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A GAUSSIAN BEAM CONSTRUCTION OF DE HAAS-VAN ALFVEN
RESONANCES

MOUEZ DIMASSI, JEAN-CLAUDE GUILLOT AND JAMES RALSTON

Abstract. In this article we consider a Bloch electron in a crystal lattice subject to slowy
varying external magnetic fields. We offer an explanation of de Haas-van Alfven oscilla-
tions in terms of energy levels of approximate eigenfunctions for the magnetic Schrödinger
operator by using a gaussian beam construction for a small enough magnetic field.

1. Introduction

The quantum dynamics of a Bloch electron in a crystal subject to external constant
magnetic field ∇× A is governed by the Schrödinger equation

(1) (P − E0)u :=
[ ℏ2

2m
(Dx + µA(x))2 + eV (x)− E0

]
u = 0, Dx =

1

i
∂x,

where V is a smooth, real-valued potential, periodic with respect to a lattice Γ = ⊕3
i=1Zai

in R3. Here (a1, a2, a3) is a basis of R3, m and e are the mass and charge of the electron,
and µℏ = e. The magnetic potential A(x) = (0, ϵx1, 0) corresponding to the constant
magnetic field ∇×A = (0, 0, ϵ). In this paper we will treat the magnetic field strength ϵ as
a small parameter and use the scaled variable y = ϵx and the potential A(y) = (0, y1, 0).

In the semi-classical dynamics of Bloch electrons under slowly varying electric and mag-
netic fields, recent advances have been made (see [?, ?, ?, ?] and the references given there).
Since the work of Peierls [?] and Slater [?], it is well known that, if ϵ is sufficiently small, the
wave packets are propagating along the trajectories from the semi-classical Hamiltonian
H(y, p) = E(p + µA(y)), y = ϵx. Here E(k) is one of the band functions describing the

Floquet spectrum of the unperturbed Hamiltonian − ℏ2
2m

∆+ eV (x). In order ϵ, the semi-
classical quantization condition for magnetic levels (well-known Onsager relation), contains
two phases : One is the Berry’s phase, and the other is known as the Wilkinson-Rammal
phase (see [?, ?]).

The orbit of the full classical Hamiltonian H(y, p) is helical and cannot be quantized. Its
projection on the pseudo-momentum coordinate k = p+µA(y) lies in the intersection of the
Fermi surface {E(k) = E0} with the plane where k3 is constant. Under the assumption that
this intersection is a simple closed curve, the electron’s motion that is perpendicular to the
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magnetic field is quantized. In order to examine the generalized Onsager relation, we will
employ the reduced Peierls classical Hamiltonian, Ĥ(y1, y2, p1, p2) := E(p1, p2 + µy1, k3),
where k3 is constant and the variable y3 is deleted (for more information, consult sections
2-3).

In this work, we use the gaussian beam (GB) to construct for ϵ small enough asymptotic
solutions of (??) concentrated in a tube of radius ϵ1/2 around the curve Πŷγ̂ which is traced
by ŷ(s) = (y1(s), y2(s)). Here, γ̂ := {(ŷ(s), p̂(s)), s ∈ [0, T ]} is a periodic trajectory for the

reduced Hamiltonian Ĥ(ŷ, p̂) = E(p1, p2 + µy1, k3), (see Proposition ?? and Theorem ??).

In section 4, we use these approximate asymptotic solutions to study the generalized
semiclassical quantization condition for cyclotron orbits. Due to the wave function be-
ing single-valued along a closed orbit, the quantization condition including the Berry,
Wilkinson-Rammal (WR), and Maslov phases is established in Theorem ??. It should be
noted that the Berry phase and WR phase both involve cell-periodic Bloch wave functions
and cannot be derived from the zero-field energy spectrum alone. The geometry of the
Bloch states has a crucial impact on the phase of magnetic oscillations.

When γ̂ is a stable periodic orbit for the bicharacteristic flow, GB is well-understood
for a large class of partial differential equations (see [?, ?, ?]). In our case, the curve γ̂ is
unstable (i.e., all the eigenvalues of the linearized Poincare are real). The construction of
quasi-modes in [?, ?] and elsewhere does not allow this. To remove this difficulty, we will
examine and adapt more closely Ralston’s approach to our case.

2. Preliminaries

Equations of motion in Physical and Pseudo-momentum spaces. Let En(k) be one
of the band functions describing the Floquet spectrum of the unperturbed Hamiltonian:

H0(k) =
ℏ2

2m
(Dx + k)2 + eV (x) : L2(T) → L2(T).

Let Φn(·, k) = e−ix·kΨn(x, k) be the corresponding normalized eigenfunction,

(2)
[
H0(k)− En(k)

]
Φn(x, k) = 0,

∫
T
|Φn(x, k)|2dx = 1,

where Ψn(·, k) is the Bloch function associated to En(k) :

Ψn(x+ γ, k) = eik·γΨn(x, k), ∀γ ∈ Γ.

Since e−ix·γ∗
H0(k)e

ix·γ∗
= H0(k + γ∗), it follows that that

En(k + γ∗) = En(k), for all γ∗ ∈ Γ∗,

where Γ∗ is the reciprocal lattice. Standard perturbation theory shows that the function
En(k) is continuous for k ∈ R3 and real analytic in a neighborhood of any k such that
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En(k) is a simple eigenvalue, i.e.,

En−1(k) < En(k) < En+1(k).

