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Signal Temporal Logic (STL) [3] is a classical formalism used for verification of hybrid
systems. In this work, the satisfaction of a temporal logic formula for a given uncertain
signal is computed. We consider an approach using interval analysis to ensure computation
guarantees and take into account uncertainties in a robust manner. In addition, a confidence
level parameter allows considering more or less uncertainties, making calculable the risk to
violate specifications.

STL is defined recursively by:

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2 | ⊤ (1)

with ϕ an STL formula, and U the until operator. The interval [a, b] is defined with
a, b ∈ R+. We have

(x, t) ⊨ ϕ1 U[a,b]ϕ2 ⇐⇒ ∃t′ ∈ [a, b] (x, t+ t′) ⊨ ϕ2 and ∀t′′ ∈ [t, t′] (x, t′′) ⊨ ϕ1, (2)

and µ is an atomic predicate: µx ≡ f(x1(t), . . . , xn(t)) > 0. Several operators can be
derived from STL, such as the well known finally operator F[a,b]ϕ ≡ ⊤ U[a,b]ϕ.

The satisfaction of ϕ by a signal x = (x1, . . . , xn) ∈ Rn is written (x, t) ⊨ µ and is true
if and only if we have f(x1(t), . . . , xn(t)) > 0.

Formalism

Instead of defining the satisfaction of an STL formula just by a classical boolean value,
we use boolean intervals to take into account undetermined cases due to uncertainties and
set-abstraction [2]. Thus, we use intervals from the set {∅, 0, 1, [0, 1]}, where ∅ stands for
impossible, 0 for false (⊥), 1 for true (⊤) and [0, 1] for undetermined. We define this new
STL with:

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U[a,b] ϕ2 | 1 | [0, 1]. (3)

And we have:

¬[0, 1] ≡ [0, 1] [0, 1] ∨ 1 ≡ 1 [0, 1] U[a,b] 0 ≡ 0

[0, 1] ∧ 1 ≡ [0, 1] [0, 1] ∨ 0 ≡ [0, 1] 1 U[a,b] [0, 1] ≡ [0, 1]

[0, 1] ∧ 0 ≡ 0 [0, 1] U[a,b] 1 ≡ [0, 1] 0 U[a,b] [0, 1] ≡ 0.

As we use intervals (sets) to represent uncertainties, when testing the satisfaction of an
atomic predicate, it is equivalent to use set operators such that inclusion and emptiness
intersection.
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We can define the level set representing a predicate µ ≡ x > 0 by X µ = {x ∈ R | x > 0}.
Then we have:

(x, t) ⊨ µ ≡


1 if x(t) ⊂ X µ;

0 if x(t) ∩ X µ = ∅;
[0, 1] otherwise.

(4)

Confidence-based Tubes

We define a confidence parameter noted cc ∈ [0, 1]. It denotes the confidence we have in a
set to contain the actual trajectory. It is inspired from [1]. When cc = 1, then we are sure
to not miss the solution, at the risk of having huge sets. Taking a smaller cc parameter
implies a greater accuracy, at the cost of a less reliable result.

Figure 1 gives an example of three tubes representing the same trajectory but with
different confidences. Darker strokes are used for higher confidences.

Figure 1: Example of three different values of cc for a tube.

We have:
(cc1, cc2) ∈ [0, 1]2, cc1 ≤ cc2 =⇒ X cc1 ⊆ X cc2 . (5)

Now we can add this parameter in our formalism to define a satisfaction of an STL
formula with respect to a given confidence. In other words, we allow concluding the satis-
faction of a specification if only the (1− cc) part of the tube violates the formula.

For instance, depending on the confidence on the initial set of a system, we can deduce if
it will satisfy some constraints. On the other hand, we can also approximate the maximum
value for cc such that we ensure the specifications are satisfied, helping to measure the risk
to launch a critical system.
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