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When sheared, granular media experience localized plastic events known as shear transformations
which generate anisotropic internal stresses. Under strong confining pressure, the response of granular
media to local force multipoles is essentially linear, resulting in quadrupolar propagated stresses.
This can lead to additional plastic events along the direction of relative stress increase. Closer to the
unjamming transition however, as the confining pressure and the shear modulus vanish, nonlinearities
become relevant. Yet, the consequences of these nonlinearities on the stress response to plastic events
remains poorly understood. We show with granular dynamics simulations that this brings about
an isotropization of the propagated stresses, in agreement with a previously developed continuum
elastic model. This could significantly modify the yielding transition of weakly-jammed amorphous
media, which has been conceptualized as an avalanche of such plastic events.

Introduction. When subjected to large enough macro-
scopic shear stress, amorphous solids such as granular
packings, foams, metallic glasses or toothpaste start to
flow [1, 2]. This yielding transition originates in mi-
croscopic events where the material locally undergoes
a plastic deformation [3]. Each of these so-called shear
transformations induces new microscopic stresses in its
surroundings, which can then trigger further shear trans-
formations. Above a critical macroscopic stress, the catas-
trophic accumulation of such events causes the whole
material to yield and transition from a solid-like to a
fluid-like behavior.

This yielding transition has been extensively studied
through mesoscopic elasto-plastic models [1, 4–9]. The
universality class of this yielding transition is predicated
on the propagator which dictates the distribution of ad-
ditional stresses induced by a new shear transformation.
Linearly elastic solids display a so-called Eshelby propa-
gator, whose quadrupolar symmetry ensures that a shear
transformation induces equal amounts of positive and neg-
ative stresses in its surroundings [10, 11]. This symmetry,
associated with the dipolar deformation field illustrated in
Fig. 1(a,b), dictates the critical exponents at the yielding
transition. Among them, the Herschel-Bulkley exponent
describes how abruptly the material starts to flow once
the macroscopic stress exceeds its critical value [6, 12].
Additional features such as the formation of shear bands
and ageing have also been proposed to directly result from
the form of the Eshelby propagator [13–15].

While the validity of the Eshelby propagator is well
established in dense amorphous solids [18], looser pack-
ings may display more complex responses. Experiments
on weakly-jammed emulsions [19, 20] thus indicate a non-
Eshelby propagator, whereby the change in local stress
surrounding a shear transformation has the same sign in
all directions [17]. Similarly, an isotropic core is observed
in the displacement response from force dipoles of simu-

lated harmonic sphere packings near unjamming [21]. In
this article, we propose that such deviations from the Es-
helby propagator are generically expected for amorphous

FIG. 1. The far-field stresses induced by a shear
transformation (ST) become more isotropic near un-
jamming. (a) In an amorphous medium, a shear transfor-
mation, e.g., a local change of neighbors between grains (in-
set) [16, 17], applies a local force dipole (orange arrowheads) on
the surrounding medium. These forces propagate through the
medium (grey arrows), resulting in stresses at the medium’s
boundary (blue arrowheads). (b) Far from unjamming, the
medium propagates stresses according to linear elasticity. The
symmetry of these boundary stresses thus does not depend
on the magnitude of the local forces. (c) Close to unjam-
ming, the medium may not support the propagation of tensile
stresses, resulting in a preponderance of dilational boundary
stresses. (d) For large local forces, stress redistribution within
the medium results in an increasingly isotropic dilation.
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solids close to unjamming.

Our approach is based on the observation that as an
isotropic material approaches unjamming, one or both
of its linear elastic moduli becomes very small [22–24].
As a result, its response to a locally imposed shear
transformation tends to be nonlinear. To understand the
origin of this nonlinearity, consider two contacting grains
within the medium. When subjected to a compressive
force, the grains remain in contact, whereas a tensile force
tends to pull them apart. This asymmetric response is
thus more conducive to the propagation of compressive as
opposed to tensile stresses. We thus expect the material’s
nonlinear response to a localized solicitation to be biased
towards isotropic dilation [Fig. 1(c,d)], an effect which
we have previously referred to as rectification [25, 26].
Here, we validate this isotropization using numerical
simulations of two-dimensional granular packings. We
find that the system’s tendency to isotropization diverges
as unjamming is approached, in quantitative agreement
with predictions from a nonlinear elastic model [26].
Finally we use a toy model to illustrate that in amorphous
solids close to unjamming, the yielding transition may
as a result display critical exponents and qualitative
features different from those predicted in the absence of
isotropization.

Stress propagation around a shear transforma-
tion near unjamming. We consider packings of fric-
tionless bidisperse disks in a circular arena of radius rout
at mechanical equilibrium [details in SI]. The two types of
disks are present in equal proportions, the ratio of their
diameters is 1.4 and we take the mean diameter as our
length unit. The disk area fraction ϕ is set above and
close to the critical value ϕc ≃ 0.84 at which the packing
unjams [22], such that ∆ϕ = ϕ − ϕc ≲ 0.2. A pair of
disks with overlap δ interacts elastically via a Hertzian
potential proportional to δ5/2 [27]. The associated stiff-
ness sets our unit of stress. For the values of ϕ considered
here, this results in a low initial pressure Pinit ≲ 0.02. To
mimic stress propagation around a shear transformation,
we subject the packings to internal forces at a radius rin
[Fig. 2(a)]. In practice, we use mesoscopic values for rin
to mitigate the fluctuations due to the medium’s disorder,
and apply forces of the order of or smaller than Pinit to
prevent extensive plastic reorganizations [9].

