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Fractal behavior for nodal lines of smooth planar
Gaussian fields at criticality

David Vernotte

October 1, 2024

Abstract

This paper is devoted to the study of the large scale geometry of the excursion set
and nodal set of a planar smooth Gaussian field at criticality ℓ = ℓc = 0. We prove
that there exists s1 > 1 such that with high probability, macroscopic nodal lines in a
box of size λ are of length at least λs1 . As an application, on the event that a box is
crossed by a nodal line, then the shortest crossing is of length at least λs1 . We also
prove that there exists s2 < 2 such that with high probability, the shortest crossing is
non degenerated, that is, its length is at most λs2 . The argument for the lower bound
is based on a celebrated paper of Aizenman and Burchard [1] that provides a general
argument to show that random curves present a fractal behavior. For the upper bound,
our proof relies on the polynomial decay of the probability of one-arm events which
was proven in [4].
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1 General introduction
In this paper, we study some geometric properties of the excursion and nodal sets of some
smooth random Gaussian fields in the Euclidean space of dimension 2. Gaussian percolation
can be seen as the continuous analogue of classical discrete Bernoulli percolation. Instead
of a random configuration ω : Z2 → {0, 1}, one consider a random continuous (in fact C1)
function called the random field

f : R2 → R. (1)
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In the following the random field f is a continuous, stationary Gaussian field, that is centered.
That is we assume that:

• for all n ≥ 1, x1, . . . , xn ∈ R2 distinct points, the random vector (f(x1), . . . , f(xn)) is
a non-degenerated Gaussian vector that is centered,

• for all x ∈ R2, f(·) and f(· + x) have the same law (stationarity),

• almost surely, the function f : R2 → R is continuous.
Remark. The third condition simply means that there exists an event of probability 1 under
which the function f is continuous (we may then consider a modification of the underlying
probability space to assume that each realisation of f is continuous).

When considering Gaussian fields, one object of interest is the covariance kernel since it
completely characterizes the law of the field.
Definition 1.1. Let f be a centered Gaussian field on R2. The covariance kernel associated
to f is the function

K : R2 × R2 → R
(x, y) 7→ E[f(x)f(y)].

Since the fields we consider are stationary, their covariance kernels only depend on x − y, as
such we can define the covariance function.
Definition 1.2. Let f be a centered, stationary Gaussian field on R2. The covarariance
function associated to f is the function

κ : R2 → R
x 7→ K(x, 0) = E[f(x)f(0)].

This covariance function is enough to characterize the law of f since we have K(x, y) =
κ(x − y). An important example of a continuous stationary centered Gaussian field is the
Bargmann-Fock field. Given a collection (ai,j)i,j≥0 of independent identically distributed
standard Gaussian random variables, we define

∀x ∈ R2, f(x) := e− 1
2 ∥x∥2 ∑

i,j≥0
ai,j

xi
1x

j
2√

i!j! ,

where ∥·∥ denotes the Euclidean norm of R2. Note that almost surely the above function is
well defined for all x ∈ R2. Furthermore, the function f obtained is almost surely analytic
(in particular continuous). The field f is clearly a Gaussian field and is stationary since its
covariance kernel is given by K(x, y) = E[f(x)f(y)] = e− 1

2 ∥x−y∥2
.

We present a general way to define continuous stationary Gaussian fields. This is done via
the white noise representation of such field.
Definition 1.3. A white noise on R2 is a centered Gaussian field W indexed by the functions
of L2(R2) such that for any φ1, φ2 ∈ L2(R2) we have

E[W (φ1)W (φ2)] =
ˆ
R2

φ1(x)φ2(x)dx. (2)
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The construction of the white noise can be made using an Hilbert basis of L2(R2) we refer the
reader to [11] for more details. Let q ∈ L2(R2) a function such that ∀x ∈ R2, q(x) = q(−x).
We define the stationary Gaussian field

f := q ∗ W, (3)

where ∗ denotes convolution. That is for x ∈ R2 we set

f(x) := W (q(x − ·)).

It can be checked by a simple computation that the field f obtained is a stationary and
centered Gaussian field whose covariance function is given by κ(x) = (q ∗ q)(x). Moreover,
under some regularity assumptions on q (see Assumption 1.5), the field f obtained will be
continuous.
Remark. By setting q(x) =

√
2
π
e−∥x∥2 , then the field f = q ∗ W obtained is the Bargmann-

Fock field previously introduced.

We have already mentioned that the function q relates to the covariance function κ via the
equality κ = q ∗ q. Another relation between κ and q can be seen via the spectral measure of
the field. Assume that κ is continuous, then by Bochner’s theorem there exists a measure µ
on R2 called the spectral measure which is the Fourier transform of κ, that is, for all x ∈ R2,

κ(x) =
ˆ
R2

e2iπ⟨x,y⟩µ(dy), (4)

where ⟨x, y⟩ denotes the Euclidean scalar product between x and y. Assume also, that µ is
absolutely continuous with respect to the Lebesgue measure on R2 and we denote by ρ2 its
density, which is called the spectral density. We have

κ(0) =
ˆ
R2

µ(dy) =
ˆ
R2

ρ(y)2dy.

This shows that ρ is in L2(R2). The existence of the spectral density is important as it implies
that the law of f (which is invariant by the translations) is ergodic (see [13, Appendix B]).
Since ρ is in L2(R2) one can consider its Fourier transform F(ρ) ∈ L2(R2). It turns out that
if one defines q := F(ρ) then the field q ∗ W obtained has covariance function κ, giving a
white noise decomposition of the field f . This stems from the fact that κ = q ∗ q and taking
Fourier transform in this equality.

We now state some classical assumptions that we make on the function q.
Assumption 1.4 (Symmetry). The function q verifies the following.

• q is in L2(R2)

• q is invariant by rotation by π
2 about the origin and is invariant by sign change of the

coordinates.
Assumption 1.5 (Regularity, depends on α ∈ N). The function q is in Cα(R2). Moreover,
for all (α1, α2) ∈ N2 with α1 + α2 ≤ α, the partial derivative ∂α1,α2q is in L2(R2).
Assumption 1.6 (Positivity of correlations). One of the following (to be specified) is verified
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• (Weak positivity) κ = q ∗ q ≥ 0.

• (Strong positivity) q ≥ 0.
Assumption 1.7 (Decay of correlations, depends on β > 0). As ∥x∥ goes to infinity we
have

max (q(x), ∥∇q(x)∥) = O
(
∥x∥−β

)
.

We briefly comment on those assumptions, the reader may also refer to [13], [12], [14] for other
comments on these hypotheses. The regularity Assumption 1.5 is a technical assumption that
makes the field f = q ⋆ W a continuous field (in fact C2 as soon as m ≥ 3). Assumption 1.6
implies that the field possesses the FKG property. That is two increasing events (events that
are favored by an increase of the values of the field) are positively correlated. Finally, the
purpose of Assumption 1.7 is to replace the hypothesis of independence in classical Bernoulli
percolation.
Remark. Note that the Bargmann-Fock field satisfies Assumption 1.4, 1.5 for all α ≥ 0, 1.6
(strong positivity) and 1.7 for all β > 0. This is due to the explicit formula q(x) =

√
2
π
e−∥x∥2

which straightforwardly verifies all of the above hypotheses.