For E0 ∈ En(T∗), we put F(E0) = {k ∈ T∗ : En(k) = E0} 1. We assume that for
every k = (k1, k2, k3) ∈ F(E0) with k3 in an open interval, En(k) is a simple eigenvalue of
H0(k). Therefore, k 7→ En(k) is analytic in a neighborhood of F(E0), and we can choose
k 7→ Ψn0(·, k) to be a real-analytic function near F(E0). Since we will use only one band,
we will suppress the index n in En(k), Φn(·, k) and Ψn(·, k).
In classical discussions ([?]) the de Haas-van Alfven effect is associated with the curves

in pseudo-momentum space obtained as intersections of planes perpendicular to the (con-
stant) magnetic field with the Fermi surface. Here we use the curves in (y1, y2, p1, p2)
corresponding to electron paths. These curves are determined by the Peierls Hamilton-
ian H(y, p) = E(p + µA). However, they are obtained from the pseudo-momentum space
curves above by substituting k1 = p1, k2 = p2 + µy1 and k3 = p3, and setting y2 = −p2

µ

plus a constant (our constructions will be independent of y3). To verify this we compute
as follows. Let (y(s), p(s)) be a trajectory for the Peierls hamiltonian generated by H(y, p)
:

(3) ẏ(s) =
∂H

∂p
=

∂E

∂k
(p(s) + µA(y(s))),

(4) ṗ(s) = −∂H

∂y
= −µ(ẏ2(s), 0, 0).

In the pseudo-momentum coordinate k(s) := p(s) + µA(y(s)) one has

E(k(s)) = E(k1(s), k2(s), k3) = E(k(0)) = E0,

and

(5) ẏ(s) =
∂E

∂k
(k(s)), k̇(s) = µ(−ẏ2(s), ẏ1(s), 0).

Let z1 = p2 + µy1. Since ṗ2 = 0, we have

ż1 = µ
∂E

∂k1
(p1, z1, p3) and ṗ1 = −µ

∂E

∂k2
(p1, z1, p3).

Hence, since ṗ3 = 0, (z1(s), p1(s)) moves along a level curve for E(p1, z1, k3). We also have

(6) ẏ2 = ∂p2E(p1, p2 + µy1, p3) = −ṗ1/µ.

Thus there are two families of trajectories here. First there the level curves

γ = γ(k3, E0) = {(k1, k2) : E(k1, k2, k3) = E0}.
Second there are the trajectories (with y3 deleted) for the Peierls Hamiltonian

(7) γ̂ = γ̂(k3, E0, c) = {(y1, y2, p1, p2) : E(p1, p2 + µy1, k3) = E0, y2 = −p1/µ+ c}.
1When E0 equals the Fermi energy EF , F(E0) is part of the Fermi surface defined by FF := {k ∈

T∗;EF ∈ σ(H0(k))} (see [?]). Here σ(H0(k)) denotes the spectrum of the operator H0(k).
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Note that γ(k3, E0) will become γ̂(k3, E0, c) when one substitutes k1 = p1 and k2 = p2+µy1
and sets y2 = −p1/µ+ c. γ̂ will be used in the sections Generalized Onsager Relation.

Throughout this paper we assume that :

(H1) (
∂E

∂k1
,
∂E

∂k2
) ̸= (0, 0) on γ(k3, E0),

and

(H2) γ(k3, E0) is a simple closed curve.

Assumptions (??) and (??) insure that {(k1, k2) : E(k1, k2, t3) = E} are simple and closed
for |E − E0| and |t3 − k3| small enough and that it depends smoothly on (t3, E).

We let S(k3) denote the area in k-space enclosed by γ(k3, E0). γ(k3, E0) is the projection

of a helical orbit Γ̂(k3) of the full hamiltonian in (??), (??).

3. Gaussian Beam Construction

3.1. Two scale expansions method, eikonal and transports equations. In what
follows, ŷ (resp. x̂, k̂) denotes (y1, y2) (resp. (x1, x2), k̂ = (k1, k2)). With the change of
variable ŷ = ϵx̂, the operator P is unitarily equivalent to

P̃ =
ℏ2

2m

[
(ϵDŷ + µA(ŷ))2 +D2

x3

]
+ eV (

ŷ

ϵ
, x3).

Here we are looking for a solution of the equation

(8) (P̃ − E0)u(ŷ, x3, ϵ) ≡ 0.

of the form

u(ŷ, x3, ϵ) = ei(ϕ(ŷ)/ϵ+x3k3)m(
ŷ

ϵ
, x3, ŷ; ϵ).

In order to accomplish this we use, as in [?, ?, ?], the two-scale expansion method in which
the coordinate x̂ and the slowly varying space variable ŷ = ϵx̂ are regarded as independent
variables. Thus, we consider the following equation in the independent variables x̂ and ŷ :

(9) (P− E0)v = 0,

with

(10) P =
ℏ2

2m

[
(ϵDŷ +Dx̂ + µA(ŷ))2 + (Dx3 + k3)

2
]
+ eV (x̂, x3)

Note that, if v(x̂, x3, ŷ, ϵ) is a solution of (??), then u = eix3k3v( x̂
ϵ
, x3, ŷ, ϵ) is a solution of

(??). In the variable x = (x̂, x3), v(x, ŷ, ϵ) is required to be periodic.