We characterize the magnitude and anisotropy of these
forces through the corresponding coarse-grained local
stress tensor σ̄l [definition in SI]. We monitor stress prop-
agation via the boundary stress tensor σ̄b, which charac-
terizes the forces exerted by the medium at its boundary.
Our local forcing is characterized by the two indepen-
dent components of σ̄l: the isotropic pressure Pl and the
shear stress Sl, respectively illustrated in Figs. 2(b) and
(c). We decompose σ̄b similarly. Placing ourselves in the

FIG. 2. We subject circular jammed packings to small
internal forces. (a) Packing of the type used in our simula-
tions but with fewer disks. We exert radial forces on the disks
located in the shaded region near rin (orange), and measure
the forces exerted on the the disks located in the shaded re-
gion near rout (blue). (b) The same packing under isotropic
contractile forcing, Pl < 0, corresponding to a local shrinkage
of the original orange ring. In the final configuration, some
gray disks are now subject to the forcing, and some orange
ones are not. The dashed circle has radius rin. (c) Dipolar
forcing, Sl > 0.

eigenbasis of tensor σ̄l, we write

σ̄i = −
(
Pi + Si 0

0 Pi − Si

)
(1)

for i ∈ {l, b}. Qualitatively, a positive Pb corresponds
to an overall dilation of the medium. Note that for an
individual realization of our granular packing, the off-
diagonal components of σ̄b in Eq. (1) may not vanish.
Symmetry however imposes that their average over the
disorder does, and in practice the off-diagonal components
do not exceed 10% of the diagonal ones for any of our
individual packings.
In the initial configurations, the confining pressure

elicits an isotropic array of force chains [Fig. S1]. The
application of a dipolar forcing Sl > 0 rearranges the
force chains anisotropically as shown in Fig. 3(a). We
focus on the outer region r > rin +

1
2 through which the

local forcing propagates to the boundary. As Sl increases
and nonlinearities become prevalent, the force chains
located in the vicinity of the y axis become weaker. In
this example, the packing even fractures locally just
above and below the orange ring of radius rin. At the
same time, the force chains in the vicinity of the x axis
are reinforced, both horizontally but also in directions
with significant angles with the x axis. At large values
of r, this anisotropic propagation leads to the presence
of force chains even close to the y axis. As a result an
emergent dilational boundary pressure Pb > 0 builds
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up in response to the local shear stress Sl [Figs. 3(b,c)
and S3]. In extreme cases, this can rectify boundary
stresses toward dilation in all directions, thus making
them more isotropic, see Fig. 3(d). Under isotropic
forcing Pl ̸= 0, we additionally observe nonlinear
relationships between Pb and Pl [Fig. S4]. Overall,
this minimal new setup clearly shows how microscopic
force chain rearrangements induce the isotropization of
propagated stresses illustrated in Fig. 1.

Dependence of the non-Eshelby propagation on
material behavior. To assess the relationship between
isotropization and unjamming, we now turn to theory.
Within the linear regime, homogeneous elastic media
propagate stress without alteration, such that Pb = Pl

and Sb = Sl. For weak nonlinearities, symmetries dictate

Pb ∼ Pl + αS2
l + βP2

l and Sb ∝ Sl. (2)

The term αS2
l , if large and positive, induces dilational

stresses that come to dominate the medium’s response
and is thus responsible for isotropization. In a previous
paper [26], we expressed α as a function of the material’s
elastic properties. To parameterize those, we consider a
jammed disk packing initially at ϕc +∆ϕ subjected to a
small additional compression δϕ≪ ∆ϕ. To first order in
δϕ, this results in differential bulk and shear moduli that
respectively read

κ = κ0

(
1− κ1

δϕ

ϕc

)
and µ = µ0

(
1− µ1

δϕ

ϕc

)
. (3)

The isotropization coefficient α then reads

α = − 1

µ0

[(
κ1 +

3
2

)
α1 +

(
µ1 +

3
2

)
α2

]
, (4)

where α1 and α2 are positive functions of the ratio of
radii rout/rin and Poisson’s ratio ν = (κ0 − µ0)/(κ0 + µ0)
(see SI for full expressions).

For granular materials under Hertzian interactions, the
bulk and shear moduli vanish at unjamming as κ ∼ κ0 ≈√
∆ϕ and µ ∼ µ0 ≈ ∆ϕ [22, 28]. The resulting relative

insignificance of the shear modulus µ/κ ≈ √
∆ϕ for small

∆ϕ hints that nonlinear effects such as isotropization
could become prominent near unjamming. Expanding
these expressions for small δϕ and equating the result to
Eq. (3) yields

κ1 ∼
∆ϕ→0

−1

2

ϕc
∆ϕ

and µ1 ∼
∆ϕ→0

− ϕc
∆ϕ

. (5)

Therefore, κ1 and µ1 are both negative. Granular me-
dia indeed soften under tension (δϕ < 0) and stiffen
under compression. These nonlinear coefficients moreover
diverge near unjamming as (∆ϕ)−1, leading to a large pos-
itive isotropization coefficient α [SI]. According to Eq. (2),
an anisotropic forcing already gives rise to a significantly

(a)

(b)

(c)

(d)

y

x

FIG. 3. Force chains rearrange to create boundary dila-
tion out of local shear stress. (a) Local shear stress induces
anisotropic force chains in a packing. The green segments have
widths proportional to the forces between neighboring disks.
We refer to consecutive segments with large widths as force
chains. Here we have ≃ 6700 disks, rout ≃ 44, rout/rin = 2,
∆ϕ ≃ 0.03. (b) Illustration of the corresponding local and
boundary coarse-grained stresses. (c) Dilation under dipolar
forcing for three initial configurations (circles, squares and tri-
angles), demonstrating reproducibility. We fit the data using
Pb = αS2

l with α ≃ 4400, and Sb = (1 + B)Sl with B ≃ 0.7.
Here rout/rin = 8, rin ≃ 5.5, ∆ϕ ≃ 0.03. (d) The boundary
stress anisotropy S2

b /(S2
b + P2

b ) decreases as the local shear
stress increases. The vertical line indicates the local shear
stress at which this anisotropy falls under 1

2
.

isotropized far-field boundary stress (i.e., Pb > Sb) for a
small Sl ≈ α−1 ≈ (∆ϕ)2.