We now introduce the percolation model associated to this random field. One introduce
a continuous parameter called a level which is usually denoted by ℓ ∈ R. We define the
following random subsets of R2.
Definition 1.8. The excursion set at level ℓ is denoted by Eℓ(f) and is defined as

Eℓ(f) := {x ∈ R2 | f(x) ≥ −ℓ}. (5)

The nodal set at level ℓ is denoted by Zℓ(f) and is defined as

Zℓ(f) := {x ∈ R2 | f(x) = −ℓ}. (6)

A main object of interest in percolation theory is the probability of the existence of crossings
in the sets Eℓ(f) and Zℓ(f).
Definition 1.9. Let R ⊂ R2 be a non degenerated rectangle of length a and height b. Let
A ⊂ R2 be a subset. We say that R is crossed by A in the length direction if there exists
a connected component of A ∩ R that intersects both sides of R of length b (the small
sides) and we denote CrossA(R) this event. In particular, CrossEℓ(f)(R) (resp CrossZℓ(f)(R))
denotes the event that R is crossed in the length direction by Eℓ(f) (resp Zℓ(f)). When R
is a square, one should specify in which direction the crossing occurs.

It is known that given a rectangle R, the probability of the event CrossEℓ(f)(R) depends on
ℓ and undergoes some sharp transition as ℓ crosses the so called critical parameter ℓc = 0.
Theorem 1.10 ([4], [6],[14] for ℓ = 0, [15],[12] for ℓ > 0). Assume that q satisfies Assump-
tions 1.4, 1.5 for some α ≥ 3, 1.6 (weak positivity) and 1.7 for some β > 2. Let R ⊂ R2 be
any non degenerated rectangle.

1. If ℓ = 0 and q satisfies Assumption 1.6 (weak positivity), then there exists a constant
c ∈]0, 1[ depending on q and R such that

∀λ > 1, P
(
CrossE0(f)(λR)

)
∈ [c, 1 − c]. (7)
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∀λ > 1, P
(
CrossZ0(f)(λR)

)
∈ [c, 1 − c]. (8)

2. If ℓ > 0 and q satisfies Assumption 1.6 (strong positivity), then there exists a constant
c > 0 depending on q and R such that

∀λ > 1, P
(
CrossEℓ(f)(λR)

)
> 1 − 1

c
e−cλ. (9)

∀λ > 1, P
(
CrossZℓ(f)(λR)

)
<

1
c
e−cλ. (10)

Here, λR denotes the rectangle R dilated by λ.

We make a few comments about Theorem 1.10. First, this theorem can be understood as
a quantitative description of the transition phase of our percolation model. When ℓ > 0,
big rectangles are crossed with high probability by Eℓ(f), this high connectivity is a witness
of the existence of a unique unbounded connected component in Eℓ(f) (see [12] for more
details). When ℓ = 0, we are in the so-called critical regime which will be the focus of this
article. The first item of Theorem 1.10 is sometimes referred to as a Russo-Seymour-Welsh
property (RSW) or also as a box-crossing property. It can be interpreted as saying that the
probability of having a positive (or negative) crossing in a rectangle remains bounded away
from 0 and 1 as the rectangle becomes bigger and bigger. Note that this property together
with some result of quasi-independence imply that with probability 1, there is no unbounded
component in E0(f) (nor in Z0(f)) (see [4] but also [2] for earlier results on this problem).
We also briefly comment that if R is a square, then equation (7) of Theorem 1.10 remains
true without assuming that q satisfies Assumption 1.6 (weak positivity). In fact, by duality
(using the fact that f and −f have the same law) and by π/2 rotational invariance, one
can readily show that we always have P(CrossE0(f)(R)) = 1

2 . Moreover, since a crossing of
a square by Z0(f) implies a crossing of the same rectangle by E0(f) we also have for any
square R, P(CrossZ0(f)(R)) ≤ 1

2 which can be thought of as an upper bound of (8).

In this paper we are interested in the geometry of the set Eℓ(f) and Zℓ(f) at criticality
(ℓ = ℓc = 0). More precisely, our goal is to give a description of the geometry of the
connected components of those sets that are of big diameter. In fact, Theorem 1.10 can be
interpreted as follows: in a fixed rectangle of scale λ there exists a connected component of
E0(f) (or Z0(f)) of diameter of order λ with a probability that stays bounded away from 0
as λ varies. We prove that those macroscopic connected components (there exists at least
one with positive probability) present a fractal behavior with high probability. To be more
precise we first introduce some terminology.
Definition 1.11. A parametrization of a curve is a continuous function γ : [0, 1] → R2. Two
parametrizations γ1 and γ2 are said to be equivalent if there there exists an homeomorphism
φ : [0, 1] → [0, 1] such that γ1 = γ2 ◦ φ. A curve is an equivalence class for this relation of
equivalence. A curve C is said to be a rectifiable curve if there exists a parametrization γ of
of the curve that is Lipschitz. In that case the length of the curve is defined as

length(C) :=
ˆ 1

0
∥γ′(t)∥ dt, (11)

5



where ∥·∥ denotes the Euclidean distance of R2. The quantity length(C) is sometimes referred
to as the Euclidean length of the curve. Since γ is Lipschitz, Rademacher’s theorem implies
that the above integral is well defined and takes value in R+. Moreover, it can be checked
that this integral does not depend on the choice of the Lipschitz parametrization (see [9] for
details).
Remark. This notion of curve is fairly standard and general enough to allow self intersecting
curves. We note in particular that curves that admit a continuous piecewise C1 parametriza-
tion are rectifiable. In the rest of the paper, all curves considered are rectifiable curves even
if not mentioned. Moreover, a curve naturally induces a subset of R2 by considering the
set {γ(t) | t ∈ [0, 1]} where γ is any parametrization of C (note however that two different
curves may induce the same subset of R2). When we refer to certain geometric properties of
a curve such as the diameter it should be understood as the diameter of this subset of R2.

We now define the set of macroscopic curves in a rectangle.
Definition 1.12. Let R ⊂ R2 a non degenerated rectangle, E ⊂ R2 be any subset and
λ ≥ 1. We denote by C(R, E, λ) the set of continuous and rectifiable curves C that are
included in λR ∩ E and that are of Euclidean diameter at least λ.

We state our first theorem.
Theorem 1.13. There exists a constant β0 > 4 such that if q satisfies Assumptions 1.4, 1.5
for some α ≥ 3 and 1.7 for β > β0, the following holds. If E denotes either E0(f) or Z0(f),
there exists s1 > 1 such that for any fixed non degenerated rectangle R ⊂ R2 we have:

∀δ > 0, ∃C1 > 0, ∀λ > 1, P (∀C ∈ C(R, E, λ), length(C) > C1λ
s1) ≥ 1 − δ. (12)