We look for approximate solution to (??), which have the form :

(11) v(x̂, x3, ŷ, ϵ) = eiϕ(ŷ)/ϵ
[
m0(x̂, x3, ŷ) + ϵm1(x̂, x3, ŷ) + · · ·+ ϵNmN(x̂, x3, ŷ)

]
.
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Now substituting (??) into (??) and collecting terms which are the same order in ϵ, we get

(12) (P− E0)v = eiϕ(ŷ)/ϵ
[
c0(x̂, x3, ŷ) + ϵc1(x̂, x3, ŷ) + · · ·+ ϵN+2cN+2(x̂, x3, ŷ)

]
where

(13) c0(x̂, x3, ŷ) = [H0 (K(ŷ))− E0]m0,

(14) c1(x̂, x3, ŷ) = [H0 (K(ŷ))− E0]m1 −
ℏ2

2m
Km0,

and for j = 2, 3, ..., N + 2

cj(x̂, x3, ŷ) = [H0 (K(ŷ))− E0]mj −
ℏ2

2m

(
Kmj−1 +∆ŷmj−2

)
.

Here

K = i
[∂H0

∂k̂
(K(ŷ)) · ∂

∂ŷ
+∆ŷϕ

]
and

K(ŷ) = (
∂ϕ

∂ŷ
(ŷ) + µA(ŷ), k3).

When ϕ is real-valued, (??) is the standard ansatz of the WKB-method. In this case, to
solve the equation (??), one requires that cj = 0, j = 0, 1, 2, · · · :

(E) c0 = [H0 (K(ŷ))− E0]m0 = 0, (eikonal equation)

(T1) c1 = [H0 (K(ŷ))− E0]m1 −
ℏ2

2m
Km0 = 0, (transport equation T1)

(Tj) cj(x̂, x3, ŷ) = 0, (transport equation Tj).

3.2. Construction of the phase function by the Gaussian beam method. Accord-
ing to (??), equation tells us that for all ŷ, m0(x̂, x3, ŷ) is an eigenfunction of H0(K(ŷ))
with eigenvalue E0. Therefore, we can fulfill (??) by choosing

(Eϕ) E(
∂ϕ

∂ŷ
(ŷ) + µA(ŷ), k3) = E0,

m0(x̂, x3, ŷ) = f0(ŷ)Φ(x,K(ŷ)).

The phase ϕ is derived from the classical hamiltonian

Ĥ(ŷ, p̂) := Ĥ(y1, y2, p1, p2) = E(p1, p2 + µy1, k3).

By definition (see (??)), γ̂ is a periodic orbit for the Hamiltonian system

(15-0) ẏ = Ĥp, ṗ = −Ĥy.

Along γ̂, ϕ satisfies (p1(s), p2(s)) = ϕy(y(s)) with

(15-1) E(k(s)) = E0, k(s) = (p1(s), p2(s) + µy1(s), k3) = (ϕŷ(ŷ(s)) + µA(ŷ(s)), k3).
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The nonlinearity of the Hamilton-Jacobi equation (??) generally leads to finite time sin-
gularity formation in phase ϕ ”caustic problem”, and the transport equations then become
undefined. The caustic problem has been addressed in many works, starting with Keller,
Maslov, and Hörmander, using the classical Fourier integral operator (FIO) approach [?].
Us indicated in the introduction, instead of OIF we are going to use ”Gaussian Beams” as
in [?, ?, ?]. This means that we are not going to attempt to solve (??) exactly, we only
need to build asymptotic solutions concentrated on a single ray γ̂. The Gaussian profile
is achieved by allowing the phase to be complex away from the ray so that the solution
decays exponentially away from γ̂.

More precisely, fix a periodic trajectory γ̂ = {(ŷ(s), p̂(s)); s ∈ [0, T ]} of the classical

hamiltonian Ĥ with initial date (ŷ(0), p̂(0)) satisfying Ĥ(ŷ(0), p̂(0)) = E0, and let Πŷγ̂
denote the projection of γ̂ on the ŷ-space. We are going to prove

Proposition 1. Assume (??) and (??). There exists a smooth function ϕ such that

i) ∂ϕ
∂ŷ
(ŷ(s)) = p̂(s).

ii) In a small neighborhood Ω of Πŷγ̂

(15) G(y) := E(
∂ϕ

∂ŷ
(ŷ) + µA(ŷ), k3)− E0 = ON

(
d(ŷ,Πŷγ̂)

3
)
,

iii) ℑϕ ≥ Cd(ŷ,Πŷγ̂)
2,

where d(ŷ,Πŷγ̂) is the distance from ŷ to Πŷγ̂.

Proof. The proof is adapted from [?]. For this reason we omit some details. Here, the

main difficulty in carrying out the construction in [?] is that all orbits for Ĥ near γ̂ are
periodic, hence the algebraic eigenvalues of the linearized Poincare map P are all 1. This
is not allowed in the construction of quasi-modes in [?] and elsewhere.

Recall that k3 is fixed, and the classical hamiltonian Ĥ(y1, y2, p1, p2) = E(p1, p2+µy1, k3)
is independent on y3. By abuse of notation, we write y, y(s), p, H instead of ŷ = (y1, y2),

ŷ(s) = (y1(s), y2(s)), p̂ = (p1, p2), and Ĥ.