To confirm this predominance of isotropization in
the vicinity of unjamming, we measure coefficients α
and β in simulations of the type of those presented in
Fig. 3 for different values of ∆ϕ and rin (additional fits
in Figs. S3-S5) and report them in Fig. 4. We find that
the small-nonlinearity expansion of Eq. (2) describes our
data well even in regimes where the nonlinear terms are
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FIG. 4. Isotropization prevails close to jamming and
in large systems. (a) Log-log plot of coefficients α and β
obtained as in the fits of Fig. 3(c) showing a (∆ϕ)−2 diver-
gence as unjamming is approached. The black line shows
our theoretical predictions [Eq. (4)] and we observe β ≃ α/9.
Inset: the phenomenological coefficient B does not strongly
depend on ∆ϕ. Here rin ≃ 5.5 and rout ≃ 44. (b) Holding the
outer radius rout ≃ 44 constant, the isotropization coefficient
α is strongest for small rin, in agreement with the theoretical
prediction (SI). Inset: B is also large for small rin; the dashed
line shows a heuristic dependence B = (rout/rin − 1)/8. Here
∆ϕ ≃ 0.03. Bars show standard deviation across three simula-
tions.

comparable to or larger than the linear ones. We observe
an unexpected steeper linear dependence Sb = (1 +B)Sl

than predicted, but find that the phenomenological
coefficient B > 0 is not large enough to prevent isotropic
dilation from dominating the response of our packings
(insets of Fig. 4). Both coefficients α and β are positive,
and thus contribute to the medium’s dilation in the
nonlinear regime. This dilation is moreover strongest
for small ∆ϕ and for a very localized forcing (rin small).
Finally, we compare the values of the main isotropization
coefficient α to the prediction of Eqs. (4-5). We find a
very good agreement without any adjustable parameters
(we obtain κ0 and µ0 from Refs. [22, 28]), confirming
that close to unjamming, the weakening of the packing’s
linear response induces an overwhelmingly dilational,
non-Eshelby response to localized forces.

Macroscopic implications of the non-Eshelby
propagator. In amorphous solids, shear transforma-
tions tend to induce further local plastic reorganizations
through stress propagation. In elasto-plastic models, the
characteristics of the resulting yielding transition rely on
the quadrupolar symmetry of the Eshelby propagator.
Due to this symmetry, a shear transformation is equally
likely to drive any neighboring region towards or away
from a plastic reorganization. Loosely defining a scalar
stress σ characterizing how far the region is from the reor-
ganization threshold σc, this implies that σ undergoes a
symmetric random walk prior to reaching σc. By contrast,
Eq. (2) predicts an additional dilational stress Pb, which
should bias the random walk and change some universal

characteristics of the system’s fluidization transition.
To illustrate the macroscopic implications of this break-

ing of the stress-reversal symmetry, we turn to a simple
mean-field elasto-plastic model [4]. The model monitors
the temporal evolution of the probability density P (σ, t)
for a region of the amorphous solid to have a local stress
σ at time t. In a material under external shear at a rate
γ̇, σ systematically increases at rate µγ̇. It also diffuses
via the random positive and negative stress increments
resulting from shear transformations in the rest of the
material. The associated diffusion coefficient D = aΓ is
proportional to the number Γ of plastic reorganizations
per unit time. To account for the dilational bias Pb away
from yielding we introduce an additional drift term −bD
to the evolution equation for P (σ, t), where a and b are
both constants:

∂tP = −(µγ̇ − baΓ)∂σP + aΓ∂2σP − ν(σ)P + Γδ(σ). (6)

Here, the disappearance rate ν(σ) = τ−1H(|σ| − σc),
where H denotes the Heaviside step function, implies
that each region whose stress exceeds the critical value
σc undergoes a plastic reorganization and is removed
from the system. It is then reintroduced as a new stress-
less configuration through the last term of Eq. (6) in-
volving Dirac’s delta function δ, with the condition that
Γ(t) =

∫ +∞
−∞ ν(σ)P (σ, t) dσ. As b quantifies the relative

importance of the dilational and Eshelby stress propaga-
tion, we expect it to become relevant close to unjamming.

Analyzing Eq. (6) in a steady state [details in SI] reveals
that just like the classical b = 0 case, our extended b ≠ 0
model displays an unjamming transition from a solid-like
phase devoid of plastic events at zero shear rate (Γ = 0)
to a fluid-like phase (Γ ̸= 0) upon an increase of a through
a critical value. At the transition, the rheology of the
material is described by a Herschel-Bulkley exponent of
1/2:

⟨σ⟩ − ⟨σ(γ̇ = 0)⟩ ≈ γ̇1/2. (7)

By contrast, in the Eshelby-like (b = 0) case this
dependence is ⟨σ⟩ ≈ γ̇1/5 and only crosses over to a
Herschel-Bulkley exponent of 1/2 deeper in the jammed
phase [29]. While derived in a simplistic model, this
indicates that the loss of the Eshelby-like symmetry
can have macroscopic implications for the rheology of
amorphous materials.

Discussion. Our study sheds light on the transmission
of internally generated stresses in granular systems close
to unjamming. Many elasto-plastic models are predicated
on the assumption that following a shear transforma-
tion,this transmission is well described by an Eshelby-like
linear elasticity kernel [1, 6, 30]. We show that elastic non-
linearities inherent to the unjamming transition instead
lead to substantial isotropic dilational stresses around
local rearrangements. This isotropization is strongest



5

for rearrangements with sizes of a few particle diame-
ters, comparable to that of shear transformations [31].
This mirrors earlier experimental [17] and numerical [21]
findings.