Before stating corollaries of Theorem 1.13, we make a few comments on the hypotheses and
the statement of this theorem. First, this theorem should be interpreted by saying that
with high probability the macroscopic connected component of E0(f) (or Z0(f)) are very
tortuous in the sense that any macroscopic curve drawn on it must travel a distance of order
λs1 ≫ λ. This behavior is very different to the behavior in the supercritical phase (ℓ > 0)
where previous work (see [17]) shows that with high probability whenever two points are
connected in Eℓ(f) the chemical distance (that is the length of the shortest path connecting
them in Eℓ(f)) is at most quasilinear in the Euclidean distance between those two points. In
the critical phase however, Theorem 1.13 shows that this cannot be the case. We also make
a few technicals remarks on the statement of Theorem 1.13. First of all, note that the event
written in the probability in (12) may not be measurable with respect to the usual σ-field
generated by the finite collections of values of the field f . However (12) should be interpreted
by saying that there exists a measurable event of probability at least 1 − δ under which all
curves in C(R, E, λ) have length at least C1λ

s1 . Secondly, we mention that the value of β0 we
obtain is difficult to track and in general we do not expect our hypotheses on q to be optimal.
Nevertheless, we bring the attention of the reader to the fact that Theorem 1.13 itself does
not requires that q satisfies Assumption 1.6. However, in order to show that C(R, E, λ) is not
empty with positive probability one may need to add this hypothesis depending on the shape
of the rectangle R as discussed after Theorem 1.10. Theorem 1.13 is the adaptation of the
result of Aizenman and Burchard in [1] that holds for very general systems of random curves.
More precisely, the arguments developed in [1] are general enough to adapt to the case of
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continuous rectifiable curves. However, one of the step in [1] requires the random field f to
behave close to independently in disjoint boxes which is a property that is not easy to verify
for our continuous field f . In order to prove Theorem 1.13, we follow the strategy in [1], our
main contribution is to deal with lack of independence by using a quasi-independence result
for nodal lines of smooth Gaussian fields developed in [14], [7], it turns out that the result
we obtain with this quasi independence result is not strong enough to be directly applied in
the proof of Aizenman and Burchard and we do a careful analysis of their proof to solve this
problem.

We now collect some corollaries of Theorem 1.13. One curve of interest in a rectangle R is a
shortest curve in E0(f) (or in Z0(f)) that crosses R if such a curve exists. We thus introduce
the following definition.
Definition 1.14. Let R ⊂ R2 be a a non degenerated rectangle and E ⊂ R2 be a subset.
On the event CrossE(R) we denote by SE(R) the infimum of the Euclidean length of all
continuous and rectifiable curves that cross the rectangle R in E.
Remark. Note that when E denotes one of E0(f) or Z0(f) then classical regularity arguments
(see for instance [14, Lemma A.9]) show that with probability 1, on the event CrossE(R),
one can indeed find a continuous and rectifiable curve that realizes the crossing.

We have the following consequences of Theorem 1.13.
Corollary 1.15. Under the same assumptions than Theorem 1.13, if q additionally satisfies
Assumption 1.6 (weak positivity) then the following is satisfied. There exists a constant
s1 > 1 such that for any non degenerated rectangle R ⊂ R2,

∀δ > 0, ∃C1 > 0, ∀λ > 1, P(SE0(f)(λR) > C1λ
s1 | CrossE0(f)(λR)) ≥ 1 − δ. (13)

∀δ > 0, ∃C1 > 0, ∀λ > 1, P(SZ0(f)(λR) > C1λ
s1 | CrossZ0(f)(λR)) ≥ 1 − δ. (14)

Moreover, one may avoid assuming Assumption 1.6 by instead considering rectangles of some
fixed shapes.
Corollary 1.16. Under the same assumptions than Theorem 1.13, let R =

[
−1

2 , 1
2

]2
, we

have a constant s1 > 1 such that

∀δ > 0, ∃C1 > 0, ∀λ > 1, P(SE0(f)(λR) > C1λ
s1 | CrossE0(f)(λR)) ≥ 1 − δ. (15)

Here the crossing of λR refers to the crossing in the horizontal direction.
Remark. We could also state a similar corollary concerning Z0(f) without Assumption 1.6.
In fact, if one take R = [0, 1] × [0, 3], it can be shown using duality argument together with
a quasi independence result, that the probability that λR is crossed horizontally by Z0(f)
is bounded away from 0 as λ varies. Note however that this notion of crossing is weaker
than the notion defined in Definition 1.9 since here we consider crossing of the rectangle by
joining the big sides of the rectangle instead of the small ones.

For the convenience of the reader, we briefly mention an example of a random field that does
not satisfy Assumption 1.6 but for which Corollary 1.16 applies. We present the example that
was introduced in [5] and we refer the reader to this paper for the details on the construction.
Consider a compact smooth Riemannian manifold (M, g) of dimension 2. Consider ∆ its
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Laplacian and (φi)i≥0 an Hilbert orthogonal basis composed of the eigenfunctions of ∆ (φi is
of eigenvalue λi). Consider χ : R∗

+ → R+ a smooth function with compact support containing
1. Let (ai)i≥0 a collection of independent standard Gaussian random variables. For L > 0,
one can define the random field

fχ,L :=
∑
i≥0

aiχ

(
λi

L

)
φi.

This field can be interpreted as a smooth cutoff of the infinite sum ∑
i≥0 aiφ, where we

mainly keep the eigenfunctions with eigenvalues close to L. It can be checked that in normal
coordinates near a point x0 = 0 we have

∀(x, y) ∈ (R2)2, E
[
fχ,L

(
x

L

)
fχ,L

(
y

L

)]
−−−→
L→∞

Kχ(x, y),

where Kχ : R2 × R2 → R is a positive definite kernel. Moreover we have

∀(x, y) ∈ (R2)2, Kχ(x, y) =
ˆ

ξ∈R2
χ(∥ξ∥2)ei⟨x−y,ξ⟩dξ. (16)

Note that in (16), the norm and scalar product denote the usual Euclidean norm and scalar
product. The smoothness of χ and the fact that χ has compact support ensure that Kχ

has at least super-polynomial decay when ∥x − y∥ −→ ∞ and that Kχ is smooth. However,
when κ approximates the Dirac distribution δ1 we see that the kernel Kχ converges on all
compacts to the kernel K associated to the random wave model. That is

∀(x, y) ∈ (R2)2, K(x, y) =
ˆ

ξ∈R2,∥ξ∥=1
ei⟨x−y,ξ⟩dξ = J0(∥x − y∥), (17)

where J0 denotes the Bessel function. Since K takes negatives values, if one takes χ a good
enough approximation of δ1 we obtain Kχ a kernel that decays fast but that does not satisfy
Assumption 1.6.

While Theorem 1.13 together with Corollaries 1.15 and 1.16 are evidence of the fractal
behavior of the macroscopic components of E0(f) and Z0(f), we now state our second theorem
that shows that this behavior cannot be too degenerated.
Theorem 1.17. There exists a constant α0 ≥ 3 such that if q satisfies Assumptions 1.4, 1.5
for some α ≥ α0, Assumption 1.6 (weak positivity) and 1.7 for β > 2 the following holds.
If E denotes either E0(f) or Z0(f), there exists s2 < 2 such that for any non degenerated
rectangle R ⊂ R2,

∀δ > 0, ∃C2 > 0, ∀λ > 1, P (SE(λR) < C2λ
s2 | CrossE(λR)) ≥ 1 − δ. (18)

Before presenting the strategy of the proof of both Theorem 1.13 and 1.17 we make a few
comments. The fact that one can choose s2 < 2 in Theorem 1.17 shows that the shortest
crossing is not too degenerated when it exists. In fact, a classical application of the Kac-Rice
formula shows that the expected length of all the nodal lines contained in λR is of order
λ2. Thus, Theorem 1.17 implies that the shortest crossing is far from enough to collect all
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this length of nodal lines. Indeed, there are also many connected components of Z0(f) ∩ λR
that are not macroscopic but count towards the total length of order λ2. Our next remark is
that it is conjectured for Bernoulli percolation that there should by an exponent 1 < s < 2
such that the length of the shortest crossing in a box of size λ (conditioned on the existence
of the crossing) is of order λs. To our knowledge, the determination of the value of s is
still an open problem even for Bernoulli percolation (see [16] Problem 3.3). Although recent
progress in [8] show that this exponent should be strictly lower than the exponent of the
lowest crossing of the box λR in the case of critical Bernoulli bond percolation on Z2. To
conclude, we comment that the value of α0 obtained is certainly not optimal and in general
we do not believe our assumptions on the field to be optimal.