Requiring that G(y) = H(y, ∂ϕ
∂y
(y)) − E0 vanishes to zero, first and second order on γ̂,

we get :

1. ∂ϕ
∂y
(y(s)) = p(s),

2. ∂G
∂yj

= ∂H
∂yj

+
∑

l=1,2
∂H
∂pl

∂2ϕ
∂yj ∂yl

= 0, for j = 1, 2,

3. ∂2G
∂yi∂yj

= ∂2H
∂yi∂yj

+
∑

l=1,2

(
∂2ϕ

∂yi∂yl

∂2H
∂pl∂yj

+ ∂2H
∂yi∂pl

∂2ϕ
∂yl∂yj

+ ∂H
∂pl

∂3ϕ
∂yl∂yi∂yj

)
= 0 for i, j = 1, 2,

where the equalities are evaluated along γ̂.

It’s worth noting that 1. is a consequence of the uniqueness of the solution of (??) with

initial condition. While 2. is only the compatibility condition ṗ(s) = d
ds

(
∂ϕ
∂y
(y(s))

)
. Let us

investigate the third condition.
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Introducing the matrix

(M(s))ij =
∂2ϕ

∂yi∂yj
(y(s)), (A(s))ij =

∂2H

∂yi∂yj
(y(s), p(s)),

(B(s))ij =
∂2H

∂pi∂yj
(y(s), p(s)), (C(s))ij =

∂2H

∂pi∂pj
(y(s), p(s)),

and using (??), one can rewrite the condition 3) as the non-linear Ricatti matrix equation

(RE)
dM

ds
+MCM +MB +BTM + A = 0.

Thus in order to prove Proposition 1, we need to construct a phase ϕ such the the matrix
M(s) satisfies (??) for all s with

• M(s)T = M(s),
• M(s+ T ) = M(s),
• M(s)ẏ(s) = ṗ(s),
• ℑM(s) is positive definite on the orthogonal complement of ẏ(s),

Some well known facts about the non-linear Ricatti equation (??) are recalled in an ap-
pendix.

Next, let us introduce the linearized equation about γ̂

(16)

 δ̇y = C(s)δp+B(s)δy

δ̇p = −BT (s)δp− A(s)δy,

and the linearized Poincaré map P taking the data of solutions to (??) at s = 0 to their
data at s = T , (i.e., P : (δy(0), δp(0)) → (δy(T ), δp(T ))).

To apply the arguments from [?], we need two vector solutions of (??), v1(s) and v2(s),
where v1(s) is the tangent to γ̂, i.e. v1 = (ẏ1, ẏ2, ṗ1, ṗ2(= 0)) which will satisfy (??) because
it is the derivative of the flow of H with respect to s.

Since we have assumed that v1(s) is never zero, v2(s) must satisfy three conditions.
Letting σ((y, η), (w, ζ)) = y · ζ − w · η be the symplectic two form, we need :

i) σ(v2(s), v1(s)) = 0 for all s.

ii) σ(v2(s), v2(s)) = ic with c > 0 for all s.
iii) The complex span of v1(s) and v2(s), S(s) should be periodic, i.e. S(0) = S(T ).

Since σ is constant on pairs of solutions to (??) (see (??)), the equalities i) and ii) will
hold for all s, if they hold for s = 0. Condition iii) makes this construction possible in our
special case. The fact that all orbits near γ̂ = γ̂(E0, k3) are periodic means that for any
solution v(s) of (??), P maps v(0) to v(0) + av1(0) for some a. To see this choose curves
w1(s) and w2(s) in (y, p)-space such that w1(0) = w2(0) is on γ, and ẇ1(0) + iẇ2(0) =

v2(0). Recalling that the level surface {(y, p), Ĥ(y, p) = E} is 3-dimensional for |E − E0|
small enough, due to the assumption (??). Since all orbits are periodic, w1(s) and w2(s)
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are on periodic orbits, w1(t, s) and w2(t, s) respectively. Note that w1(t, 0) and w2(t, 0)
parametrize γ and hence there are functions T1(s) and T2(s) such that

(16-0) w1(T1(s), s) = w1(0, s) and w2(T2(s), s) = w2(0, s).

Evaluating the derivatives of the equations in (??) with respect to s at s = 0, we have
(since Tj(0) = T )

∂swj(0, 0) = ∂swj(T, 0) + ∂sTj(0)∂twj(T, 0), j = 1, 2,

which yields v2(0) = v2(T ) + (∂sT1(0) + i∂sT2(0))v1(T ).

Therefore, S(T ) = S(0) for any choice of v2(s), and we has plenty of freedom to choose
v2(0) so that i) and ii) hold. For instance, we could choose (y(0), p(0)) so that ẏ1(0) ̸= 0,
and let v2(s) = (δy21(s), δy

2
2(s), δp

2
1(s), δp

2
2(s)) with v2(0) = (0, iẏ1(0),−ẏ2(0), ẏ1(0)). Let us

introduce the 2× 2 matrices

Y (s) := (Y 1(s), Y 2(s)) =

(
ẏ1(s) δy21(s)
ẏ2(s) δy22(s)

)
, N(s) := (N1(s), N2(s)) =

(
ṗ1(s) δp21(s)
ṗ2(s) δp22(s)

)
.

Since we assumed that (ẏ1(s), ẏ2(s)) never vanishes (see (??) and (??)), we conclude from
Proposition ?? that Y (s) is invertible for all s, hence that M(s) = N(s)Y (s)−1 is well
defined for all s, and finally that M(s) is a global solution of (??).

Now, the desired properties of the matrix M(s) are derived from Proposition ?? and the
fact that S(0) = S(T ). This completes the proof of Proposition ??. □

3.3. Construction of the Amplitude. Constructing the principal term m0 is all we
need to do for the applications. We offer suggestions on how to create the other terms in
a remark.