While our analysis is focused on packings of disks
with Hertzian interactions, we expect similar results
for harmonic interactions [SI] and random spring net-
works [32, 33]. This universal character is reflected in the
good agreement between our simulations and a continuum
theory devoid of specific microscopic assumptions. While
based on a small-stress, weakly nonlinear expansion, this
formalism quantitatively predicts isotropized stresses even
in regimes where they are significantly larger than the
stresses predicted by linear elasticity. This is reminis-
cent of successful predictions of the onset of failure in
amorphous solids based on lowest-order nonlinearities [34].
Beyond this robustness to specific material properties, our
prediction of large isotropization at unjamming crucially
relies on the vanishing of at least one elastic modulus at
this transition. Systems where K and G remain finite
at the transition should thus display negligible far-field
stress isotropization.

We use an elasto-plastic toy model to bring out the
macroscopic consequences of the isotropization-induced
breaking of the symmetry between positive and negative
stresses. Consistent with recent non-mean-field results,
we find that breaking this symmetry changes the char-
acteristics of the unjamming transition [35]. Moreover,
yielding in strongly jammed systems systems where this
symmetry is present tends to concentrate along transient
slip lines [13, 36, 37]. We thus predict more homoge-
neous, ductile-like yielding patterns in weakly-jammed
systems due to more isotropic propagated stresses [14, 38].
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Supporting information for “Stress Isotropization in Weakly Jammed
Granular Packings”

I. GRANULAR DYNAMICS SIMULATIONS

Here, we give details on the mechanical analyses of randomly-jammed disk packings in a circular arena. We describe
the process to obtain equilibrated circular packings in Sec. I A. These correspond to initial configurations that we then
gently perturb with a circular active unit. We precisely define the local and boundary coarse-grained stress tensors.
We go on to discuss their expected behaviors at intermediate forcing in Sec. I B. In Sec. I C, we then present additional
results under isotropic forcing and in additional parameter regimes. Finally, we describe in Sec. ID the expulsion of
the disks at high forcing.

A. Equilibrium jammed configurations gently perturbed

We consider randomly-jammed disk packings inside a circular arena. From an initial unjammed configuration at low
density, we increase the disk diameters until a jammed configuration at a given target density ϕ is obtained. But this
configuration is obviously out of equilibrium, such that any posterior change on the system will dramatically change its
properties. To reach a more stable configuration, we let the system slowly relax by thermal agitation using a granular
dynamics algorithm via the software LAMMPS [1] version stable 23Jun2022. In this procedure, the temperature T is
slowly decreased to reach a more stable local equilibrium [2–4]. If the initial compression is not large enough, such
that the target ϕ < ϕc, then a jammed packing with nonzero pressure cannot be obtained which helps determining the
particular value of ϕc for a given packing history. We then determine ∆ϕ = ϕ − ϕc precisely for each packing via
the values of the initial pressure (after equilibration) Pinit ∼ (∆ϕ)3/2 and excess contact number Zinit − 4 ∼ √

∆ϕ
compared to the isostatic (Z = 4) case. Given the largest interpenetration Pinit/k ≃ 2%, the average distance between
two disks in contact is roughly the mean disk diameter D. We use 50:50 bidisperse disks with a ratio of diameters 1.4
to prevent triangular arrangements, such that the configurations are random [5, 6]. This yields initial configurations
with isotropic force chains as displayed in Fig. S1.

FIG. S1. Isotropic force chains in an initial configuration. Fig. 3(a) corresponds to the same realization under forcing.
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Interaction details. Both inter-disk and disk-arena interactions are modeled as Hertzian, with normal elastic
and viscous stiffnesses k = 1000 in pressure units and γ = 73 in inverse units of time. We set the friction coefficient
to zero, which suppresses any tangential forces. The choice of γ corresponds to a particle mass π

6 and a coefficient

of restitution er = 0.1. Given the contact time τc =
2
γ ln er, we set the time interval dt = τc/50 ≃ 5.5 × 10−4 such

that the dynamics is realistic [7]. The precise values of k, γ and er do not matter for the equilibrated values of P/k and Z.

Equilibration protocol. We initialize a gas of disks with equal mass within a circular arena. The positions are
taken uniformly at random and the speeds follow a Maxwellian distribution with temperature T . A seed is used for
the positions and the velocities, so that we can study the packings with similar histories and thus similar critical
area fractions ϕc. We increase the radii of the big and small disks with the same rate until the desired ϕ is reached.
We then let the grains equilibrate in three consecutive stages at decreasing temperatures: T/k = 10−7, 10−9 and
10−11, and measure the pressure P/k and the contact number Z along the way, where k is the elastic stiffness. The
sudden jumps in T help ensuring that a quasi-stable equilibrium is reached, and resolve technical issues with the
calculations of physical observables. Below ϕc the pressure goes to very low values (≃ 10−8) and decreases with the
temperature jumps [6]. But above ϕc, once a local potential energy minimum is reached, the pressure goes to a
value independent of T . We declare that a configuration is equilibrated when 5×105 simulation steps give similar values.

