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Abstract
In this study, we focus on Handwriting Text Recognition (HTR) on Medieval and Early Modern doc-
umentary manuscripts (10th-16th centuries) using Vision Language models (VLM). We leverage the
TrOCR architecture and integrate domain-specific large language models (LLM). This HTR approach
show promising results on contemporary documents but the application on historical manuscripts and
low-resource languages need domain pre-trained Image models to encode sequential data and adapted
LLM’s to adequately decode the signals. Furthermore, as training pairs from medieval manuscripts are
scarce a synthetic dataset generated using GAN (Generative Adversarial Networks) augmentation tech-
niques will be used during training. For this work, the annotated training dataset comprises more of
2 million tokens and 210,000 graphical text-lines coming from 52 different manuscripts in mostly four
ancient languages versions for Latin, French, Spanish and High German. The synthetic GAN dataset
comprises 420k graphical lines emulating textual and graphical features from the ground-truth. The re-
sults shows relative improvements until 30% in CER, WER and BERT-score compared to CRNN only
solutions. This study outlines the following: the training architecture and corpora employed; delves
into the encountered challenges during training and validation concerning ancient writing practices, and
conducts an analysis of the potential biases and strengths associated with the joint application of vision
transformers, GAN’s and LLMs for HTR tasks.

Keywords
HTR for ancient documents, HTR for medieval manuscripts, HTR using visual Language Models, digital
diplomatics, medieval charters

I INTRODUCTION

This study introduces a cutting-edge method for Handwriting Text Recognition (HTR) in-
tegrating Large Language Models (LLMs) and Vision Transformer (ViT) for documentary
manuscripts spanning different languages and script families from the late-10th to the 16th cen-
tury. By proposing an encoder-decoder architecture that leverage the capabilities from Image
transformers and Language Transformer models in an autoregressive sequence, we depart from
traditional HTR methodologies, which are based on CRNN systems, towards a more integrated
approach for the accurate transcription and interpretation of historical documentary corpora.

Documentary manuscripts comprises a variety of documents generated by legal, juridical, and
administrative practices. These include charters, registers, legal series, reports, and proceedings,
among others. They serve as a primary written source for historical studies, particularly from the
late Middle Ages when royal, state, and urban administrations began to adopt a more systematic
approach to record-keeping. Despite their importance, these sources have often been neglected
in digital practices and modeling. Their increased volume, which became massive from the late
14th century, along with their complex page layouts, domain-specific discourse, and cursive
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writing, pose a significant challenge for digitization campaigns and digital edition projects.
Besides, 19th and 20th-century editions of this kind of documents are scarce and mostly focused
on these imitating documentary practices, such as cartularies, or on organic corpora like royal
and abbey charters collections, resulting in a lack of aligned corpora for HTR training.

On the other hand, the efficacy of using explicit language models to improve the accuracy
of HTR has been demonstrated in previous studies, yielding promising results (Tarride et al.
[2024], Boros et al. [2024]). These models capture statistical correlations among tokens in
natural language, providing context awareness and proposing more contextually appropriate
interpretations. This is particularly crucial for addressing challenges such as complex layouts,
ancient or noisy writing, or out-of-domain issues, where a purely graphical interpretation may
fall short in providing an accurate transcription, as it lacks the linguistic nuances and contextual
understanding that language models bring to the table. In contrast to classical CRNN models,
which implicitly learn language features and focus on identifying patterns directly from the
data without considering linguistic context, the integration of a language model involves an
statistical analyze of how words interrelate in a language and the likelihood of certain sequences
co-occurring. This approach results in more precise and contextually informed predictions.

Additionally, language models like RoBERTa (Liu et al. [2019]), acting here as tokenizer and
decoder, or mT5 (Xue et al. [2021]) employ strategies such as label smoothing, allowing the
model to assign a small but nonzero probability to unseen tokens. By smoothing the proba-
bility distribution over the output vocabulary, this strategy penalize over-confident outputs and
encourages the model to explore a wider range of possibilities during training, leading to more
reliable and realistic predictions, especially when dealing with complex or ambiguous inputs
(Gao et al. [2020]). This approach helps the model generalize better and mitigates over-fitting,
a critical problem in low-resource scenarios where the model hasn’t encountered a comprehen-
sive range of token combinations during training.