In the following, we assume that ϕ has been chosen so that Proposition?? holds, and we
let m0 = f0(y)Φ(x,K(y)). Therefore

(17) c0 = f0(y)G(y)Φ(x,K(y)).

We want to choose m0,m1, · · · , so that the functions y → cj(x, y) vanish on γ̂ to given
order uniformly on x ∈ T.
First, let us deal with c0 and c1. For simplicity of notation, we write E,H0 and Φ instead

of E(K(ŷ)), H0(K(ŷ)) and Φ(x,K(ŷ)) respectively.

Since x → m1(x, ·) is required to be Γ-periodic, it is natural to write

(18) m1(x, y) = f1(y)Φ(x,K(y)) +m⊥
1 (x, y),

where

⟨Φ(·, K(y)),m⊥
1 (·, y)⟩ = 0.

Substituting the above equalities into (??) and using (??) we obtain

(19) c1 = f1(y)G(y)Φ(x,K(y))− ℏ2

2m
Km0 + [H0 (K(y))− E0]m

⊥
1 .
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By the Fredholm alternative, the equation, c1 = 0, is solvable for m1 if and only if

f1(y)G(y)Φ(·, K(y))− ℏ2

2m
Km0 ⊥ ker [H0 − E0] in L2(T),

for all y, i.e.,

(20) iL(y) :=
〈
K(f0Φ),Φ

〉
L2(T)

− 2m

ℏ2
f1(y)G(y) = 0.

In view of the definition of K, we have

(21) L(y) =
∂f0
∂y

·
〈∂H0

∂k
Φ,Φ

〉
+ b(y)f0(y)−

2m

iℏ2
f1(y)G(y),

where

(22) b(y) :=
〈∂H0

∂k
· ∂Φ
∂y

,Φ
〉
+∆yϕ.

We conclude from (??) that

(23)
∂E

∂k
Φ + (E −H0)

∂Φ

∂k
=

∂H0

∂k
Φ,

hence that
∂E

∂k
=

〈∂H0

∂k
ϕ, ϕ

〉
.

Differentiating the above equality with respect to y, and noting that ∂H0

∂k
is self-adjoint, we

get

(24)
∂

∂y
· ∂E
∂k

=
〈∂H0

∂k

∂ϕ

∂y
, ϕ

〉
+
〈∂H0

∂k
ϕ,

∂ϕ

∂y

〉
+ 2∆yϕ = 2ℜb(y).

Inserting (??) in (??) we obtain

(25) ℑb = ℑ
{∂E

∂k
·
〈∂Φ
∂y

,Φ
〉}

+ ℑ
{〈∂Φ

∂y
, (E −H0)

∂Φ

∂k

〉}
.

Using the fact that
〈

∂Φ
∂kj

, (E −H0)
∂Φ
∂kj

〉
is real, as well as the fact that ∂K2

∂y1
− ∂K1

∂y2
= µ, we

deduce that

ℑ
{〈∂Φ

∂y
, (E −H0)

∂Φ

∂k

〉}
= µℑ

〈
(H0 − E)

∂Φ

∂k1
,
∂Φ

∂k2

〉
.

On the other hand, the normalization of Φ ensures that 1
i

〈
∂Φ
∂y
,Φ

〉
is real. This, together

with (??), (??) and (??) yields

(26) L(y) =
∂E

∂k
· ∂f0
∂y

+A(y)f0(y)−
2m

iℏ2
f1(y)G(y),

where

A(y) :=
1

2

∂

∂y
· ∂E
∂k

+ i
(
µℑ

〈 ∂Φ

∂k2
, (E −H0)

∂Φ

∂k1

〉
+

1

i

∂E

∂k
·
〈∂Φ
∂y

,Φ
〉)

.

It is worth recalling that we want to choose f0 and f1 such that the right hand side of (??)
vanishes on γ̂ to given order. For any multi-index α of length l the equations ∂α

y L(y) = 0
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along γ̂ gives rise to linear ordinary differential equation for ∂α
y f0 with inhomogeneous

terms depending on the derivatives of f0 and f1 of order up to l− 1 and l− 3 respectively :

(27)
∂E

∂k
· ∂

∂y
(∂α

y f0) +A(y)∂α
y f0(y) + C(f0, · · · , ∂β

y f0, f1, · · · ∂β′

y f1) = 0,

with |β′| ≤ l − 3, |β| ≤ l − 1 and C is independent on f1 for l < 3 and C = 0 for α = 0.
Here we have used (??).

Since ẏ(s) = ∂E
∂k
, it follows from (??) and the definition of A(y) that :

(28)
d

ds

[
(∂α

y f0)(y(s))
]
+

1

2

(
∂y · ∂kE(ϕy + µA(y), k3)

)
|y(s)

(∂α
y f0)(y(s)) + i

(
θ̇b + θ̇rw

)
(∂α

y f0)(y(s))

+C(f0, ∂yf0, · · · , ∂β
y f0, f1, · · · ∂β′

y f1)|y=y(s)
= 0,

where, the phase θb is known as the Berry phase and θrw is the Wilkinson-Rammal phase :

(29) θ̇b = i
〈
Φ(·, k(s)), Φ̇(·, k(s))

〉
,

and

(30) θ̇rw = ℑ
〈
(H0(k(s))− E0)

∂Φ

∂k1
(·, k(s)), ∂Φ

∂k2
(·, k(s))

〉
.