We now describe the strategy of the proof of both Theorems 1.13 and 1.17. Concerning
Theorem 1.13, as mentioned earlier the proof is essentially based on the argument developed
in [1]. Aizenman and Burchard present in [1] a very general argument to prove that random
curve satisfying some hypothesis present a fractal behavior. The hypothesis they make on
the random curve is that the probability that the curve crosses n rectangles that are well-
separated (see Definition 3.1) decays geometrically in n. Although this is easy to check
in the context of Bernoulli percolation (since we have independence), this is not the case
in the context of continuous Gaussian fields. We address this problem by using a quasi-
independence result for nodal lines developed in [14] and [7]. However, we do not manage
to obtain the exact hypothesis made by Aizenman and Burchard in [1] and we do a careful
analysis of their argument in [1] to conclude the proof of Theorem 1.13. For the proof of
Theorem 1.17, we argue that by a result of [4], the number of boxes of size 1 visited by the
curve realising the crossing of λR is of order at most λ2−η where η is the one-arm exponent
(see (41)). We then use a result in previous work [17] allowing us to control the chemical
distance in each of these boxes of size 1.

Since the general strategy of the proof of Theorem 1.13 comes from [1], Section 2 is dedicated
to the introduction of some terminology and some results of [1] that are adapted to our
framework with Gaussian fields. In Section 3, we use the quasi-independence result of [14]
and [7] to conclude the proof of of Theorem 1.13, we also give the proof of Theorem 1.17.

Acknowledgements : I would like to thank my PhD advisor Damien Gayet for introducing
me to this problem as well as for his remarks on a preliminary version of this paper. I also
would like to thank Vincent Beffara for mentioning [1] to us.

2 Deterministic control
In this section we adapt and restate results of [1] to adapt to our framework. In this whole
section λ > 1 denotes real parameter, R ⊂ R2 is any non degenerated rectangle, E ⊂ R2

can be any subset (typically E can thought of as E0(f) or Z0(f)), C is a continuous and
rectifiable curve included in λR of diameter at least λ (that is an element of C(R, E, λ) with
Definition 1.12). We begin with a definition.
Definition 2.1. A triplet (m, γ, s) ∈ N × R × R is said to be a renormalization triplet if
s > 1 and if we have 1 ≤ m < γ < γs <

√
m(m + 1). Given, a renormalization triplet
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(m, γ, s), for any integer k we defined the k-th scale as Lk = λ
γk . We define kmax to be the

biggest integer k such that εLk ≥ 1 where ε := γ
m

− 1 > 0.
Remark. The definition of a renormalization triplet may seem strange at first glance. The
reason such a choice was made will be made clear in Proposition 2.7 and 3.5. We note
however that for any m ≥ 1 a renormalization triplet (m, γ, s) can be built. In fact we can
choose some s > 1 close enough to 1 so that ms <

√
m(m + 1), and then choose any γ > m

close enough to m such that γs <
√

m(m + 1). We also remark that most of the results in
this section are empty whenever λ < γ, it may therefore be convenient to have in mind big
values of λ (so that kmax > 1).

One should keep in mind that we will apply the result of this section to the random set E =
E0(f) or E = Z0(f). However since the results of this section are completely deterministic
we choose to state them with a fixed set E and a fixed curve C.

We introduce a few definitions that come from [1].
Definition 2.2. In the following, (m, γ, s) denotes a renormalization triplet,

• A straight run of E at some scale L ∈ R+ is the data of a rectangle RL of length L and
of height 9L√

γ
that is crossed by a connected component of E∩RL in the length direction

by joining the two centers of the sides of the rectangle (note that the rectangle does
not need to be aligned with some specific axes and can be freely rotated).

• Two straight runs of E are nested if one of the rectangles can be included in the other
rectangle.

• For k0 ∈ N, straight runs of E are are said to be (γ, k0)-sparse in λR if there does
not exist any n ≥ 0 together with a sequence 1 ≤ k1 < · · · < kn ≤ kmax with
n ≥ 1

2 max(kn, k0) such that λR contains a sequence of nested straight runs of E at
scales Lk1 > Lk2 > · · · > Lkn .

We comment on the above definition and we try to motivate it. The idea of Aizenman and
Burchard is that a curve that does not present many straight runs is bound to take many
detours at many scales hence generating a fractal behavior. If one think of the famous Koch
snowflake, we start from a straight unit length segment (that obviously presents a straight
run at scale 1). We cut this segment into three parts and replace the middle one with two
bends of length 1/3. Because of this, the first iteration no longer presents a straight run at
scale 1, however each of the four segments of length 1/3 presents a straight runs at scale 1/3.
By iterating this procedure we see that ultimately our Koch snowflake will contort a lot and
will avoid doing straight runs. Of course when dealing with a general curve (that typically
comes from a random set) it is hopeless to hope that straight runs will be avoided at each
scale. Thus, the notion of sparse straight runs introduced by Aizenman and Burchard is
a good way of handling this difficulty. Their strategy can be divided into two parts, the
first part is deterministic and consist in saying that if straight runs of E are sparse then a
curve drawn in E must contort a lot, the second part is probabilistic and aims to control the
probability of having sparse straight runs of E. In this section we mostly focus on the first
part and we begin with the following lemma that comes from [1].
Lemma 2.3 (Lemma 5.2 in [1]). Let (m, γ, s) be a renormalization triplet, there exists a
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sequence (Γk)0≤k≤kmax of collections of segments of the curve C such that:

• for all k, each segment η ∈ Γk is of diameter at least Lk,

• for all k, any two segments η1, η2 ∈ Γk are at distance at least εLk where ε = γ
m

− 1,

• for all k ≥ 1, any segment η of Γk is included in a segment η′ ∈ Γk−1 (we say that η is
a child of η′),

• for all k ≤ kmax − 1, any segment η ∈ Γk has at least m children. Moreover if there is
no straight run of η at scale Lk then η has at least (m + 1) children,

• we can assume that Γ0 contains only one initial segment.

We refer the reader to [1] for the proof of the above lemma as it is a purely algorithmic
construction. We briefly comment on the interpretation of Lemma 2.3 for our purpose. At
each step any segment of the curve of diameter Lk is split via an algorithmic procedure into
at least m segments of diameter Lk+1 = Lk

γ
. Moreover, when the segment contorts and avoid

doing a straight runs, then this segment will be divided into at least m+1 smaller segments.
If straight runs of E are sparse in R then this last case will happened at least half of the
times when considering a trajectory from an ancestor to its descendants, hence the average
number of children of a segment should be at least

√
m(m + 1). This will be the key to

prove that the curve C presents a fractal behavior since this average number of children is
bigger than the scale γ of renormalization. We now present the tool Aizenman and Burchard
introduced to measure the tortuosity of a curve. It is the notion of the energy of the curve.
Definition 2.4. Let (m, γ, s) be a renormalization triplet. Let µ be a probability measure
supported on C. The energy Es(µ) is defined as

Es(µ) := λs
x

(x,y)∈C×C

µ(dx)µ(dy)
max(|x − y|s, 1) . (19)

The relation between the tortuosity of the curve and the energy Es(µ) can be seen in the
following lemma.
Lemma 2.5 (Lemma 5.3 in [1]). Let (m, γ, s) be a renormalization triplet. Let (Ci)1≤i≤N be
a finite collection of subsets of R2 such that

• The Ci are disjoint.