Local forcing and coarse-grained stresses. To analyze the packing response to a local forcing, we define an
inner annular region inside the arena such that r ∈ Il = [rin − D

2 , rin + D
2 ] (orange disks in Fig. 2(a)). In addition to

the forces due to the initial pressure Pinit, we add a small constant component to the radial force of each disk µ in the
inner ring:

fµ/k =
(
f0 + 2f2 cos 2θ

µ
)
r̂µ, for rµ ∈ Il, (S1)

where f0, f2 refer to the isotropic and dipolar parts. We further consider two types of forcing: isotropic when f2 = 0
[Fig. 2(b)], and dipolar when f0 = 0 [Fig. 2(c)]. The forcing of Eq. (S1) elicits a coarse-grained local stress proportional
to the dipole of the added forces:

σ̄l
ij =

−2D

kAl

∑

µ∈Il

fµi r̂
µ
j , (S2)

where the area of the inner ring Al = 2πrinD. We likewise define a boundary ring r ∈ Ib = [rout − D
2 , rout +

D
2 ] (blue

disks in Fig. 2(a)), whose outer part sticks to the arena. By measuring the elastic stress tensor on each disk in the
boundary ring, σµ (in units of stress times area), relative to the one in the initial configuration without added force,
σµ,f=0, we can compute the coarse-grained boundary stress

σ̄b
ij =

2

kAb

r2out
r2in

∑

µ∈Ib

(
σµ
ik − σµ,f=0

ik

)
r̂µk r̂

µ
j , (S3)

which represents the macroscopic stress response of the packing. Here the area of the boundary ring Ab = 2πroutD, the
summation on repeated indices is implied, and the ratio r2out/r

2
in compensates for the dilution, such that the analytical

predictions in linear elastic systems correspond to σ̄b = σ̄l [8]. Using the definitions of Pl,Pb,Sl and Sb in the main
text, we find that up to the intermediate force regime where f0, f2 ≲ Pinit/k, the local stresses increase linearly with
the force components as Pl ∝ f0 and Sl ∝ f2.

B. Data convergence at intermediate forcing

Under forcing, we let the system relax until the data converge to a roughly constant value, see Fig. S2. In the
isotropic case (f2 = 0), since the forces are applied on all disks in the local ring at each time step, two distinct regions
appear. For a contractile active unit f0 < 0, the inner region has a higher contact number, while the outer region has
a lower one. Whereas flows tend to appear in the dipolar case (f0 = 0). In Fig. 3(c,d) for instance, the flows stop
before data acquisition up to Sl ≃ 6× 10−4, while they do not stop for higher values of Sl. Surprisingly the presence
of non-stopping flows, which clearly disrupt the packing history by producing irreversible rearrangements all over the
system, has no visible effect on the data.
The elastic stress on each disk µ depends on the the positions of its neighbors {rν} and the forces that they exert

{fν→µ} as

σµ
ij = −

∑

ν neigh.

(rνi − rµi )f
µ→ν
j . (S4)
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FIG. S2. Typical time series show an approximate convergence. Same settings as in Fig. 3(c,d). At ∆ϕ ≃ 0.03, the
converged values PCV

b ,SCV
b are averaged between 3 and 4× 104 steps in the dipolar case, and between 1 and 2× 104 in the

isotropic case. Filled (empty) symbols refer to dipolar (isotropic) forcing.

This explains why we can relate σµ in Eq. (S3) to the term −Dfµ in Eq. (S2). Moreover, we can recover the equations
Pl ∝ f0 and Sl ∝ f2 by approximating the sum in the definition of the local coarse-grained stress as an integral:

σ̄l
ij ≈

−2D

kAl
Nl

∫ 2π

0

dθ

2π
fi r̂j , (S5)

where r̂j = δjx cos θ+ δjy sin θ and Nl stands for the number of disks in the inner ring. Then from Eq. (S2), we obtain

Pl = − σ̄
l
xx + σ̄l

yy

2
≈ D

Al
Nl

∫ 2π

0

dθ

2π
(f0 + 2f2 cos 2θ)(cos

2 θ + sin2 θ) ≈ DNl

Al
f0,

Sl = − σ̄
l
xx + σ̄l

yy

2
≈ D

Al
Nl

∫ 2π

0

dθ

2π
(f0 + 2f2 cos 2θ)(cos

2 θ − sin2 θ) ≈ DNl

Al
f2.

(S6a)

(S6b)

We now focus on the definition of the boundary stress in Eq. (S3). There, the ratio of radii squared in σ̄b compensates
for the dilution of the local stress σ̄l over the system area as the radius increases from rin to rout. Approximating the
stress on the disks as a continuum stress field in polar coordinates and introducing ∆σ = σ − σf=0, we can write

Pb ≈ −Nb

Ab

r2out
r2in

∫ 2π

0

dθ

2π

∆σrr(rout, θ)

k
,

Sb ≈ −Nb

Ab

r2out
r2in

∫ 2π

0

dθ

2π

∆σrr(rout, θ) cos 2θ −∆σθr(rout, θ) sin 2θ

k
,

(S7a)

(S7b)

where Nb stands for the number of disks in the boundary ring. Therefore, by decomposing the stress field as

∆σ(r, θ) = a(0)(r) +
∑

n>0

a(n)(r) cosnθ + b(n)(r) sinnθ, (S8)

we see that only the term a
(0)
rr contributes to Pb. Whereas, only the terms a

(2)
rr and b

(2)
θr contribute to Sb, in

correspondence with the dependencies of the local stresses: Pl ∝ f0 and Sl ∝ f2.

C. Additional data at intermediate forcing

Here, Fig. S3 displays additional results under dipolar forcing. The lower system size compared to the case of
Fig. 3(c,d) yields an expectedly weaker isotropization. We then show results of simulations under isotropic forcing in
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Fig. S4. Finally, Fig. S5 shows results under dipolar plus isotropic forcing. All data are shown for different packing
histories and appear quite reproducible.

FIG. S3. Weaker isotropization under dipolar forcing for rout/rin = 2. Other settings as in Fig. 3(c,d). The fits give
α ≃ 910 and B ≃ 0.04. Here, the vertical boundary stress Pb − |Sb| remains contractile (negative) in the intermediate forcing
regime.

FIG. S4. Dilational tendency under isotropic forcing. The quadratic fit gives β ≃ 260 when rout/rin = 8, and β ≃ 140
when rout/rin = 2. Other settings as in Fig. 3(c,d).