To solve (??) for the partial derivatives of f0 on γ̂ up to order l, we may assume that
f1 vanish to order l − 2 at all points of γ̂.Thus, the right hand side of (??) is no longer
dependent on f1. Since the coefficient C depends on all the partials of f0 up to order l− 1,
we can solve (??) recursively. By linearity the solution exists for all s. Thus, it suffices to
prescribe ∂α

y f0(y(0)) for |α| = l, to get the lth order partial derivatives of f0 on the whole
curve γ̂. Therefore, we may assume that f0 is chosen so that for given l ∈ N the left hand
side of (??) vanishes to order l on γ̂, i.e.,

(31)
〈
K(f0Φ),Φ

〉
= O

(
d(y,Πyγ̂)

l+1
)
.

This completes the construction of m0.

Remark 2. To compute the other terms m1,m2, · · · , we proceed as follows. Set

(32) m⊥
1 =

ℏ2

2m
(H0 − E0)

−1
(
Km0 − ⟨Km0,Φ⟩Φ

)
=

ℏ2

2m
(H0 − E0)

−1
(
Km0

)
,

where (H0 − E0)
−1 denotes the inverse which maps the orthogonal complement of of Φ in

L2(T) into itself. According to (??) we need only to compute f1. We recall that f1 needs
to vanish to order l− 2 at all points of γ̂, and G satisfies (??). Combining this with (??),
(??), (??) and (??) we get

(33) c1 = O
(
d(y,Πyγ̂)

l+1
)

uniformly on x ∈ T. Like T1 , T2 can be solved for m2 = f2Φ +m⊥
2 if and only

(34)
〈
K(f1Φ),Φ

〉
L2(T)

=
2m

ℏ2
f2(y)G(y)−

〈
K(m⊥

1 ),Φ
〉
L2(T)

−
〈
∆y(m0),Φ

〉
L2(T)

.
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The left side of the above equality is identical to that of (??) with f1 instead of f0. There-
fore, as in the proof of (??), equation (??) gives

(35) L1(y) :=

∂E

∂k
· ∂f1
∂y

+A(y)f1(y)−
2m

iℏ2
f2(y)G(y) +

1

i

[〈
K(m⊥

1 ),Φ
〉
L2(T)

+
〈
∆y(m0),Φ

〉
L2(T)

]
= 0.

Notice that the terms inside
[
· · ·

]
vanish to order l − 2 on γ̂. This follows from the

definition of m0 and m⊥
1 and the fact f0 vanishes to order l on γ̂.

Remembering that we want to construct f1 satisfying (??) with f1(y) = O
(
d(y,Πyγ̂)

l−2
)
.

As in the proof of (??) (with l− 2 instead of l), equation (??) shows that for any multi-
index α of length l − 2 the equality ∂α

y L1(y) = 0 along γ̂ yields a linear o.d.f. with an

inhomogeneous term, F , involving m0 and m⊥
1 :

(36)
∂E

∂k
· ∂

∂y
(∂α

y f1) +A(y)∂α
y f1(y) + C1(f1, · · · , ∂β

y f1, f2, · · · ∂β′

y f2) = F.

We get a linear differential equation for the |α|-order partial derivates of f1 on γ̂ with an
inhomogeneous term previously determined. We can now proceed analogously to the proof
of f0.

Let γ̂ = {(ŷ(s), p̂(s)); s ∈ [0, T ]} be the null bicharacteristic of the classical Hamiltonian

Ĥ with initial date (ŷ(0), p̂(0)) satisfying Ĥ(ŷ(0), p̂(0)) = E0, and let Πŷγ̂ denote the
projection of γ̂ on the ŷ-space. Let ϕ the phase given by Proposition 1. Next, we use the
above construction for both m0 and m1 with l = 0, f0(ŷ(0)) = 1 and f1(ŷ(0)) = 0. Let
Ω̃ ⊂ R2 be a small neighborhood of Πyγ̂, and let f ∈ C∞

0 (Ω̃) be equal one near Πyγ̂. Put

ũ(ŷ, x3, ϵ) = ei(ϕ(ŷ)/ϵ+x3k3)f(ŷ)
(
m0(

ŷ

ϵ
, x3, ŷ) + ϵm1(

ŷ

ϵ
, x3, ŷ)

)
.

A small enough Ω̃ can be selected to ensure that the function f is well defined on the
support of ϕ.

We state our main result of this section as follows :

Theorem 3. Assume (??) and (??). There exists ϵ0 small enough such that the preceding
construction gives an approximate eigenfunction ũ satisfying :

• |(P̃ − E0)ũ(ŷ, x3, ϵ)| ≤ Cϵ3/2, (ŷ, x3) ∈ R3.
• x → mj(x, ŷ) is periodic.
•

∥(P̃ − E0)ũ∥L2(R2
y1,y1

) = O(ϵ3/2)∥ũ∥L2(R2
y1,y1

).

uniformly on ϵ ∈]0, ϵ0[.
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• Along γ̂, we have

(37) ũ(ŷ(t), x3, ϵ) = ei(c(t)/ϵ−θ(t)+x3k3)

√
det(Y (0))

det(Y (t))
Φ(

ŷ(t)

ϵ
, x3, K(ŷ(t)) +O(ϵ),

where

c(t) =

∫ t

0

p̂(s)dŷ(s), θ(t) =

∫ t

0

θ̇b + θ̇rw ds.

