is accounted for). While being purely technical, this
assumption may be motivated by sociological evidence of erroneous percep-
tion of distant networks (see references in Li and Tan 2020). One typical
error is overestimation of one’s own centrality (Kumbasar et al. 1994) which

comports nicely with ignorance of distant common friendships.

Weakly correlated priors. The above behavioral assumption regard-

ing beliefs about distant network does not suffice to deliver tractability. We

"'We derive our analytical results under this behavioral assumption. However, in the
numerical part of our analysis, we assume that the players perfectly know their network.

11



achieve tractability by focusing on arbitrarily small correlation of priors.!?
Note that this is not equivalent to ignoring this correlation entirely because
a player is “undoing” his neighbours’ priors using his own prior (formally,

off-diagonal elements of the variance-covariance matrix are not null).

3 Network architecture and disutility.

This section relates a player’s loss (2) to the network architecture. We begin

with dividing the set of player ¢’s neighbours into two subsets. Set
N,={jeN;|N;C N;}
of closed neighbours having only common connections with player ¢ and set
N, = N\N,

of open neighbours with at least one connection outside ¢’s neighbourhood.

for the

It is convenient to introduce notations d; = }N,} and ZZI = ‘Ji] i
number of ¢’s closed- and open neighbours.

The above classification of ¢’s neighbours into closed and open is relevant
because i can perfectly learn the priors and signals of his closed neighbours

by observing their reactions to the first announcements they receive (Sethi

and Yildiz, 2012).

Lemma 1 Any player i learns private signal s; and prior p; by any closed

neighbour j € Nj.

The argument by Sethi and Yildiz (2012) reproduced in Appendix B goes

along the following lines. Consider some player ¢ with at least one closed

12We numerically check robustness of our results for other values of correlation.
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neighbour j. By standard formula for Gaussian updating (see Appendix A),
J’s first announcement is a linear combination of j’s prior p; and j’s private
signal s; (the higher the variance 72 of the signal, the higher weight is put
on the prior). After the first round of communication, player j updates his
beliefs upon the first announcements received from his neighbours. His second
announcement is a linear combination of his own first announcement, the sum
of his neighbours’ first announcements and his prior p,;. Because player j is
a closed neighbour by player ¢, player ¢ “hears” the first announcements by
all j’s neighbours. Therefore, player ¢ can deduce j’s prior p; from j’s second

announcement, and then j’s private signal s; from his first announcement.

Let us now describe learning from open neighbours (details are presented
in Appendix C). Consider some player i with at least one open neighbour j €
N;. From the first announcement by player j , which is a linear combination
of j’s prior and j’s signal, player ¢ deduces j’s signal with noise associated

with ¢’s uncertainty regarding j’s priors:

Sii=1+1) A1 —1mp=x+¢;+72(p; — D), (3)
where p = B (p; | {pr},e,) = ﬁzp (4)
renN;

The second announcement by player j is a linear combination of his own first
announcement, the sum of his neighbours’ first announcements and his prior
pj. From this announcement player 7 deduces signals by j’s neighbours with
whom ¢ is not connected, once again with noise associated with uncertainty

about their priors and j’s priors:

Sja =7+ - Y e+ > (=D —7(d; - 1)(p; - D) |,
reN;\N; reN;\N;

13



where dj; = |N; \ N;| .

Now, consider all open neighbours by player ¢. Without loss of generality,

let us index them with

je{di+1,...d;}. (6)

Let 8; = (83,414, 54;,t) be the vector of signal deduced from their announce-

ments in round ¢ = 1,2 of communication. By equations (3) and (5),

~ ~ 17
closiml mhes) =N (. (5 ) ) wiere @

p=0 (x | {Sj}jel\_h‘) - r;—kaipi T T2-1&-Ei Zsj (8)

JEN;
7_2
v=Vi (v {s5}jen,) = o (9)

and Y is a square symmetric matrix of size 2Ziz-with elements specified in Ap-
pendix C (see step 3). By standard formula for Bayesian updating we need to
find the sum of elements of the inverted matrix ¥ in order to find the player
1’s loss. We can do it due to our assumption regarding beliefs on distant net-

work for arbitrarily small correlation of priors.!?

Proposition 1 (network architecture and a player’s disutility). The
loss by player i in network g is determined by- and decreasing in- two para-
meters of network architecture: (i) the total number of his local and distant

neighbours d; + d; and (i) the number of his closed neighbours d;:

. 7'2(1—1—0272)
ll(g) o ’7’2(1+O'27'2)+<di+d;)+O’2T2Ei'

(10)

I3Matrix 3 can be represented as a sum of two matrixes of dimension 2doi: matrix vI17
(with elements equal to v) of rank 1 and a diagonal matrix zG. This decomposition allows
us to invert matrix ¥ (Miller 1981).

14



Notice that closed neighbours are more valuable than either open or dis-
tant neighbors. The reason is that a player learns the priors by his closed
neighbours while he remains uncertain about those by his open or distance-2
neighbours. Term 0?72 measuring the noise associated with this uncertainty

is called interpretation noise.

Performance of approximation (10) in generalised setting. We
check numerically whether equation (10) is a good approximation for the
value of loss defined by equation (2) if the players know their network and the
correlation of their priors takes any value between 0 and 1, termed hereafter
the generalized setting.

We consider all possible 9589 networks of m = 8 players with individual
connection capacity n = 2.'* Figure 1 plots the approximation of loss given
by equation (10) against the exact value of loss (2) for all players in all these

networks, fixing different values of correlation p.

4The choice m = 8, n = 2 is dictated by computational feasibility. Indeed, the number
of possible networks grows exponentially in the number of players m. Suppose that indi-
vidual connection capacity n is equal to 2. Then, the number of different networks (up to
isomorphism) is: 153 if m = 6; 955 if m = 7 and 9589 if m = 8.

15



mo=0 ho=005 ho=0.1

Approximation of a player's loss given by equation (10)

The exact value of a player’s loss given by equation (2)

Figure 1: Performance of approximation (10)
(m=8,n=2,12=0?=1).

We note that approximation (10) performs well for sufficiently small val-
ues of p,'” and it tends to overestimate the loss for higher values of p.