FIG. S5. The dilation effects add up under dipolar plus isotropic forcing. Same settings as in Fig. 3(c,d) except that
rout/rin = 2. Here, f0 = f2 leads to Pl ≈ Sl. The total coefficient 1200 roughly corresponds to the sum of the coefficients under
dipolar and isotropic forcing of Figs. S3 and S4 respectively: 910 + 140 = 1150.
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D. Expulsion of the disks at high forcing

At high forcing f0, f2 ≳ Pinit/k, Fig. S6 shows how the number of disks in the local ring Nl falls below 70% of its
initial value. This causes the coarse-grained stresses to saturate, such that the local stress components no longer obey
the relationships Pl ∝ f0 and Sl ∝ f2.

FIG. S6. The disks are expelled from the local ring at high forcing. This is shown by the relative decrease in the
number of disks in the local ring Nl compared to the situation without forcing Nf=0

l . Filled (empty) symbols refer to dipolar
(isotropic) forcing.

II. CONTINUUM ELASTIC MODEL FOR WEAKLY JAMMED GRANULAR MEDIA

In a continuum elastic medium, we previously performed a generic expansion of Hooke’s law to the lowest nonlinear
order [8]. In two dimensions and under the assumptions of isotropy and achirality, we showed that it leads to two new
parameters κ1, µ1 corresponding to nonlinear corrections to the bulk and shear moduli κ, µ. We hereby detail the
calculation of these parameters in granular media, which can then be plugged in the theoretical expression for the
isotropization coefficient α to obtain the curves in Fig. 4 of the main text.
We quantify the elastic deformation of our medium at location x using the displacement gradient ηij = ∂ui/∂xj .

For small strains η ≪ 1, at the lowest nonlinear order, the Cauchy stress σ can be written as a quadratic function
of the displacement gradient: σij = Kijklηkl + Lijklmnηklηmn +O

(
η3
)
where the summation on repeated indices is

implied. In an isotropic and achiral medium under a combination of bulk deformation and simple shear

η =

(
ηii/2 ηxy
0 ηii/2

)
, (S9)

the stress response can be characterized by its differential bulk and shear moduli as

κ =
∂σxx
∂ηii

= κ0 (1 + κ1ηii) +O
(
η2
)
,

µ =
∂σxy
∂ηxy

= µ0 (1 + µ1ηii) +O
(
η2
)
,

(S10a)

(S10b)

The right-hand sides of these equations contains all terms up to order 2 which respect the deformation symmetries.

Hertzian interactions. In the setup of Fig. 2, we consider a large 2D packing of frictionless spherical grains with
area fraction ϕc +∆ϕ interacting through a Hertzian potential V ∼ k δ5/2, where k is the spring constant used in the
simulations and δ the overlap divided by the sum of the two disk diameters. For area fractions slightly above the
unjamming transition, i.e. 0 < ∆ϕ≪ 1, the bulk and shear moduli can be expressed at the lowest order as [5]

κ/k = K(∆ϕ)s
[
1 +O(∆ϕ)

]
and µ/k =M(∆ϕ)t

[
1 +O(∆ϕ)

]
, (S11)

where K ≃ 0.3, s ≃ 0.5, M ≃ 0.2 and t ≃ 1.0. The area fraction ϕc +∆ϕ corresponds to that of a system initially at
the rigidity threshold ϕc subjected to a small isotropic compression with a bulk strain ηii = −η0, where 0 < η0 ≪ 1
such that η0 = ∆ϕ/ϕc +O(∆ϕ). We then add an even smaller perturbation to the bulk strain ηii = −η0 − δη, where
|δη| ≪ η0. This δη thus relates to the δϕ in the main text as δη = δϕ/ϕc +O(∆ϕ). This results in elastic moduli

κ = κ0(1− κ1δη) +O
(
δη2
)

and µ = µ0(1− µ1δη) +O
(
δη2
)
, (S12)
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where the elastic parameters read

κ0/k = K(∆ϕ)s
[
1 +O(∆ϕ)

]
, κ1 = −s ϕc

∆ϕ

[
1 +O(∆ϕ)

]
,

µ0/k =M(∆ϕ)t
[
1 +O(∆ϕ)

]
, µ1 = − t ϕc

∆ϕ

[
1 +O(∆ϕ)

]
.

(S13)

Therefore, around e.g. ∆ϕ = 0.1, 0.01 or 0.001, given ϕc ≃ 0.84, we find respectively κ1 ≃ −4, −40 or −400, and
µ1 ≃ −8, −80 or −800. Poisson’s ratio then reads

ν =
κ0 − µ0

κ0 + µ0
= 1− 2

M

K
(∆ϕ)t−s

[
1 +O(∆ϕ)

]
. (S14)

1− ν thus scales approximately as (∆ϕ)0.5, such that media far from unjamming are more compressible. Eqs. (S12)
and (S13) thus give a proper meaning to Eqs. (3) and (5) of the main text.
Now that the elastic parameters are properly defined, we input them into the expression of α from [8]. In the

continuum approach, αµ0/k is a dimensionless function of the ratio of radii ρ = (rout/rin)
2, Poisson’s ratio ν, and the

corrections to the moduli κ1 and µ1. We introduce three functions of ρ and ν only:

X = 4ρ(3− ν)2
[
2(3 + ν) + (3− ν)(ρ+ ρ2)

]2
/(ρ− 1),

Xα1

1− ν2
= 405− 108ν − 54ν2 + 12ν3 + ν4 + (324− 180ν − 24ν2 − 36ν3 − 4ν4)ρ

+ (378− 288ν + 120ν2 + 24ν3 + 6ν4)ρ2 + (108− 180ν + 48ν2 + 12ν3 − 4ν4)ρ3

+ (81− 108ν + 54ν2 − 12ν3 + ν4)ρ4,

Xα2 = 81− 54ν + 351ν2 − 84ν3 − 49ν4 + 10ν5 + ν6

− (684ν − 204ν2 + 120ν3 + 8ν4 + 28ν5 + 4ν6)ρ

+ (594− 900ν + 1122ν2 − 360ν3 + 102ν4 + 12ν5 + 6ν6)ρ2

+ (216− 1116ν + 924ν2 − 312ν3 + 16ν4 + 20ν5 − 4ν6)ρ3

+ (405− 702ν + 567ν2 − 276ν3 + 83ν4 − 14ν5 + ν6)ρ4,

where α1 and α2 are positive for ρ > 1 and ν ∈ [−1, 1]. The isotropization coefficient can then be expressed as in
Eq. (4):