Remark 4. Our solution in (??) involves the square root of the complex number det(Y (s)),
and will be sensitive to the number of times the phase of det(Y (s)) wraps around the origin
as s goes from zero to T . If this winding number (or Maslov index) is called NM , we have
by Cauchy’s argument principle :

NM =
1

2πi

∫ T

0

∂sdet(Y (s))

det(Y (s))
ds.

Therefore,

(38)

√
det(Y (0))

det(Y (T ))
= e−iΘM ,

where ΘM := NMπ is the Maslov phase.

Notice that, the phases in real, time-dependent WKB theory, i.e., the Maslov indices,
change discontinuously at caustics and are not always easy to determine, whereas in the
Gaussian beam method the phase is found by continuously following the quantity det(Y (0))/det(Y (t))
and its square root along the orbit.

Proof. From (??), (??) and (??), we deduce

(39) c0(x̂, x3, ŷ) = O
(
d(y,Πyγ̂)

3
)

c1(x̂, x3, ŷ) = O
(
d(y,Πyγ̂)

)
,

uniformly on x ∈ T. By Proposition 1, we have ℑϕ ≥ Cd(ŷ,Πŷγ̂)
2. Hence

d(ŷ,Πŷγ̂)
meiϕ/ϵ = O(ϵm/2),

which together with (??) and (??) produce the first three statements.

By (??), we have

(40)
d

ds

[
f0(y(s))

]
+

1

2

(
∂y · ∂kE(ϕy + µA(y), k3)

)
|y(s)

f0(y(s)) + i
(
θ̇b + θ̇rw

)
f0(y(s)) = 0.

We recall the C(f0, ∂yf0, · · · , ∂β
y = 0, when α = 0. Next, by definition of M(s), B(s) and

C(s), we have :

∂y · ∂kE(ϕy + µA(y))|y(s) = tr
(
C(s)M(s) +B(s)

)
.
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From the first equation in (??), we deduce that C(s)M(s)+B(s) = Ẏ (s)Y −1(s). Combining
this with the standard equality

tr(Ẏ (s)Y −1(s)) =
d

ds
ln(det(Y (s))

we obtain

(1/2)∂y · ∂kE(ϕy + µA(y))|y(s) = (1/2)
d

ds
ln(det(Y (s)),

which together with (??) yields

(41)
d

ds

[
f0(ŷ(s))

]
+

1

2

d

ds
ln(det(Y (s))f0(ŷ(s)) + i

(
θ̇b + θ̇rw

)
f0(ŷ(s)) = 0.

Now (??) follows from (??), (??), (??) and (??). We recall that f0(ŷ(0)) = 1.

□

4. Implications

4.1. Generalized Onsager Relation. In physical space there is a motion in the y3-axis
with velocity ẏ3(s) = ∂E

∂k3
(k(s)). Therefore, the orbits Γ̂(k3) of the full hamiltonian in

(??), (??) are helical, and do not support quasimodes, but their projections onto pseudo-
momentum produce resonances (called ”magnetic energy levels” in the physics literature).
Onsager’s key observation was that the magnetic energy levels determine S(k3) when it
is extremal. Here we deduce that from the ”resonance condition” that the phase of the
beam must increase by an integer multiple of 2π when one goes around γ̂. This means
that ϕ(y(s))/ϵ + Θ(s) increases by a multiple of 2π, where Θ(s) represents the combined
contributions of the Berry, Wilkinson-Rammal and Maslov phase shifts (see (??), (??) and
Remark 3.)

Let us compute the change in ϕ around the periodic orbit γ̂ = γ̂(k3, E0, c). We denote
T its period. From (??), ϕy(y(s)) = p(s). Since ṗ2(s) = 0, it follows that

(42) ϕ̇(y(s)) = p(s) · ẏ(s) = p1(s)ẏ1(s) + p2(s)ẏ2(s) =
1

µ
p1(s)[ṗ2(s) + µẏ1(s)] + p2(0)ẏ2(s).

Recall that γ(k3, E0) will become γ̂(k3, E0, c) when one substitutes k1 = p1 and k2 =

p2 + µy1 and sets y2 = −p1/µ+ c. Combining this with the fact that
∫ T

0
ẏ2(s)ds = 0, and

using Green’s theorem we obtain from (??)

ϕ(y(T ))− ϕ(y(0)) =

∫ T

0

p(s)ẏ(s)ds =

∫ T

0

1

µ
p1(s)[ṗ2(s) + µẏ1(s)]ds

=
1

µ

∫
γ̂

k1dk2 =
S(k3)

µ
.
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Combining the above equality with the resonance condition and using the fact that that
µℏ = e, we obtain

(43)
ℏ
eϵ
S(k3)−Θ = 2nπ,

where Θ := Θb +Θrw +ΘM now stands for the change in Θ(s) around γ̂, i.e.,

Θb = −i

∫ T

0

⟨Φ(·, k(s)), Φ̇(·, k(s))⟩ds = −i

∫
γ̂

⟨Φ(·, k), ∂kΦ(·, k)⟩dk,

Θrw = −ℑ
∫ T

0

⟨(H0(k(s))− E)
∂Φ

∂k1
(·, k(s)), ∂Φ

∂k2
(·, k(s))⟩ ds.