Figure 2 presents statistical measure of the quality of approximation:
boxplot of the ratio of approximation (10) over the exact value of (2). We
observe, for example, that for p = 0.35, three quarters of the ratio lies in the
interval between 1 and 1.08, and approximation (10) performs even better

for smaller values of p.

15The performance of our approximation for p = 0 is imperfect because equation (10)
computes the loss by a player with misspecified beliefs regarding distant common friend-
ships.
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Figure 2: Performance of approximation (10):m = 8, n=272=02=1.

Remark on communication protocol. Let us take a step away
from our analysis and conclude this section with a remark regarding
communica-tion protocol. Following Sethi and Yildiz (2012) and the
literature they build on, we have modeled communication as truthful
announcement of beliefs. A natural question is whether a player has the

incentives to deviate from truth-ful communication.

Remark 1: If strategic communication is allowed for, truthful communica-
tion is an equilibrium.

Indeed, consider the situation in which all players truthfully announce
their estimate of the state during either round of communication, and
believe the others to do the same. If player ¢ deviates by sending a message di
fferent from his true estimate of the state during some round of

communication, he learns

17



the same information from his neighbours’ messages as when he does not
deviate, as long as they believe him to tell the truth and react accordingly.

Hence, his payoff remains the same.

4 The efficient network.

This section uses Proposition 1 to study which network a social planner
we would like to see build in the network formation stage. For the sake
of tractability, we take egalitarian efficiency criterion (Rawls’ criterion): a
network is efficient iff it minimizes the loss by its least happy member.!'®
Note that such criterion may be justified by the fact that any player can find
himself in the role of the least happy player in the network.

We denote the set of all feasible networks with G, the set of efficient

networks with

G* = argmin (maxli (g)>

EY ieM

and the set of the least happy players or “losers” of network ¢ with

L(g) = argmaxl; (g) .
ieM
Candidate efficient networks. Before proceeding with formal analy-
sis, let us try to gain some insight as to which networks are likely to be
efficient. By Proposition 1, the efficient network maximizes a combination of
the joint number of local and distant neighbours by the least happy player ¢
and the number of his closed neighbours, with the weight of closed neighbour

being increasing in the interpretation noise o?72.

16We will check numerically that our results are likely to hold if we use more common
utilitarian efficiency criterion.

18



Consider the extreme values of the interpretation noise. Suppose first,
that it approaches infinity. Then, it is most important to maximize the
number of closed neighbours by the least happy player, suggesting that a
network composed of complete components of sizes as equal as possible!” is
efficient.

Suppose, for concreteness, that the number of players m and a player’s
connection capacity n are such that the players can be divided into completely

connected components of equal size:'8

there exists [ € N such that m = (2n + 1)I. (11)

An example of such network is depicted in Figure 3.

L]

Figure 3: Complete component
network (m = 20, n = 2).

17The difference between the sizes of any pair of components is at most 1.
18 Analysis without any restrictions on m and n is available upon request; Appendix G
provides partial analysis relevant for our numerical results as well as illustrative examples.
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Hereafter, a network composed of completely connected components of
size 2n + 1 is called complete component network and is denoted with c¢. The
players can build it as follows: divide into groups of size 2n + 1; each group
forms a circle; each player in a circle connects to n players on his right.

Now, suppose that the interpretation noise o272 approaches zero. Then,
it is most important to maximize the total number of neighbours by the least
happy player, while maximization of his closed neighbours is the secondary
objective. The following network seems a good candidate for being efficient.
It is composed of the central “hub” h connected to everyone (hence, the

highest possible total number of neighbours m is delivered to any player):
fin=1Vie M,
and m — 1 peripheral players divided into interconnected “petals”:
N; = N; for any i # h and for any j € N;\ {h}.

Once again, for concreteness, suppose that m and n are such that the size
of one petal (termed the “large petal”) is 2n and the size of the remaining

petals (termed “small petals”) is 2n — 1:
there exists k € N such that m = 2n 4+ 1+ (2n — 1)k. (12)

Following common terminology, we will call such network a flower and denote
it with f. It can be built as follows: 2n players and the central hub form
a circle and each player connects to the next n players on his right. The
remaining (2n — 1)k players divide into k groups of size 2n — 1. Each group
forms a circle. Each player in a circle connects to the central hub and n — 1

players on his right. An example of flower network is depicted in Figure 4.

20



Figure 4: Flower network
(m =20, n =2).

Parameter specification. Hereafter, we focus on the situation in which
the number of players m and the individual connection capacity n satisfy
equations (11) and (12)."

The following section shows that the efficient network is either the com-
pete component network or the flower, depending on the magnitude of inter-

pretation noise.

Characterization of the efficient network. We show, first, that the
flower is the most efficient among all networks in which the least happy player

has at least one open neighbour.

Lemma 2 Suppose that some network is egalitarian efficient and one of its
least happy members has an open neighbour. Then, this network is the flower.

Formally, if g € G* and 3 i € L(g) such that d; > d; then g = f.

9 Fyll analysis of complementary cases is available upon request. A part of it is presented
in Appendix G.
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Constructive proof in Appendix D relies on the observation that any
closed neighbour by any least happy ¢ shall be at least as “happy” as i.
Using this observation, the fact that a player can build, at most, n links and
that network g is efficient, we prove that the closed neighbourhood by player
1 is a completely connected subgraph of size 2n — 1. Furthermore, ¢ and his
closed neighbours share one open neighbour or “hub” who connects them to
all other players. Hence, they can be visualized as a small petal. We proceed
with considering another least happy player outside i’s neighbourhood, would
such player exist, to frame another small petal connected to the same hub,
and so on until all the least happy players are organized in small petals
connected to the central hub. The remaining players, all connected to the
central hub, have a closed degree of at least 2n. It is feasible iff they form a

petal of size 2n. By this construction, ¢ is the flower.