α = − k

µ0

[(
κ1 +

3
2

)
α1 +

(
µ1 +

3
2

)
α2

]
. (S15)

As defined here, α increases as ∆ϕ decreases, since κ1 and µ1 diverge and µ0 vanishes. Specifically, given the dependence
of the elastic parameters with the area fraction ∆ϕ for Hertzian interactions in Eq. (S13), we can expand Eq. (S15) in
powers of ∆ϕ≪ 1. In approximating s to 0.5 and t to 1, we find

α = α(0)(∆ϕ)−2 + α(1)(∆ϕ)−3/2 +O
(
(∆ϕ)−1

)
, (S16)

where

α(0) =
ϕck

M

(ρ− 1)3

ρ

4− 2ρ+ ρ2

(4 + ρ+ ρ2)2
t,

α(1) =
ϕck

K

ρ− 1

ρ(4 + ρ+ ρ2)3

[
6(ρ− 1)3(8 + 4ρ+ 3ρ2) t+ (64 + 36ρ+ 81ρ2 + 16ρ3 + 18ρ4 + ρ6) s

]
.

Consequently, the theoretical expression of α diverges at the transition and scales as (∆ϕ)−2. This scaling is basically
the one of µ1 times the one of 1/µ0. However, as we see in Fig. S7(a), at intermediary ∆ϕ, there is a crossover
from a slope −2 to a slope −1.5, due to the scaling of ν with ∆ϕ [Eq. (S14)]. This crossover happens quicker when
rout/rin ≳ 1, which explains why the black curve in Fig. 4(a) has an approximate slope slightly larger than −2.
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(a) (b)

FIG. S7. The scaling of α from Eq. (4) with ∆ϕ varies with rout/rin. For area fractions ∆ϕ ∈ [10−3, 10−1], the exponent
varies from −2 when rout/rin = 10, to −1.5 when rout/rin = 1.3. The dependence with ∆ϕ is obtained by using the lowest-order
expressions of the elastic parameters in Eq. (S13). (a) Hertzian case, (b) harmonic case.

Harmonic interactions. For harmonic disk interactions V ∼ k δ2, Eq. (S11) has coefficients K ≃ 0.3, s ≃ 0,
M ≃ 0.2 and t ≃ 0.5 [5]. This translates into

αhar = α(0)(∆ϕ)−3/2 + α(1)(∆ϕ)−1 +O
(
(∆ϕ)−1

)
, (S17)

with identical α(0), α(1) coefficients. At a given low ∆ϕ, this yields an isotropization effect that is substantial yet
weaker than in the Hertzian case, see Fig. S7(b).

III. MEAN-FIELD ELASTO-PLASTIC MODEL

Here we discuss the model introduced in Eq. (6) and the derivation of Eq. (7) from it. We choose to base our
description on the standard mean-field Hébraud-Lequeux model due to its tractability and widespread use. While this
simple model does not accurately capture all quantitative aspects of the yielding transition [9], we merely use it to
provide a proof of principle that a change in the local rules of stress propagation around a shear transformation can
affect the macroscopic characteristics of this transition. Specifically, we discuss the steady state behavior of the mean
stress

⟨σ⟩ =
∫ +∞

−∞
σP (σ) dσ (S18)

as a function of the imposed shear rate γ̇.
In the standard Hébraud-Lequeux model [the b = 0 case of Eq. (6)], each region of the amorphous solid drifts

towards higher stresses σ due to the externally imposed stress current µγ̇, and starts to yield with a finite probability
as soon as its stress exceeds a threshold σc. In this section we rescale all stresses by σc and thus set σc = 1. We
denote by Γ the rate at which shear transformations occur in the system and use the mean shear transformation
time τ introduced in the main text as our time unit (i.e., τ = 1). In the Hébraud-Lequeux description, such shear
transformations push the region of interest towards or away from this threshold with equal probability as implied by
the σ → −σ symmetry of aΓ diffusion term in Eq. (6). We reason that the build-up of compressive stresses in the
material resulting from stress isotropization near unjamming hampers local yielding events driven by the imposed
shear stress µγ̇ > 0. We thus model this effect by the simplest possible Γ-dependent drift away from the σ = 1 yielding
threshold, corresponding to the b term of Eq. (6).
Solving Eq. (6) in the stationary state with boundary conditions P (±∞) = 0 as well as matching the values of

P and ∂σP on either side of the points σ = −1, 0, 1 while holding Γ constant yields a solution PΓ(σ). Imposing the

normalization condition
∫ +∞
−∞ PΓ(σ) dσ = 1 on this solution yields the following self-consistency condition on Γ:

a =
x2

2
+ y−1

[
1 + x

√
1 +

(xy
2

)2
]

xy
2 +

√
1 +

(
xy
2

)2
tanh y

2

xy
2 tanh y

2 +

√
1 +

(
xy
2

)2 , (S19)