We recall that Φ̇(·, k(s)) = k̇(s)∂Φ
∂k
(·, k(s)). Finally, according to (??), ΘM = 0 if NM is

even, and ΘM = π if NM is odd. Summing up, we obtain the generalized Onsager relation
including the Berry, Ramal-Wilkinson, and Maslov phases :

Theorem 5. Assume (H1-2), and let S(k3) denote the area in k-space enclosed by γ(k3, E0).
Therefore the quasi-classical quantization condition may be written in the form

(44)
ℏ
eϵ
S(k3) = 2π(n+ γ) + Θb +Θrw,

where γ = 1
2
or 0.

Magnetic Oscillation. The de Haas-van Alfven effect is associated with closed curves
γ in pseudo-momentum space formed by intersecting the Fermi surface with planes k3 =
k0
3, where the (constant) magnetic field is parallel to the k3-axis. Not all choices for k0

3

contribute to the de Haas-van Alfven effect. Only the ”extremal” values of k0
3, i.e. those

for which ∂S
∂k3

= 0, contribute. For each n Onsager’s relation (??) determines a magnetic

energy level by giving a relation between ϵ and S(k3). If S(k
0
3) is extremal, as k3 approaches

k0
3 smaller and smaller changes in ϵ are needed to satisfy Onsager’s relation. Thus there is

a peak in the density of magnetic energy levels at k0
3.

Appendix A

In this appendix, we recall some well known facts about the non-linear Ricatti equation
(??). For reader convenience we sketch the proofs. To construct a solution of (??), we
start by choosing matrix solutions to the linear system

(A1)


˙̇Y = BY + CN

Ṅ = −AY −BTN.

Since A,B,C are well defined for all s, by linearity there exists a unique global solution
(Y (s), N(s)) to the above system for any initial condition (Y (0), N(0)).
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Let G1(s) = (Y 1(s), N1(s)) and G2(s) = (Y 2(s), N2(s)) be two vectors solutions of (??).
We recall that

(A2) σ(G1(s), G2(s)) = σ(G1(0), G2(0)).

Since G2(s) is also a solution of (??), the complexified form σC is also constant in s, i.e.,

(A3) σC(G1(s), G2(s)) = σ(G1(s), G2(s)) = σC(G1(0), G2(0)).

Proposition 6. Let M0 be a symmetric matrix such that ℑM0 is positive definite on the
orthogonal complement of ẏ(0) = (ẏ1(0), ẏ2(0)), and M0ẏ(0) = ṗ(0). Let (Y (s), N(s)) be
the solution of (??) with initial condition (Y (0), N(0)) = (I,M0). We have

• (ẏ(s), ṗ(s)) = (Y (s)ẏ(0), N(s)ẏ(0)).
• Y (s) is invertible for all s.
• M(s) := N(s)Y (s)−1 is a solution of the Ricatti equation (??).
• M(s) is a symmetric matrix for all s ∈ R.
• The matrix ℑM(s) is positive definite on the orthogonal complement of ẏ(s) =
(ẏ1(s), ẏ2(s)).

Proof. The first claim follows from the fact that both (Y (s)ẏ(0), N(s)ẏ(0)) and (ẏ(s), ṗ(s))
are vector solutions of (??) as well as the fact that (ẏ(0), ṗ(0)) = (Y (0)ẏ(0), N(0)ẏ(0)).

Suppose that Y (s)a = 0 for some a ∈ C2. Since (x(s), ξ(s)) := (Y (s)a,N(s)a) is a vector
solution of (??), it follows from the constancy of complexified form σC that

0 = σC((x(s), ξ(s)), (x(s), ξ(s))) = σ((x(0), ξ(0)), (x(0), ξ(0)))

= x(0) · ξ(0)− x(0) · ξ(0) = 2ia · ℑ(M0)a.

By definition ℑM0 is positive definite on the orthogonal complement of ẏ(0). Combining
this with the above equality we deduce that a = βẏ(0) for some β ∈ C. Consequently,

0 = Y (s)a = βY (s)ẏ(0) = βẏ(s),

where we have used the first item. This gives the second item since ẏ(s) ̸= 0 for all s, due
to the assumption (H1).

To deal with the third item, notice that

d

ds
(NY −1) = ṄY −1 −NY −1Ẏ Y −1,

which together with (??) yields

d

ds
(NY −1) = −A−BT (NY −1

)
− (NY −1)BY − (NY −1)C(NY −1).

Hence M(s) = NY −1 satisfies (??).

We pass to the fourth statement. Let Y i(s) (resp N i(s)), i = 1, 2, denote the column
vectors of Y (s) (resp. N(s)), and let Gi(s) = (Y i(s), N i(s)). By construction of M(s), we
have M(s)Y i(s) = N i(s).
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From (??), we have

σ(Gi(s), Gj(s)) = σ(Gi(0), Gj(0)) = Y j(s) ·M(s)Y i(s)− Y i(s) ·M(s)Y j(s)

= Y j(0) ·M(0)Y i(0)− Y i(0) ·M(0)Y j(0).

The right hand side of the last equation equals zero, since M(0) = M0 is symmetric.
Therefore, for all s ∈ R,

Y j(s) ·M(s)Y i(s) = Y i(s) ·M(s)Y j(s).

Notice that (Y 1(s), Y 2(s)) is a basis in C2, since Y (s) is invertible for all s. Combining
this with the above equality we deduce that M(s) is symmetric.

The proof for the final item is almost identical to the proof of the second one, and relies
on the conservation of the complexified form σC.

□
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