By lemma 2, the most efficient network is either flower f or some net-
work ¢ in which any looser ¢ has only closed neighbours. Network c is such
a network maximizing the number of closed neighbours by its least happy
member (see details in Appendix E). By Proposition 1, network ¢ is more

efficient than the flower f iff

—(2n+1
22> (2n+ )_

(13)

Proposition 2. The egalitarian efficient network is either the flower or com-
plete component network depending on the magnitude of the interpretation

noise:
{c} if o212 > —m_(22"+1),
G =19 {e f} if 0?2 = —m*%”“),
{f}  otherwise.
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Numerical robustness check. We continue to consider m = 8 players
with connection capacity n = 2. Note that Proposition 3 does not apply
directly to this example because parameter restriction (11) fails. It is feasible

to build the flower network depicted in Figure 5:

@ @

Figure 5: flower network
(m=28,n=2).

At the same time, it is impossible to divide the players into completely
connected components of size 2n + 1 = 5. The network maximizing the
number of closed neighbours by the least happy player is composed of two
complete components of size 4 (termed hereafter in this section as clustered
network).

The extension of Proposition 2 (in Appendix G.2) shows that the efficient
egalitarian network is: the flower network depicted in Figure 5 if 0272 < 4,
clustered network if o272 > 4, or both these networks when o272 = 4. We
check the robustness of this prediction in a setting where the players know
their network, and the correlation of their priors is not arbitrarily weak. We

consider either egalitarian- or (more common) utilitarian-efficiency criterion.
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We normalize signal’s variance as 72 = 1 (hence, the interpretation noise
is measured with 02) and let p take values in set {0.1,0.2,0.35,0.5,0.7,0.9}
and compare losses by the least happy player across all possible 9589 networks
of size 8.2°

Figure 6, left image depicts losses by the least happy player across all
possible networks for p = 0.35 (the figures for smaller values of p are sim-
ilar). The loss by the least happy player in the flower network is marked
with red dotted line. The loss by the least happy player (any player) in the
clustered network is marked with dashed horizontal line. We observe that
the most efficient egalitarian network is the flower if the interpretation noise
o2 lies below some threshold and clustered network otherwise suggesting the
robustness of our theoretical prediction. Figure 6, right image depicts av-
erage losses suggesting that our results may extend to utilitarian efficiency

criterion.

4 p=035and =1 4] p=035and =1

Max of the variance
Average of the variance

15 ==----- e

Figure 6: Loss in different networks of size 8: by the
least happy player (left); average normalized to
component’s size (right).

20Recall that we count different networks up to isomorphism.
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Figure 7, shows that our results fail for sufficiently high values of p,?!
for either egalitarian efficiency criterion (three upper figures) or utilitarian

efficiency criterion (three lower figures).

Max of the variance
i

T
2

3
&
PR
s
'R
=
-
'R

Figure 7: Performance of different networks for relatively high
values of correlation p.

Indeed, when the correlation p is relatively high and the interpretation
noise o2 is relatively low it becomes most important for a player to have as
many local neighbours as possible.??> Therefore, the efficient network (accord-

ing to either egalitarian- and utilitarian efficiency criteria) is such as depicted

21Tt seems that the threshold for our calibration lies somewhere in between 0.35 and 0.4.
22Recall that we consider the generalized setting in which the players know their network.
In this setting local open- and distant connections are equivalent for a player’s disutility.
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in Figure 8:

Figure 8: Most efficient (according to either
egalitarian- or utilitarian-criterion) network
when p € {0.5,0.7,0.9} and o2 is
sufficiently low.

5 The efficient Nash equilibrium network.

Proposition 2 tells us which network the social planner would like to see built
depending on the magnitude of the interpretation noise. However, it is not
guaranteed that the players are going to build the efficient network in Nash
equilibrium.

We verify first that flower f is a Nash equilibrium (see Appendix F for
details). Indeed, by Proposition 1, a player’s deviation from the strategy
profile leading to formation of flower f is profitable only if it increases either
the number of his closed neighbours or the total number of his local and
distant neighbours. In the flower network, any unilateral deviation (weakly)
decreases either of these numbers.

Furthermore, complete component network c is an equilibrium whenever

it is efficient. The reason is that when the interpretation noise lies above
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threshold (13), a player in one component of network ¢ does not want to
replace a link with a player in his component, (loosing thereby 2n closed
neighbours), by a link with a player in a different component (gaining thereby

one open- and 2n distant neighbours).

Proposition 3. The network in Proposition 2 constitutes the most efficient

Nash equilibrium.

Naturally, the game may have other Nash equilibria. However, the effi-

ciency may be used as a refinement.

Numerical robustness check. Proposition 3 (as Proposition 2) does
not apply directly to our example with m = 8 players with individual con-
nection capacity n = 2 because this example does not satisfy parameter re-
striction (11). Appendix G.2 shows that the most efficient Nash equilibrium
is the flower depicted in Figure 5, regardless of the magnitude of transmission
noise. The reason is that the network composed of two compete components
with 4 players each is not an equilibrium because there is unused connection
capacity, hence, the incentives to deviate.

We check numerically whether this result may extend to the generalised
setting. We have seen that Proposition 2 may extend to the generalised
setting for sufficiently small values of p namely, p in set {0.1,0.2,0.35}. We
therefore focus on these values of p. As in the previous section, we keep 72 =
1, and vary the interpretation noise 02. We consider a profile of strategies
leading to formation of flower f (proposed equilibrium) and show that no
player can benefit from unilateral deviation.

The central hub cannot deviate in a profitable way, as in the proposed
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equilibrium he learns the signals of all the players and receives payoff %.
Figure 9 depicts possible deviations by a peripheral player. Deviations 1 and
2 refer to a peripheral player from the small petal (for concreteness, player
8). Deviations 3 and 4 refer to a peripheral player from the large petal (for

concreteness, player 5).

oooooooooo

® ®
® ® ¢ ®
@ ' ®
° : ®
L) ]
X Devitons
® ® ¥ .

Figure 9: Deviations by a peripheral
player from the proposed equilibrium.