• For all i, diam(Ci) ≥ 1.

• C = ⊔N
i=1 Ci.

Let µ be a probability measure supported on C. We have

Es(µ)
N∑

i=1

diam(Ci)s

λs
≥ 1, (20)

As we slightly modified the definition of the energy from [1] we provide the adapted proof
of this lemma here for the convenience of the reader.

11



Proof of Lemma 2.5. Since C is partitioned by the Ci we write

Es(µ) ≥
N∑

i=1
λs

x

(x,y)∈Ci×Ci

µ(dx)µ(dy)
max(|x − y|s, 1)

≥ λs
N∑

i=1

x

(x,y)∈Ci×Ci

µ(dx)µ(dy)
diam(Ci)s

= λs
N∑

i=1

µ(Ci)2

diam(Ci)s
.

Since µ is a probability measure supported on C (partitioned by the Ci) we have

1 =
N∑

i=1
µ(Ci).

Thus applying the Cauchy-Schwarz inequality we get

1 =
(

N∑
i=1

µ(Ci)
)2

≤
(

N∑
i=1

λsµ(Ci)2

diam(Ci)s

)(
N∑

i=1

diam(Ci)s

λs

)
≤ Es(µ)

N∑
i=1

diam(Ci)s

λs
.

This is precisely the conclusion.

Since we are interested in the length of the curve C we now relate the energy Es(µ) to this
length.
Corollary 2.6. Let (m, γ, s) be a renormalization triplet, for any probability measure µ
supported on C we have

length(C) ≥ λs

Es(µ) − 2s (21)

Proof. Without loss of generality, considering a sub-curve of C of same diameter but that
does not self intersect, we may assume that we have γ : [0, 1] → R2 a continuous and
injective parametrization of C. We recursively define, t0 = 0, x0 = γ(t0), and for n ≥ 0, if
tn is defined we define tn+1 as follows. Either xn = γ(tn) is at distance less than 1 from
γ(1), we then set tn+1 = 1, xn+1 = γ(1) and we end the procedure. Otherwise, we define
tn+1 := min(t > tn | d(γ(t), γ(tn)) = 1}. Applying this procedure yields a finite sequence
(ti)0≤i≤N+1 with 0 = t0 < t1 < · · · < tN < tN+1 = 1. We define for 1 ≤ i ≤ N − 1,
Ci = γ([ti−1, ti[). We also set CN := γ([tN−1, 1]). By construction we see that the Ci are
disjoint, cover C, moreover for all 1 ≤ i ≤ N −1 we have diam(Ci) = 1 and diam(CN) ∈ [1, 2[.
Hence we can apply Lemma 2.5 to see that for any probability measure µ supported on C
we have

N∑
i=1

diam(Ci)s ≥ λs

Es(µ) .

Now note that for all 1 ≤ i ≤ N − 1 we have diam(Ci)s = diam(Ci) = 1, and we always have
diam(Ci) ≤ length(γ([ti−1, ti[)). Moreover using the fact that diam(CN) ≤ 2 we get

length(C) =
N∑

i=1
length(Ci) ≥

N∑
i=1

diam(Ci) ≥ −2s +
N∑

i=1
diam(Ci)s ≥ λs

Es(µ) − 2s.

12



By the previous corollary, in order to show that C has a length of order at least λs one need
to find µ a probability measure on C such that Es(µ) is upper bounded. This is what is done
in the following proposition.
Proposition 2.7 (see Lemma 5.4 in [1]). Let (m, γ, s) be a renormalization triplet. Assume
that straight runs of E are (γ, k0)-sparse in λR, then there exists a probability measure µ
supported on C with low energy, that is µ satisfies

Es(µ) ≤ 1
εs

γs(k0+1) + β

1 − γs

β

 ,

where β is defined as β :=
√

m(m + 1) (note that by definition of s we have γs < β).

The proof of Proposition 2.7 is completely similar to the one in [1]. However, since we
modified the definition of the energy we provide the adapted proof for the convenience of
the reader.

Proof. Define a measure µ on C as follows, the measure gives weight 1 to the unique segment
in Γ0, then each segment divides its weight evenly among its children until we reach the
segments in Γkmax . More formally, given an integer 0 ≤ k ≤ kmax and some i < k one can
define ni(η) as the number of children of the unique segment η′ ∈ Γi that contains η. For
any segment η ∈ Γk we thus define

µ(η) =
k−1∏
i=0

1
ni(η) . (22)

For convenience, we arbitrarily choose one point in each η ∈ Γkmax and decide that the
measure µ is supported on the finite collection of those points (for instance we take the
leftmost upmost point of each η ∈ Γkmax). We denote C̃ the collection of those points, so that
µ is supported on C̃.

The fact that straight runs of E are (γ, k0)-sparse in λR implies the following claim.
Claim 1. For any x ∈ C̃, for any k such that k0 ≤ k ≤ kmax, we have

k−1∏
i=0

ni(x) ≥ βk, (23)

where we recall that β =
√

m(m + 1).

Proof of the Claim 1. Note that ni(η) is always greater or equal than m, and is strictly
greater than m if there is no straight run at scale Li for the segment η′ ∈ Γi containing η.
By contradiction assume that for some k0 ≤ k ≤ kmax we have strictly more than half of
the factors in the product ∏k−1

i=0 ni(x) that are equal to m. That is we can find a n > k
2 and

a sequence 0 ≤ k1 < · · · < kn ≤ k − 1, such that for all 1 ≤ i ≤ n we have nki
(x) = m.

This would imply that there exist a nested straight run on the scales Lk1 , . . . , Lkn this is a

13



contradiction with the fact that straight runs are (γ, k0)-sparse (in fact we have n > k
2 so

n ≥ 1
2 max(kn, k0)). We now see that at least half of the factors in the product are greater

or equal than m + 1 and the other are always greater or equal than m. This readily yields
the conclusion.

We go back to the proof of Proposition 2.7. Given two points x, y ∈ C̃, denote k(x, y) the
first generation where x and y were not part of the same segment. By convention if x = y
we arbitrarily define k(x, y) = kmax + 1. By the definition of the Γk we see that for x ̸= y we
have d(x, y) ≥ εLk(x,y).

The energy Es(µ) can be estimated ad follows:

λ−sEs(µ) =
x

(x,y)∈C̃

µ(dx)µ(dy)
max(|x − y|s, 1)

≤
kmax+1∑

k=1

x

(x,y)|k(x,y)=k

µ(dx)µ(dy)
max(|x − y|s, 1)

≤
∑
x∈C̃

µ({x})2 +
kmax∑
k=1

1
(εLk)s

x

(x,y)|k(x,y)=k

µ(dx)µ(dy).

Now note, that if x, y ∈ C̃ are such that k(x, y) = k then x and y belong to the one common
segment η ∈ Γk−1, this yields

x

(x,y)|k(x,y)=k

µ(dx)µ(dy) ≤
∑

η∈Γk−1

x

(x,y)∈η×η

µ(dx)µ(dy) ≤
∑

η∈Γk−1

µ(η)2.