where we have defined

x =
√
aΓ and y =

µγ̇

aΓ
− b. (S20)
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FIG. S8. Graphical illustration of the nonlinear equations involved in the mean-field elastoplastic model.
(a) No-flow, liquid-state self-consistency condition obtained by setting µγ̇ = 0 (i.e., y = −b) in Eq. (S19). For a given value of
the parameter a, this curve allows us to read out the corresponding value of x. (b) Illustration of the change of solution of
Eq. (S19) when transitioning from an unjammed (liquid-like) to a jammed (solid-like) state in the standard Hébraud-Lequeux
b = 0 case. The yellow surface materializes the solutions of Eq. (S19). For a given value of a, all the solutions in the plane with
altitude a are accessible. Those with zero flow are given by the intersection from this yellow plane with the green γ̇ = 0 ⇔ y = 0
plane (“unjammed” red line). Imposing a flow in the γ̇ > 0 direction makes this solution move away from the green plane and
along the line defined by the intersection of the yellow surface and the horizontal plane (i.e., the plane of constant a). In cases
where a < 1/2, a change of sign of γ̇ is accompanied by a discontinuous jump of the value of y. The γ̇ = 0+ solutions are marked
by the “jammed” red line. (c) Selection of the solutions in the b > 0 case. Starting from a large value of a, we can follow the
“unjammed” red line at the intersection of the yellow surface and the y = −b plane. This line ends at a = ac(b), which marks the
jamming transition. This value of a is smaller than in the b = 0 case, and does not correspond to the top of the bump in the
yellow surface. For values of a lower than ac(b), the γ̇ > 0 branch is obtained by jumping to the y > 0 part of the yellow surface.
Unlike in the b = 0 case, such a jump is required even in the critical case a = ac(b). The line of jammed solutions highlighted in
red gives the γ̇ → 0+ limit of these solutions. The discussion of the text is focused on the neighborhood of this line. (d) Plots of
the quantities defined in Eqs. (S25) and (S26).

For a given externally imposed shear rate γ̇, solving Eq. (S19) yields a value for Γ, and thus information about the
flow state of the system.

We first consider the case of a system without externally imposed flow (γ̇ = 0). The value of y is then known, and
Eq. (S19) must be solved for x. As shown if Fig. S8(a), it allows for x > 0 solutions only when a is larger than a
critical value

ac(b) =
1

b
tanh

b

2
. (S21)

The parameter a was originally introduced in Ref. [10] as a proxy for the density of the system, where denser systems
correspond to lower values of a. This gives rise to the following standard interpretation for the existence of a x > 0
solution to Eq. (S19):

• Parameter regimes where this solution exists correspond to low-density systems, namely those with a > ac(b).
Such systems display a non-vanishing steady-state value for their plastic activity Γ. In the case b = 0, such
systems are usually interpreted as unjammed fluids, and we extend this interpretation to the case b > 0.

• Parameter regimes where this solution does not exist represent high-density systems, namely those with a < ac(b).
These systems display a vanishing value of Γ in the case of a vanishing driving µγ̇ = 0. Imposing a small, positive
value of µγ̇ does however result in a non-vanishing Γ and a discontinuous jump in the mean stress ⟨σ⟩, likening
systems in this regime to jammed yield-stress fluids.

In our model, the former of these two cases gives rise to a linear, Newton-like rheology similar to that derived from
the standard Hébraud-Lequeux model. As the parameter a is lowered under ac(b) however, this solution ceases to
exist and the system transitions to another solution of Eq. (S19) [Fig. S8(b-c)]. For finite values of b, the γ̇ → 0+

asymptotics of this solution is given by

x =

√
µγ̇

b+ ψ
+O(µγ̇)

y = ψ

(
1 +

sinhψ + ψ

sinhψ − ψ
×
√

µγ̇

b+ ψ

)
+O(µγ̇),

(S22a)

(S22b)
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where the function ψ(a) depends only on parameter a and is defined through

a =
1

ψ
tanh

ψ

2
and ψ > 0. (S23)

Thus ψ is equal to 0 when a = 1/2 and monotonically increases to +∞ as a decreases to 0. The resulting relationship
between stress and strain rate is of the yield stress type, with

⟨σ⟩ = σY (ψ) +
χ(ψ)√
b+ ψ

√
µγ̇ +O(µγ̇), (S24)

where the yield stress and susceptibility are respectively given by

σY (ψ) =
1

2
coth

ψ

2
− 1

ψ

χ(ψ) =
1

ψ
+

5 + coshψ − 3ψ coth(ψ/2)

2(sinhψ − ψ)

(S25a)

(S25b)

and are plotted in Fig. S8(d).
As illustrated in Fig. S8(b-c), unlike in the Hébraud-Lequeux model the transition between the unjammed and

jammed state in our b > 0 model is of the first order. This is in contrast with the transition encountered in the
Hébraud-Lequeux model, which is of the second order and displays a critical regime where ⟨σ⟩ ∝ (γ̇)1/5. This
critical regime is never manifested in our b > 0 model, and the rheology at the transition is given by (noting that
a = ac ⇒ ψ = b):

⟨σ⟩at unjamming = σY (b) + χ̃(b)
√
µγ̇ +O(µγ̇), (S26)

where χ̃(b) = χ(b)/
√
2b is plotted in Fig. S8(d). According to Eq. (S26), at the unjamming transition the b > 0 system

displays the same yielding behavior and Herschel-Bulkley exponent as in the jammed state. The small-γ̇ expansion
scheme leading to Eq. (S26) breaks down at b = 0, which is apparent in the divergence of χ̃(b) for b→ 0+. Consistent
with our previous discussion, this divergence signals the presence of the Hébraud-Lequeux critical regime. Equation (7)
of the main text is a summarized version of Eq.(S26).

We note that the difference in critical regime discussed here is fundamentally due to a loss of the σ → −σ symmetry
in our model, which implies a change in the order of the unjamming transition. We can speculate that some version of
this difference will subsist even in more sophisticated models, i.e., that it is a robust feature beyond the assumptions
and simplifications made here. We however expect that the specific values of the Hershel-Buckley exponents discussed
here will change when, e.g., relaxing our mean-field assumption.
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