Figure 10 depicts the losses given by equation (2) by peripheral players 5
and 8 in the proposed equilibrium and under the above deviations, depending
on interpretation noise o2 for p = 0.35 (the figures for smaller values p of are
similar). We observe that both player 5 and player 8 have strong incentives
to comply with the proposed equilibrium strategy. Hence, the flower network

is a Nash equilibrium.
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— Equilibrium
Deviation

Deviation 2

Loss by player 8
Loss by player 5

Figure 10: Losses by player 5 (right) and player 8 (left) in
the proposed equilibrium (red solid curve) and following
possible deviations (blue dashed and green dotted curves).

6 Conclusion.

We have modeled formation of a communication network by players with
incomplete information about the relevant state of nature and heterogenous
weakly correlated prior beliefs about it. We have found that clustering deliv-
ers a signal-extraction benefit, and therefore the egalitarian efficient network
exhibits a high degree of clustering. We have shown, furthermore, that this
network constitutes a Nash equilibrium.

Our results suggest that in situations characterized by uncertainty and
diversity of prior beliefs, such as adoption of new agricultural technology,
network clustering enables individuals to acquire more robust and precise
knowledge about uncertain events. They also provide some insight into the
prevalence of clustering in real-world social networks.

There are several natural extensions of our model, such as a longer com-
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munication horizon, which we leave beyond the scope of this paper. On the
applied side, we hope that the established relationship between the quality
of information diffused through the network and its architecture may help
network-based targeting, at least when the quality of learning through net-

work is important for adoption.
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Appendix A: Technical review.

The notations in this section are independent from the rest of the paper.

Mean and Variance of a linear combination of Gaussian variables
Consider K random variables z; ~ N(u,02), k = 1,..., K and a set of

constants {ax},_; j-
K K K
E oy ~ N(p,0?), where p = g agpy, and o? = g azos.
k=1 k=1 k=1

Conditional multivariate normal distribution Consider n-dimensional
colomn-vector of random variables x distributed normally with mean p and
n-by-n variance-covariance matrix X: x ~ N (u,Y). Consider the following

partition of z, u and X:

T ,Uzl 211 212
p— pr— Z p—
) (x2>7ﬂ <M2>7 (221 Z22)’

where 7 is k-dimensional colomn-vector, x5 is (n — k)-dimensional colomn-
vector, p, is k-dimensional colomn-vector, p, is (n — k)-dimensional colomn-
vector, ;7 is k-by-k matrix, X5 is k-by-(n — k) matrix, X9 is (n — k)-by-
k matrix, and Yop is (n — k)-by-(n — k) matrix. Suppose that realization

of the latter (n — k) components of vector x is known: xs = a. Then,
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(1|22 =0a) ~ N (ﬁ, i), where
= p + E12%5 (= py), (14)

i - 211 - 2122;21221. (15)

Matrix inversion Consider n-by-n matrix A. The inverse matrix is

oA
A—l — -1 1+ 2¥)
{( ) detA] ’

where A, ; is the (7,j)-adjunct of matrix A, that is, the determinant of a

matrix received from A by removing row ¢ and column j. In particular,
-1

a b ... b
b a B
.. b N
b ... b a
a+ (n—2)b —b —b
B 1 —b a+ (n—2)b
~ (a=b)(a+b(n-1)) —b
—b —b a+(n—2)b

(16)

We introduce the following notation for the sum of elements of matrix A:
Sum(A) = e Ae.

Note that the sum of elements of matrix (16) is equal to:

-1

a b ... b
b a

Sum| Ly | Taweew (1)
b ... b
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Furthermore, by Miller (1981),

(H+G) '=G1— e G THGT, (18)

where matrices G and H have the same dimension, matrix G + H is nonsin-

gular and rk(H) = 1.

Appendix B: proof of Lemma 1 (Sethi and
Yildiz, 2012).

Consider some player ¢ with at least one closed neighbour j.
Step 1 specifies j’s first announcement. The vector (z,s;) is distribued

according to the following law

piy (1 1
(G Gda)
By equations (14) and (15), conditional law of x given s; under P; is
Li(x|s;) =N (%pj + 1Jr%sj, %) , hence,
Ajr = Eylzls)] = 25 + 1555

Player i deduces j’s signal s; from announcement A4;; with noise 7 (p; — Ei(p; | pi))

associated with ¢’s uncertainty regarding j’s priors:

(L+72) Ajr — T°Ei(p; | pi) = 55+ 7° (5 — Bi(p; | 1)) s (19)
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where E;(p; | pi) = ppi.

Step 2 specifies j’s second announcement. Let us index player j’s neighbours
but himself by r € {1,...,d; — 1}. Consider the second period of communica-
tion. Recall equation (19). The state x and player j’s signals are distribued

by the following law:

x Pj 1
T +¢€; : Dl47r 1
L; z+e1+ 72 (p1 — ppj) - N ] 1
; : P ()
T+ Eqj—1+T (pdjq - ij) D 1 1
where (V) is d; — 1 by d; — 1 matrix with elements
) L+ 72+ 71402 (1 —p?) ifr =1,
() = 4.2 ;
L+ 7%2p (1 —p) if r #£1,
r = 17...,di — 1, and [ = 17...,d2‘ — 1.
By equations (14) and (15),
Li((x,x+e1+7(p1— ppj) - @ —21— 5dj,12+ 72 (pa;—1 — ppj))']s;) =
. . T 1T
N 53"'7;221’7] 1, 1T—|2-7—2 1472 7
( o 1+T21 Z(l)
where (1) is d; — 1 by d; — 1 matrix with elements
7.2 .
(i(n) — 1+%—2 + 7—2 + 7—40—2 (1 - 102) if r= l? (20)
7l e+ a%p (1 — p) if r#l,

where r =1,...,dj —1land [ =1,...,d; — 1.
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By equations (16), (17), (18) and (20),

~ N1
g(l)) - d;—1 '
Sum ( T2+T402(1*P)+(dj*1)<11i2 +T4U2(17p)p> (21)
By equations (19), (21) and (14),
&QZE&xuwp%g%MwQ:41_&ufamAﬂ+
)‘j (1 + 7'2) Z Ar,l — )\jT2p(dj — 1)pj7 where (22)
reN;\{j}
Aj = 1
I T P2 =)+ D (A1) 2 (1))

Step 3 completes the proof. By definition of set N;, player i “hears” the

first announcements {4, 1}

ren, by all j’s neighbours. Therefore, player 7 can

deduce j’s prior p; from j’s second announcement (22), and then j’s private

signal s; from his first announcement (19).