Also by definition of kmax, we have Lkmax+1 ≤ 1
ε

which implies 1 ≤ 1
(εLkmax+1)s . We thus can

write
λ−sEs(µ) ≤

kmax+1∑
k=1

1
(εLk)s

∑
η∈Γk−1

µ(η)2. (24)

For k > k0 we observe that

∑
η∈Γk

µ(η)2 =
∑

η∈Γk

µ(η)
k−1∏
i=0

ni(η)

≤
∑

η∈Γk

µ(η) 1
βk

= 1
βk

,

where the first inequality is a direct application of Claim 1 and the last equality is due to
the fact that µ is a probability measure (hence ∑η∈Γk

µ(η) = 1). For k ≤ k0 we simply have∑
η∈Γk

µ(η)2 ≤
∑

η∈Γk

µ(η) ≤ 1.
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Now we split the sum in (24) according to the values of k and we use the fact that Lk = λ
γk

and the fact that 1 < γ < γs < β:

λ−sEs(µ) ≤
k0∑

k=1

1
(εLk)s

+
kmax∑

k=k0+1

1
(εLk)s

1
βk−1

≤ 1
εs

1
λs

k0∑
k=1

(γs)k + β

εs

1
λs

∞∑
k=0

(
γs

β

)k

≤ 1
εs

1
λs

γs(k0+1) + β

1 − γs

β

 .

This concludes

Es(µ) ≤ 1
εs

γs(k0+1) + β

1 − γs

β

 . (25)

3 Proof of the main theorems
In this section we prove Theorem 1.13 and Theorem 1.17, we separate the proof of the two
theorems and present the proof of the lower bound first.

3.1 Proof of the lower bound
In the following we use a quasi-independence result to show that with high probability
straight runs of E are (γ, k0)-sparse in λR where E denotes either E0(f) or Z0(f) (see
Definition 2.2). We begin by introducing the notion of sets that are well-separated.
Definition 3.1. Let (Ai)1≤i a collection of subset of R2 we say that this collection is well-
separated if for all i we have d(Ai,

⋃
j ̸=i Aj) ≥ diam(Ai), where d denotes the usual Euclidean

distance.

In [1], the following Assumption was made on the random curve C.
Assumption 3.2. There exists σ > 0 and 0 < q < 1 such that for any collection (Ri)1≤i≤n

of well-separated rectangles such that each rectangle is of length as least 1 and of aspect
ratio σ,

P
(

n⋂
i=1

CrossC(Ri)
)

≤ qn,

where we recall Definition 1.9 of the crossing event.

It turns out that Assumption 3.2 is easy to verify for Bernoulli percolation since the config-
urations on disjoint set are independent. However, in the context of our smooth Gaussian
percolation, such an assumption is not easy to verify. We will use a quasi-independence
result for nodal lines (see [14],[7]) to obtain a weaker version of Assumption 3.2 that will be
enough to conclude. First we make the following definition
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Definition 3.3. Let f be a centered stationary Gaussian field on R2 of covariance function
κ : R2 → R. We define the function κ̃ as

κ̃ : R+ → R
x 7→ sup{κ(y) | y ∈ R2, ∥y∥ ≥ x} .

Remark. For instance, for the Bargmann Fock field, since we have ∀y ∈ R2, κ(y) = e− 1
2 ∥y∥2

we deduce that ∀x ∈ R+, κ̃(x) = e− x2
2 .

We now provide an analogue of Assumption 3.2.
Lemma 3.4. If q satisfies Assumption 1.4, 1.5 for some α ≥ 3 and 1.7 for some β > 4 the
following holds. Let σ ≥ 1, l0 > 0 and (Ri)i≥1 be a collection of well-separated rectangles in
the plane R2. We assume that Ri has length σli and height li. Moreover we assume that the
sequence (li)i≥1 is increasing and that l1 ≥ l0. Let E denotes either E0(f) or Z0(f). There
exists a constant C > 0 (depending only on q, σ and l0) such that for all n ≥ 0

P
(

n⋂
i=1

CrossE(Ri)
)

≤ 1
2n

(
1 + C

n∑
k=1

l4
kκ̃(lk)k2k

)
, (26)

Proof. We do the proof for E = E0(f) as the proof for E = Z0(f) is completely similar.
For n ≥ 0, denote pn := P

(⋃n
i=1 CrossE0(f)(Ri)

)
. Applying Theorem 1.12 of [14] or Theorem

2.14 of [7] (see also Corollary 1.1 of [7]). We see that we have a constant C > 0 (depending
on q, σ and l0) such that

pn ≤ P
(
CrossE0(f)(Rn)

)
pn−1 + Cκ̃(ln)(ln + 1)2

n−1∑
i=1

(li + 1)2.

Observe that since σ ≥ 1 we have P
(
CrossE0(f)(Rn)

)
≤ 1

2 . This simply comes from the
fact that f and −f have the same law since f is a centered Gaussian field and using the
fact that the law of f is invariant by rotation of π/2. (this also allows us to deduce that
P
(
CrossZ0(f)(Rn)

)
≤ 1

2). Thus, we have a constant C ′ > 0 (depending on q, σ and l0) such
that,

pn ≤ 1
2pn−1 + C ′nκ̃(ln)l4

n.

By telescopage, with p0 = 1, we have for n ≥ 0

2npn ≤ C ′
n∑

k=1
k2kκ̃(lk)l4

k + 1.

This rewrites as
pn ≤ 1

2n

(
1 + C ′

n∑
k=1

k2kκ̃(lk)l4
k

)
,

which concludes the proof.

Now, we are ready to prove that with high probability the straight runs of E are sparse
in λR. The proof of the next proposition is our main contribution towards the proof of
Theorem 1.13 as we do a careful analysis of the proof of Aizenman and Burchard to show
that we can replace the use of Assumption 3.2 by Lemma 3.4.
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Proposition 3.5. There exists β0 > 4 and there exists a renormalization triplet (m, γ, s)
such that the following holds. Let E denoted either E0(f) or Z0(f) and let R ⊂ R2 be a non
degenerated rectangle. If q satisfies Assumption 1.4, 1.5 for α ≥ 3 and 1.7 for some β > β0,
then for all δ > 0, there exists k0 ≥ 1 such that for all λ > 1 we have

P (straight runs of E are (γ, k0)-sparse in λR) ≥ 1 − δ. (27)

Proof. We do the proof for E = E0(f) as the proof for Z0(f) is the same. Let (m, γ, s)
be a renormalization triplet that is free for now and let λ > 1 be a free parameter. Fix
k = (ki)1≤i≤n a sequence such that 1 ≤ k1 < · · · < kn ≤ kmax with n ≥ 1

2 max(kn, k0).
Denote Ak the event that in λR there exists a sequence of nested straight runs of E at scales
Lk1 > Lk2 > · · · > Lkn . On the event Ak one can find nested rectangles R1, . . . , Rn such
that Ri is of length Lki

, of height 9Lki√
γ

and such that some connected component of E ∩ Rn

joins the two centers of the sides of Ri.

For j ≥ 1, denote by Lj the lattice Lj := Lkj

γ
Z2. Since E crosses the rectangle R1, it also

crosses a rectangle R′
1 of length Lk1

2 and height 10Lk1√
γ

centered on a line segment joining two

points of L1∩λR, the number of possibilities of such a rectangle R′
i is at most CR

(
λ

Lk1 /γ

)2
=

CRγ2(k1+1), where CR > 0 is a constant depending on R. Similarly, since E crosses R2 ⊂ R1

in the length direction, one can find a rectangle R′
2 of length Lk2

2 and of height 10Lk2√
γ

centered
on a segment joining two points in L2 ∩ R1. The number of possibilities for such a rectangle
is at most

(
Lk1

Lk2 /γ

)2
= γ2(k2−k1)+2. We can repeat this procedure to build rectangles R′

i for
1 ≤ i ≤ n. The total number of possibilities for the position of the (R′

i)1≤i≤n is at most

CRγ2k1+2γ2(k2−k1)+2 . . . γ2(kn−kn−1)+2 = CRγ2(n+kn).