Appendix C: proof of Proposition 1.

Step 1 specifies player i’s beliefs about the state conditional on the signals

and priors by his closed neighbours. Let us index ¢’s closed neighbours but

himself with j € {1, e d; — 1}.

L;

T pi 1 1
T+ g : 1472 1 1
Ther | =N N 1P T B (R 1

T ¥ &g D 11 1 - 1472

(23)
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By equation (16),

1+72 1 1
1 1+7? 1
1 1 1+ 72 (24)

7'2 +El —1 -1 —1

. ~1 2 4d;—1 —1
2<T2+gi>
—1 —1 2 4+d;— 1
By equations (23), (24), (14) and ((15)

Ez(x| {sj}jgNi) = N(:ua U) ) (25)

wherep is given by equation (8) and v is given by equation (9).

Step 2 specifies player i’s beliefs about the priors by players outside his closed
neighbourhood conditional on the signals and priors by his closed neighbours.
Recall that the vector of priors p is distributed according to distribution (1).

Let us order the players’ priors so that the subvector of priors

PIN;, = (piapla ~-~7p3i,1)

comes the last. Let us denote the variance-covariance matrix of vector p|x,

by Il|, (this is, d; by d; matrix with elements 1 on the main diagonal and p
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elsewhere). By equation (16),

1—|—,0(ai—2) z_p ) —p

. ) —p 1+p(d; —2 —p

(H|Wi) - (1-p)(1+p(di—1)) : :
—p —p o 1+p(di—2)

(26)

Let p s, be the vector of priors of all players outside N;. Equation (4)

follows from equations (1), (26) and (14). By equations (1), (26) and (15),

0'2 1— El 1
w=V; (pr | {ps} ey, ) = T, (27)

2

@ = Cz (prapl | {pj}jENi> - lcjrpp(%«u‘:pl))7 (28)

where r € M\N; and | € M\ (N; U {k}).
Step 3 specifies the elements of variance-covariance matrix > in equation

(7). Recall indexation (6). We denote conditional variance (9) by v and

conditional expectation (8) by p. We also introduce notations

dri = |(N: \ NV;)| and dgropi = [(N-\ Vi) 0 (N \ ;)| m # L.
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By equation (25),
T
T+ €Ei+1+ (pgr‘rl_ﬁ) 7-2
T+ Edi—i_ (pdl _]_)) 7-2
. P djL_ -1 _
'Ci x+d71 ] Z (€T+(p7’ _p) T2) _%7—2 (pari-l _p)

d;+1\i

vt Y (et o -p) ) -, )

da;\i dg;\i
TENdi\N'L
) v Ce v
N : ) : Y11 X2 )
H v (21,2)T E2,2

where: p is given by equation (8), v is given by equation (9),

v+ 72+t if r=1,

(X11)ry = { v+ 73 it r £l

v4 1t <6 - —p(gr_l)w) if r=1,

r\%

by rl =
(212) v TB (1 - —f’<j;\i1>) if 1,
<E22>r,r:U+%+d‘:i_ [ <1+p( )_‘_6( r\z_1_2p(d7“_1)):|7

d .
b =+ 72 i Ty e GAUAYA
( 22) +773 \idi + dp\idpn

+8gTa (dridng = deini — p(di(di = 1) + dii(dr — 1)) + p*(dy = 1)(dy = 1)) ,

rodle{di+1,..d;},r#l
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Step 4 specifies the elements of the variance-covariance matrix ¥ in equation
(7) in the simplified setting. Recall that we focus on p — 0, which implies
that w — o2 and 3 — 0. Recall, furthermore, that player i believes that
dirini = 0. By Step 3, the elements of matrix X are given by the following

set of equations:
v+ 2, if r=10<d;
Y=1 v+ df\w if r=10>d; (30)
v if r#l,

where, according to indexation (6), indices 7 and [ take values in set

{ai CLdy o 22}1} ,
v is given by equation (9), and
z=1>(147%7). (31)
Step 4 completes the proof. By set of equations (30),
Y= H + 2@,
where H = vI17 |

1 if r=1<d;

G = 1\4 it r=10>d;
0, if r#l

and z is given by equation (31). Note that rk(H) = 1. In order to use

=9

equation (18), we find:

W if 1<d,
(H (-G) )r,z—{ S, if 1> d;, (32)

SIS
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1+tr(H (2G)™") =1+ v, (33)

o

where ¢ = did’,", d; = |N]| (34)

= if r<d;andl <d;

-1 1 o z%dl\z if r< dl and [ > dl,
((:G)H(:G)7),, = Sdn if [<d;and 7> dy (35)

Sdpdy; if v > d;and [ > d;.

By equations (18) and (32)-(35),
1 2,

Sum (H +2G) " = — 155 =15 (36)

By construction (standard properties of conditional independence) and equa-

tions (15) and (36),
Vz(x | Si, {Aj,t | j € Ni; t = 1,2}) =
Vi(z | {ps, Sj}jeﬁi ’ {gj,l,gjg}je&i) =v (1 - UlT(Z)fll) =

_ 4p _ v
v (1 Ul+<pv) = Treu:

Appendix D: proof of Lemma 2.

Step 1 shows that if f € G and g € G*, then d; > 2n — 1 for any + € M.
Indeed, suppose (by contradiction) that exist ¢ € M with d; < 2n — 1, then,
d; < 2n— 1. By true inequality n; < m and Proposition 1, I; (¢) < 1’2%%([]- (f),
hence g ¢ G*.

Step 2 proves that closed neighbourhood by any least happy player ¢ is a

completely connected subgraph of size 2n — 1, that is,

N, = N; for any i € L(g) any r € N; and any g € G. (37)
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Consider i € L(g) and r € N;. By definition of N;, N; C N,, hence,
d. +d. < d; +d; and d,. < d;. However, N; C N,, means that there exist
j € NA\N,. If j € N;, then d, < d;. Otherwise, d, + d. < d; + d,. In either
case, by Proposition 1, I, (¢) < l; (g), which contradicts to ¢ € L (g).

Step 3 proves that for any g € G*, if there exist i € L (g) such that d; >0
then d; < 2n — 1. Suppose, by contradiction, that there exist i € L (g) such

that dl > 0 and d; > 2n. By statement (37), N, = N; for any r € N;. It

di(d;i—1)

takes 5

=>n (c_li — 1) links to interconnect all players in N, and 2nc§i
links to connect them to i’s open neighbour(s). At the same time, players in

N; can build nd; links. Therefore,
n (Ei - 1) + 2nc§i < nd;, which implies dz < 1.

Suppose that dZ = 1. Call h the unique open neighbour by ¢ common with
i’s closed neighbours. Consider M\N;. Let R = |M\N;|. Players in M\N;

can build nR links of which at least one link goes to player h. Hence, their

average degree is % < 2n, which implies that there exist player j € M\ N;
such that d; < 2n—1, and so either Ej <2n—1ord;+ d;» < 2n— 1. In either
case, by Proposition 1, [;(g) > m%/}[di (f), hence g ¢ G* (a contradiction).

1€

Step 4 proves that for any g € G*, and for all ¢ € L(g) such that d; > 0,
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d; =2n —1 and

di +d, = m. (38)

Consider i € L (g) such that d; > 0. By Step 3, d; < 2n — 1. By Proposition
I, di =2n—1and d; +d, = m (if d; < 2n — 1 or d; + d, < m, then
l;i(g) > riré%(lj (f), which contradicts g € G*).

Step 5 shows that if g € G* and there exist i € L (g) such that d; > 0 then
d; = 1. Indeed, by step 3 and statement (37), all 2n — 1 players in N; are
interconnected, which leaves capacity to build at most one 1 link per player
and 2n — 1 links with other players overall. At the same time, by statement

(37), all 2n—1 players in N; are connected to each of the players in ](\Dfi, which

requires d; (2n — 1) links. Hence, players in N; build at least

o

@@n—ly—@n—1):(@—1>@n—n
links to players in N;, which leaves them with a possibility to build at most
Jm—(&—1>@n—ngzn—1—émn—n (39)

links to m — 2n players in M\ N;. Suppose that dZ > 2. Then the right-hand
side of inequality (39) is weakly below 1. That is, players in N; build at most

one link to players in M\ N;. At the same time, by equation (38), each player
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in M\ N; is connected to at least one player in N;, which requires m — 2n
links. By inequality (39), all but one player in M\ V; use at least one of their
hands to connect to at least one of the players in N;. Hence, their average

degree is at most

2(n(m—2n)—(m—2n—1))+m—2n
m—2n

=2n—1+4 1L

m—2n"

Therefore, there exist player j € M\N; such that d; < 2n — 1 and cij > 0, so
d; <2n—2. By Step 1, g ¢ G* (a contradiction).

Step 6 shows (by construction) that if g € G* and there exist i € L (g) such
that d; > 0 then g = f. By statement (37), for any player i € L(g), we
can visualize ¢ and his closed neighbours as a “petal”. By Steps 4 and 5,
player ¢ and his closed neighbours have one common open neighbour, say, A
connected with all players in M\ N;. Consider m — 2n players in M\N;. If
there exist player iy € (M\N;) N L (g), then, d;; = 2n— 1 and by Steps 3 and
4, d;, =2n, d;, +d;, =m and N; = N;, for all j € N;;. We can therefore
visualize 7; and his closed neighbours as the second petal connected to the
first petal through h. Applying this argument repetitively, we end up with
a the situation in which any player not organized in a petal yet has closed

degree of at least 2n and is connected to h.
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We denote the set of these remaining players with R. Note that by
construction, none of the players in set R receives links from the players
organized in the above petals. Therefore, relatively high degree by each of
them is achieved through their own linking capacity plus possibly that of the
central hub h. Players in set R and hub h together can build n (|R| + 1) links,
increasing their own sum of degrees by 2n (|R| + 1).2* The hub h receives |R|

links. The average degree by the players in set R is therefore equal to

Zei _ 20(RI+D 4 (40)
IR R :

Recall that it shall exceed 2n + 1, which implies

R| < 2n. (41)

However, by construction of small petals, true equation |g| = m and equation
(12), we find

IR| = 2n+ (2n — 1)1, (42)

where 0 < | < m — 1. By equations (41) and (42), |R| = 2n. This means
that the hub h and 2n players in set R are interconnected, forming the large

petal.

23|R| denotes the cardinality of set R, that is, the number of players in set R.
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Appendix E: proof of Proposition 2.

Step 1 shows that if g € G* and g # f, then any player i € L (g) belongs to a
completely connected component of size at least 2n. By Lemma 2, if g € G*

and g # f, then d; = 0 for any i € L (g). Hence, N/ = &, and

Because g € G*,
li(g) < mind;(f). (44)

By equation (43), inequality (44), and proposition 1, d; > 2n. Hence,
if g€ G* and g # f then d; = 0 and d; > 2n for any i € L (g). (45)

By Step 2 in Appendix D, N; = N; for any j € N..

Step 2 shows that if i € M, then d; = 0, Nj = N, for any j € N, and d; > 2n.
By Step 1, the statement is true for any i € L (g). Consider M\L(g), that
is set M without the least happy players. If M\ L(g) = &, the statement of
Step 2 holds. Suppose M\L(g) # @. By Step 1, |L(g)| = 2n. Therefore,
|M\L(g)| < m — 2n. Therefore, di, + dj, < m —2n < m for any r € M\L(g).
Because g € G* and g # f, l.(9) < jIIéiJ\?lj(f) for any r € M\L(g). By
Proposition 1, d, > 2n for any r € M\L(g). At the same time, the average
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degree by players in M\ L(g) is 2n (each player can build n links, each link

increases sum of degrees by 2). Therefore,
d, = d, = 2n for any r € M\L(g). (46)

Suppose there exist r € M\L(g) and j € N, such that N; C N,. Then, 7 is
an open neighbour by j, which contradicts to statement (46).