Moreover, the crossing of the rectangle R′
i in the length direction implie that there are least√

γ

40 disjoint smaller rectangles of height 10Lki√
γ

and of length 20Lki√
γ

which are all crossed in the
length direction. Among the collection of those smaller rectangles (for all i) one can extract
a family of well-separated rectangles such that for all i there are at least M :=

√
γ

80 − 2
rectangles of dimensions 20Lki√

γ
× 10Lki√

γ
in this collection. This is done as follows: at each scale

Lki
take one of the smaller rectangle over two and remove the two such rectangles closest to

the rectangle R′
i+1. In the following, denote by (Rj)1≤j≤N this collection of well-separated

rectangles where N ≥ nM = n
(√

γ

80 − 2
)
. By the previous construction one may assume

that Rj is of length 2lj and of height lj for some lj ≥ 0. Moreover, we can assume that the
sequence lj is increasing and that we have

lj ≥ 10γ
j

M
−1

√
γ

,

where we recall that M =
√

γ

80 − 2. We remark that we have chosen to work rectangle of size
2lj × lj, but the same argument would also work if one were to chose squares of size lj × lj,
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the reason we choose to work with those rectangle Ri is simply for convenience so that we
avoid having to specify the direction in which the crossing occurs in the squares.

Note that since q(x) = O(∥x∥−β) this implies κ(x) = O(∥x∥−β) and then κ̃(x) = O(x−β) We
write β = 4 + r with some r > 0. Doing an union bound on all possible positions for the
rectangles (Ri)1≤i≤n and applying Lemma 3.4 and using the fact that κ̃(x) = O(x−4−r) we
have a constant Cγ > 0 (depending on q and γ) such that

P (Ak) ≤ CR
γ2(n+kn)

2N

(
1 + Cγ

N∑
k=1

k2k

lr
k

)

≤ CR
γ2(n+kn)

2N

1 + Cr,γ

N∑
k=1

k

(
2

γr/M

)k


≤ CR,r,γγ2(n+kn)

2N

1 + N

(
2

γr/M

)N
 ,

Here CR,r,γ is a positive constant that depends only on R and the values of γ and r. This
constant may change from line to line. However note that this constant does not depend on
λ. In the following, depending on the value of γ (to be determined) later, we choose r = r(γ)
big enough so that

2
γr/M

≤ 1
2 . (28)

Note that this is possible as soon as r ≥ ln(4)M
ln(γ) . Since we have M =

√
γ

80 − 2 one may note
that r(γ) goes to infinity as γ goes to infinity. Under our condition (28), we have

P (Ak) ≤ CR,r,γγ2(n+kn)

2N

(
1 + N

2N

)
. (29)

We can slightly modify the constant CR,r,γ in (29) and recall that we have N ≥ n
(√

γ

80 − 2
)

to get

P (Ak) ≤ Cr,γ,Rγ2(n+kn)

2n

(√
γ

80 −2
) . (30)

Now for k ≥ 1, consider the event Bk that there exists a nested straight run in λR for
some sequence k = (ki)1≤i≤n with 1 ≤ k1 < k2 < · · · < kn < kmax and with the additional
condition that k = kn ≥ n ≥ k

2 . By an union bound we have

P (Bk) ≤
k∑

n= k
2

∑
k|kn=k

P (Ak) .

where the second sum is over the sequences k = (ki)1≤i≤n with 1 ≤ k1 < k2 < · · · < kn with
kn = k ≥ n ≥ k

2 . Note that for fixed k there are at most
(

k
n

)
such sequences of length n.

Using our estimate (30) on the probability of Ak one get that under condition (28) we have

P (Bk) ≤
k∑

n= k
2

(
k

n

)
CR,r,γγ2(n+k)

2n

(√
γ

80 −2
) . (31)
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We deduce from (31) that we have

P (Bk) ≤ CR,r,γ2kγ4k2−k

(√
γ

160 −1
)

= CR,r,γe
k

(
ln(2)+4 ln(γ)+1−

√
γ

160

)
. (32)

Now we choose a renormalization triplet (m, γ, s) with m ∈ N big enough so that the value
of γ > m satisfies

ln(2) + 4 ln(γ) + 1 −
√

γ

160 < 0. (33)

For this specific renormalization triplet, we choose r big enough so that (28) is satisfied (this
defines the value of β0 > 4). Under these conditions, we denote

ρ := eln(2)+4 ln(γ)+1−
√

γ

160 . (34)

We have 0 < ρ < 1 and we have a constant CR,r,γ such that:

P (Bk) ≤ CR,r,γρk. (35)

Finally, observe that if straight runs of E are not (γ, k0)-sparse in λR then one of the event
Bk must occur for some k ≥ k0. Hence by an union bound we have

P ({straight runs of E are not (γ, k0)-sparse in λR}) ≤ CR,r,γ
ρk0

1 − ρ
. (36)

This probability can be made smaller than δ > 0 as soon as k0 is big enough (note that there
are not dependence on λ in neither ρ nor CR,r,γ). This concludes the proof.

We now state the proof of Theorem 1.13.

Proof of Theorem 1.13. Let β0 > 4 and (m, γ, s) the renormalization triplet given by Propo-
sition 3.5 and be fixed for the rest of the proof. In the following, we assume that q satisfies
Assumption 1.7 for β > β0. Let E denotes either E0(f) or Z0(f) and R ⊂ R2 be a fixed
rectangle. Let δ > 0, by Proposition 3.5, we can find k0 ≥ 1 (depending only on δ, q and R)
such that for all λ > 1 we have

P (straight runs of E are (γ, k0)-sparse in λR) ≥ 1 − δ. (37)

On the event that the straight runs of E are (γ, k0)-sparse in λR, given any curve C ∈
C(R, E, λ) (that is a continuous rectifiable curve in λR ∩ E of diameter at least λ, see
Definition 1.12) we can apply Proposition 2.7 to find a probability measure µ supported on
C such that its energy Es(µ) satisfies

Es(µ) ≤ 1
εs

γs(k0+1) + β

1 − γs

β

 . (38)

Where we recall that ε = γ
m

− 1 and β =
√

m(m + 1). Thus, applying Corollary 2.6, we see
that we have a constant c > 0 depending on k0 as well than on the renormalization triplet
(m, γ, s) such that

length(C) ≥ cλs. (39)
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This can be reformulated by saying that on the event that the straight runs of E are (γ, k0)-
sparse in λR, we have

∀C ∈ C(R, E, λ), length(C) ≥ cλs.

This precisely yields the conclusion of Theorem 1.13.

We conclude this section with the proofs of Corollaries 1.15 and 1.16.

Proof of Corollary 1.15. Without loss of generality we assume that the rectangle R is of
unit length. We let E denote either E0(f) or Z0(f). Let δ > 0 and take C1 associated by
Theorem 1.13. Let λ > 1, recall that C(R, E, λ) denotes the set of continuous rectifiable
curves in E ∩ λR of diameter at least λ. In particular, any continuous and rectifiable curve
that realizes the crossing of λR in the length direction belongs to C(R, E, λ). If G denotes
the event

G := {∀C ∈ C(R, E, λ), length(C) ≥ C1λ
s1} ,

then we have
G ∩ CrossE(λR) ⊂ {SE(λR) ≥ C1λ

s1} ∩ CrossE(λR).
Thus,

P ({SE(λR) ≥ C1λ
s1} ∩ CrossE(λR)) ≥ P (CrossE(λR)) − δ. (40)

It remains to divide both sides of (40) by P (CrossE(λR)) that stays bounded away from 0
as λ varies by the first item of Theorem 1.10.

Proof of Corollary 1.16. The proof is exactly the same as the proof of Corollary 1.15 until
we reach (40). Then instead of applying Theorem 1.10 to show that P

(
CrossE0(f)(λR)

)
stays

bounded away from 0, we simply use the symmetry of the field (f and −f have the same law)
together with the invariance of the law of f by rotation of π/2 to get P

(
CrossE0(f)(λR)

)
=

1
2 .

3.2 Proof of the upper bound
We now turn to the proof of Theorem 1.17. As mentioned in the introduction, the idea is to
control the number of boxes of size 1 visited by the curve realizing the shortest crossing. In
order to do so we recall a result of [4] about the one-arm event.
Definition 3.6. Let 1 ≤ s < t be two real parameters and E denotes either E0(f) or
Z0(f). The one-arm event denoted by Arm1

E(s, t) is the event that there exists a connected
component of E that intersects both

[
− s

2 , s
2

]2
and the boundary of

[
− t

2 , t
2

]2
. The probability

of Arm1
E(s, t) is denoted by π1

E(s, t).

We have the following crucial result.
Theorem 3.7 (Theorem 1.4 of [4], see also [12] for β > 2). There exists a constant η > 0,
such that, if q satisfies Assumptions 1.4, 1.5 for some α ≥ 3, 1.6 (weak positivity) and 1.7
for some β > 2 then we have a constant C > 0 such that:

∀1 ≤ s ≤ t, π1
E(s, t) ≤ C

(
s

t

)η

, (41)
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where E denotes either E0(f) or Z0(f).

We also recall definitions and a result of a previous work in [17].
Definition 3.8. Let B ⊂ R2 be a square box of with 1. Let A ⊂ R2 be a subset. We assume
that B ∩ A has finitely many connected components : B ∩ A = ⊔q

r=1 Cr where the Cr are
connected. We make the following definitions.

1. For x, y ∈ Cr, the chemical distance between x and y is denoted by dchem(x, y) and is
defined as the minimal length of a continuous rectifiable path γ joining x and y within
Cr.

2. The chemical diameter of Cr is denoted by diamchem(Cr) and is defined as

diamchem(Cr) := sup{dchem(x, y) | x, y ∈ Cr}.

3. We define the quantity S(A, B) as

S(A, B) :=
q∑

r=1
diamchem(Cr).

Remark. Typically, one should have in mind that the set A is either Eℓ(f) or Zℓ(f), in that
case the quantity S(A, B) as well as the notion of chemical distance and chemical diameter
are random variables.

We now state the result that allows us to control the chemical distance within a box.
Proposition 3.9 (Proposition 3.7 in [17]). Assume that q satisfies Assumptions 1.4, 1.5 for
some α ≥ 3, 1.7 for some β > 2. Let B ⊂ R2 be a square box of side-length 1. Then for any
k ≤ α − 1 there exists a constant Mk ∈ R+ such that

E[S(E0(f), B)k] ≤ Mk, (42)
E[S(Z0(f), B)k] ≤ Mk. (43)

We make a few comments about Proposition 3.9. The proof of this proposition relies on a
deterministic argument allowing us to compare the chemical distance with the length of the
nodal lines in a box together with a result of [10], [3] concerning the finiteness of moments
for the length of nodal lines. Although in [17], Proposition 3.9 was stated only for E0(f) it
is straightforward (and much easier) to adapt the proof for Z0(f).

We now do the proof of the upper bound of Theorem 1.17.

Proof of Theorem 1.17. Let E denotes either E0(f) or Z0(f). We consider R ⊂ R2 a fixed
rectangle and λ > 1 a real parameter. We prove that there exists s2 < 2 such that with high
probability on the event CrossE(λR) we have SE(λR) ≤ Cλs2 (recall Definition 1.14 of SE).
Let (Bj)1≤j≤N with N ≤ C1λ

2 a covering of λR by N square boxes of size 1 (C1 > 0 is a
constant depending only on R). We write Bj = bj +

[
−1

2 , 1
2

]2
where bj ∈ R2 is the center of

Bj. For 1 ≤ j ≤ N denote Aj ⊂ CrossE(λR) the event that Bj intersects some continuous
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rectifiable curve C realizing the crossing of λR in E (not necessarily the shortest one). We
then define

N :=
N∑

j=1
1(Aj), (44)

the number of boxes Bj that are visited by such curves on the event CrossE(λR). Note that
since a curve C that realizes the crossing of λR is a curve of diameter at least λ, if a box Bj is
visited by such a curve then there is a path in E joining Bj to the boundary of bj +

[
−λ

2 , λ
2

]
.

Applying Theorem 3.7 and using stationarity we see that we have a constant C2 > 0 such
that

∀λ > 1,P (Aj) ≤ C2

λη
. (45)

where η > 0 is the fixed constant introduced in Theorem 3.7. In particular by linearity of
expectation we have

E[N ] ≤ N
C2

λη
≤ C1C2λ

2−η = C3λ
2−η, (46)

where C3 > 0 is a constant depending on R. Now we want to argue that in each box
Bj visited some curve realizing the crossing, one can control the time that an optimal curve
should spend in this box. This is done using Proposition 3.9. Let ν := η

2 . With the notations
of Definition 3.8, for 1 ≤ j ≤ N we introduce the event Bj := {S(E, Bj) ≤ C4λ

ν} where we
recall that E denotes either E0(f) or Z0(f) and where C4 > 0 denotes a constant to be fixed
later. Note that for all k ≤ m − 1 by Proposition 3.9 together with the Markov inequality
we have a constant C

(k)
5 > 0 (depending on k) such that

∀λ > 1, P (Bj) ≥ 1 − C
(k)
5

(C4λ)νk
. (47)

Now we choose α0 big enough so that ν(α0−1) ≥ 2, and we assume that q verifies Assumption
1.5 for some α ≥ α0. Doing an union bound on all 1 ≤ j ≤ N we see that

∀λ > 1, P
(

N⋂
i=1

Bj

)
≥ 1 − C1C

(α0−1)
5

C
ν(α0−1)
4

. (48)

Let δ > 0, we now fix C4 > 0 (depending on ν, δ, C
(α0−1)
5 ) big enough so that we have

∀λ > 1, P
(

N⋂
i=1

Bj

)
> 1 − δ

2 . (49)

Also using (46) together with a Markov inequality we can find a constant C6 > 0 (depending
on δ and R) such that

∀λ > 1, P
(
N ≤ C6λ

2−η
)

> 1 − δ

2 . (50)

Now on the event CrossE(λR)∩{N ≤ C6λ
2−η}∩⋂N

j=1 Bj, one can find a continuous rectifiable
curve C ⊂ E crossing the rectangle λR in the length direction and that is of Euclidean length
less than C6λ

2−ηC4λ
ν = C7λ

2−ν where C7 > 0 is a constant (that depends on δ, R and on q
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but that does not depend on λ) and where we recall that ν = η
2 > 0. Hence we have proved

the following

∀λ > 1, P
(
CrossE(λR) ∩ {SE(λR) ≤ C7λ

2−ν}
)

≥ P (CrossE(λR)) − δ. (51)

Now we can divide by P (CrossE(λR)) that is bounded away from 0 as λ varies by Theorem
1.10. Adjusting constants we precisely get the conclusion of Theorem 1.17.
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