Step 3 proves that if ¢ € G* and g # f, then d; < 2n + 1 for any player
7 in network g. Consider g € G*, g # f and some player i in network g.
By Step 2, all players in ¢’s closed neighbourhood are interconnected, which

takes M links. These players can build only d;n links. Therefore,

which is equivalent to d; < 2n + 1.

Step 4 shows that

{c}, if o272 > m=(ntl)
G" =19 {e f},if o?r? = =il
{f}, otherwise.

Recall that it is feasible to build network ¢ as follows: players divide into
groups of size 2n+ 1, 2n 4 1 players in a group form a circle and each player

connects to n next players on his right. By Steps 2 to 4, network c is the
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most efficient network in set G\ f. By Proposition 1, ¢ is weakly more efficient

than f iff inequality (13) is true.
Appendix F: proof of Proposition 3.

Step 1 shows that flower network is a Nash equilibrium. Indeed, by equation
(12), flower network may be build as follows: The players divide into groups
of which one has size 2n+1 and other k have size 2n— 1. Players in the group
of size 2n + 1 interconnect, say, they form a circle and each player connects
to n players on his right. One player in this group is marked with index h.
Players in each group of size 2n — 1 form a circle. Each player connects to
n — 1 players on his right and to player h.

Consider a unilateral deviation by player ¢ from the above strategy pro-
file. By this deviation player i establishes a link with a player in a different
“petal”, scarifying a link with either one of the players in his petal or the
central hub. As a result, his total degree does not increases while his closed
degree decreases by 2n — 2 (he looses all closed neighbours but himself). By
Proposition 1, his loss goes up. Hence, flower network is an equilibrium.
Step 2 by equation (11), network ¢ may be built as follows: The players divide

into groups of size 2n + 1. Players in each group of size 2n + 1 interconnect,
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say, they form a circle and each player connects to n players on his right.
2.1. Consider a unilateral deviation by player ¢ form the above strategy pro-
file. By this deviation player i establishes a link with a player in a different
component sacrificing a link with a player in his component. Thereby, he
increases his total degree by 2n + 1 and he decreases his closed degree by 2n
(he looses all closed neighbours but himself). By proposition 1, the deviation
is unprofitable iff

o212 > 1+ +. (47)

Hence, network ¢ is an equilibrium iff inequality (47) holds.

2.2. Let us show that equations (12) and (11) imply
14 b < meCetl), (48)
By equation (12), inequality (48) is equivalent to
(2n—1k>2+2,
which holds for any k > 2. By equations (12) and (11)
Cn+1)(—1)=2n—-1)k >0,
which implies [ > 2, hence, k£ > 2.

o1



Appendix G: different number of players and
connection capacity.

Propositions 2 and 3 were obtained under restrictions (12) and (11) on the
number of players m and a player’s connection capacity n. We can show that
if we relax these restrictions then either the flower network or flower-like net-
work(s) is/are efficient and constitute(s) a Nash equilibrium provided that
the interpretation noise is sufficiently low (full analysis is available upon re-
quest). The following examples illustrate this claim. In all examples a player’s

connection capacity n is equal to 2.

G.1 Illustrative examples.

Examples G.1 and G.2 illustrate that when parameter restriction (12) holds
while parameter restriction (11) fails, flower network f is the most efficient

network constituting a Nash equilibrium (except if n =m = 1).

Example G.1. Suppose that m = 11. Note that parameter restriction (12)
holds, and it is, therefore, feasible to build flower network with 2 petals of
size 2n — 1 = 3 and one petal of size 2n + 1 = 5. At the same time, parame-
ter restriction (11) fails. The size of the smallest component in any network

composed of completely connected components is, at most, 3. Therefore, any
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such network is less efficient than the flower. Hence, the flower is the unique

equilibrium network.

Example G.2. Suppose that m = 29. Then, parameter restriction (12) holds
and it is, therefore, feasible to build flower network with 6 petals of size 3 and
one petal of size 5. At the same time, parameter restriction (11) fails and
it is, therefore, impossible to divide the players into completely connected
components of size 5 each. There are at least two networks composed of
completely connected components of size 4: network ¢; composed of 6 com-
ponents of size 4 and one of size 5 and network ¢y composed of 5 components
of size 5 and one of size 4. Flower network f is efficient, outperforming ei-
ther network c; or co, iff the interpretation noise is weakly below threshold
m — 2n = 25 (note that this threshold lies above that in Propositions 2 and
3). Furthermore, while the flower network f constitutes a Nash equilibrium,
this is not true for either network c; or co, because any player with an excess

connection capacity benefits from deviation.

Examples G.3 and G.4 illustrate that flower-like network(s) is/are efficient

and constitute a Nash equilibrium the interpretation noise is sufficiently low.

Example G.3. Suppose that m = 10. Parameter restriction (11) holds and
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it is therefore possible to build network ¢ composed of two complete com-
ponents of size 5. At the same time, parameter restriction (12) fails and we
cannot build network f. However, we can build network f termed hereafter
symmetric flower which is depicted in Figure G.1. Propositions 2 and 3 hold

for flower network f being replaced for symmetric flower network ]7

@)

Figure G.1: symmetric
flower f (m =10, n = 2).

Example G.4. Suppose that m = 9. Then, it is possible to build flower-like
network termed generalized flower, see Figure G.2. Note that alternatively
we could build flower-like network with one petal of size 4 and two petals
of size 2. Either of these networks is efficient?® and it constitutes a Nash

equilibrium when the interpretation noise lies below threshold 0.43.

24We could refine efficiency criterion by requiring the number of losers to be minimal.
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Figure G.2: generalized flowers of level 2
(m=9,n=2).

G.2. Relaxing parameter restriction (11).

Let us keep parameter restriction (12) and relax parameter restriction (11).
Without loss of generality there exist [ € NU {0} and ¢ € NU {0}, ¢ < 2n

such that

m=12n+1)+q. (49)

Note that by equation (12), [ > 0. The main text focuses on ¢ = 0. Suppose

that ¢ > 0.

Definition G.1. The set of networks composed of completely connected

components of which the smallest has size 2n is denoted

C={g€C|foranyie M: d;>2n and N; = N; for any j € N;}. (50)
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Proposition G.1. Suppose that m and n are such that parameter restriction

(12) holds. Suppose, furthermore, that q defined by equation (49) is positive.

Then,
Cif q+1>2n and o> > m — 2n,
G*=< CU{f} if ¢+1>2n and 0?7 = m — 2n,
f otherwise.
Proof.

Step 1 shows that if ¢ > 0 and

q+1=2n, (51)

C,if 0?72 >m —2n
G"=< CU{f},ifo?m>=m —2n
{f} otherwise.

By Step 2 in Appendix E, any efficient network different from f lies in set
C. Let us build a network in C maximizing the size of its smallest cluster.
To this goal, let us divide the total number of players m into groups of sizes
as equal as possible in the following way: Start with [ groups of size 2n + 1
and one “residual” group of size ¢ and repetitively move one player from
the largest existing group to the smallest one. After 2n — g < [ steps, the
size of the residual group is 2n, hence, the difference between the sizes of
any pair of groups becomes no higher than one. Once the procedure is over,
let the players in each group interconnect. Thereby, we form a network in
C. Potentially, we could build other networks in C by continuing the above

56



procedure as long as the distribution of the clusters’ sizes remains constant.
The size of the smallest cluster is 2n. By proposition 1, this network is weakly
more efficient than f iff

o*t? > m — 2n. (52)

Step 2 shows that when ¢ > 0 and ¢ + 1 < 2n, G* = f. Consider the
procedure described in Step 1. After [ steps the size of the residual group is
still below 2n. If we continue the procedure until the distribution of groups’

1'25

sizes becomes constant, at least one group will have size 2n — Hence, set

C is empty. By Step 2 in Appendix E the unique efficient network is f.

Proposition G.2. If n = k = 1, the most efficient equilibrium network
is that in proposition G.1. Otherwise, the most efficient Nash equilibrium is

network f.

Proof.

Step 1. Suppose n = k = 1, so that m = 4. By Step 1 in Appendix F, network
f (a “star” with three peripheral players connected to the central hub) is a
Nash equilibrium. Set C is a singleton. Its unique element is complete network
connecting 4 players. Trivially, it is a Nash equilibrium. Hence, Proposition

G.1 describes not only the most efficient network but also an equilibrium

25 Note that by equation (12) the size of the smallest cluster is weakly above 2n — 1.
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network.

Step 2. Suppose, from now on, that n + k > 2. Suppose first, that inequality
(51) holds. By Proposition G.1, the efficient network is either f or a network
is set C, depending on the magnitude of the interpretation noise. However, no
network in set C is a Nash equilibrium. Indeed, inequality (51) is equivalent

to ¢ = 2n — . Therefore,

m=112n+1)+q > 2n(l + 1), hence, m > 2n,

which implies that any network in set C has at least two components. Con-
sider the smallest component of network in set C. Its size is 2n. It takes
n(2n — 1) links to build it. At the same time, the players in this component
can build 2n? links. Therefore, at least one of them has unused connection
capacity, which he can use to establish a link with a player in a different
component increasing thereby his total degree by at least 2n. By Proposi-
tion 1, this deviation is profitable. By Step 1 in Appendix F network f is a
Nash equilibrium. By Step 2 in Appendix F, network f is the more efficient
than any network in set G\C. Hence, network f is the most efficient Nash
equilibrium.

Step 3. Suppose finally that inequality (51) does not hold. Then, by Propo-
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sition G.1, the most efficient network is f. By step 1 in Appendix F network
f is a Nash equilibrium. Hence, network f is the most efficient Nash equilib-

rium.

Appendix H: alternative network formation pro-
tocol.

Unilateral link formation may be viewed as an extremely asymmetric invest-
ments in links. This section illustrates that our results do not hinge on this
asymmetry. Following Hojman and Szeidl (2008), we modify network forma-
tion protocol as follows. The players simultaneously choose their investments
in links. Player ¢ invests tf in link with player j. The link between ¢ and j is
formed iff the joint investment by players ¢ and j lies above a given threshold
I:

t+t; > 1.

Investments in links by player ¢ are added to his disutility, hence his objective
is to minimize

li(g) = Li(g) + S ti. (53)

JEM

We can prove that the efficient network can be formed in equilibirum
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via a profile of strategies involving strictly positive contributions from the
hub (available upon request). We illustrate our argument taking Example
G.3 in Section G.1 (m = 10 and n = 2). Suppose that 72 = 1, 0% = 4.
Propositions 2 and 3 hold with flower f being replaced with the symmetric
flower fdepicted in Figure G.1 (proof is availble upon request). Let us prove

that when [ lies in the interval [0.03, 0.1], symmetric flower may be formed

L

5 In any

in equilibrium via fully symmetric investments: any player invests
of his links.
Note that loss (10) is convex in either the number of closed neighbours

and the joint number of local and distant neighbours:

ali(g) <0 a2

d Bdf ’ a(dﬂrdé)

li(g) <0 oli(g) <0 92li(9) <0
dd; d )

" o(ditd;)”

Consider the central hub h. He can deviate from the proposed equilibrium
strategy by sacrificing any subset of links, saving thereby sum % multiplied
by the cardinality of this subset. However, by the above convexity of loss (10)
in the number of closed neighbours dj, it suffices to check that A is not willing
to deviate at the margin. That is, he does not want to save sum % loosing a
link with one of the peripheral players and thereby 3 closed neighbours. By

equation (10), it is true for any I < 0.1.
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Now consider a peripheral player ¢. He can deviate from the proposed
equilibrium strategy in three ways. First, he can save é by sacrificing a link
with one of his closed neighbours, loosing, thereby, all closed neighbours but
himself. Second, he can save é by sacrificing the link with the central hub and
losing thereby all closed neighbours but himself and all distant neighbours.

By equation (10), these deviations are unprofitable when I < 0.1. The third

possible deviation is to link with distant player from a different petal so as
to gain one closed neighbour (recall that i perceives this player to be linked

only with the central hub). This is unprofitable for any I above 0.03.
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