Concerning the use of synthetic datasets, recent studies (Rahal et al. [2024], Vidal-Gorène et al.
[2023]) have explored the potential of introducing synthetic material to address the scarcity of
ancient writing datasets. This includes adding graphical lines based on texts that are only edited
or not digitized thereby expanding the available data for training models. The challenge in
this case lies in synthesizing handwritten text images by successfully transferring writing fam-
ily features and encoding individual calligraphic textures into a latent space. This is a natural
progression of data augmentation techniques in computer vision, aiming to expose models to
a wider range of data scenarios. Synthetics increase diversity with minimal bias increase. Lit-
erature shows that, in most cases, synthetic complex content helps models to generalize better
in real-data scenarios by introducing new patterns and edge cases not found in the original data
(Shorten and Khoshgoftaar [2019]).

Our extensive annotated ground-truth corpus comprises more of 2 million tokens and 210,000
text lines across 52 manuscripts in historical Latin, French, Spanish and High German, with
a significant portion annotated for Named Entity Recognition (NER) tasks. Our transformer-
based strategy outperforms traditional models in HTR by improving character and word error
rates and BERT-score metrics, while efficiently conducting GAN handwritting lines generation
and internal post-correction tasks based on LLM replacements. This approach not only reduces
computational complexity but also minimizes the dependency on large volumes of ground-truth
data for model fine-tuning, making the process more efficient and scalable.

We address several training challenges, including the development of domain-specific language
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models; the implications of causal word and sub-word prediction as well as the biases from the
Attention mechanism. Furthermore, we tackle the difficulty of transcribing texts with significant
graphical and orthographic variation using a formal and fixed vocabulary. Our hybrid training
strategy, which combines supervised learning on annotated data with unsupervised learning
on larger, unannotated datasets, improves the model’s generalizability in a cross-domain and
cross-chronology environment. This method enables effective handling of continuous script
and discrete entity recognition, significantly broadening the model’s applicability to a diverse
array of historical documents.

This work provides the following contributions:

1. We extensively test transformed-based HTR models which outperforms CRNN solutions
and open the way to easily apply diverse LLM-based post-correction and NLP tools.

2. We develop new LLM and GAN models on medieval and modern sources to perform a
comparative study on various decoding and data augmentations methods, exploring the
potential of synthetic data to improve model performance.

3. We publish in open-source our models in our Huggingface hub and Zenodo:
https://huggingface.co/magistermilitum

https://doi.org/10.5281/zenodo.13862096

II RELATED WORKS
In the last decade, Handwriting Text Recognition (HTR) technology for manuscript analysis
have transformed how historical texts and digitized collections are automatically processed and
shared. The approaches has transitioning from Markov engine-based algorithms (Fischer et al.
[2011]) to deep learning methodologies that leverage character-level neural networks. The in-
troduction of Connectionist Temporal Classification (CTC) and bidirectional neural networks
has substantially enhanced models’ precision while diminishing the dependency on big ground-
truth datasets for produce robust HTR models. Both technologies ensure that models can accu-
rately align and transcribe sequences without requiring pre-segmented input data. Furthermore,
the application of transformers based on the Attention Mechanism to computer vision tasks
(Dosovitskiy et al. [2020]) has provided a significant leap forward, enabling models to focus
on global interactions and relevant features of the text more effectively. These advancements
have enabled more efficient and accurate transcription of historical documents, making them
accessible for scholarly research and public engagement.

Transfer learning practices are increasingly prevalent in HTR research. This trend has been
driven by the development in recent years of both, robust CRNN models, which have been
pre-trained on vast line-transcribed datasets; and large image-to-text transformer models which
are typically built upon self-supervised Vision Transformer models. These pre-trained founda-
tions are one of the main factor for the adoption of text recognition practices on patrimonial
institutions as they improve accuracy and efficiency with minimal setups and ground-truth. By
leveraging pre-trained models, projects can avoid the zero-start effect and reduce the technolog-
ical entry barrier, thereby leading to a more efficient allocation of funds and human resources
and facilitating interdisciplinary research and collaboration, opening new avenues for the study
of cultural heritage.

As demonstred by (Ströbel et al. [2022], Arias et al. [2023]), the fine-tuning of Transformed-
based HTR such as TrOCR using ancient writing sources can lead to models displaying Char-
acter Error Rate (CER) accuracy rates reaching 95% in validation, though it’s noted that model
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performance, similar to the case of CRNN-based models, can decrease during cross-domain or
cross-family script tests. Additionally, the data augmentation techniques based on synthetic ma-
terial have been explored by TrOCR developers on digitized modern material and in academia
using medieval sources with promising results (Rahal et al. [2024]). Furthermore, (Tarride
et al. [2023]) demonstrates that NLP tasks as NER (Named entity Recognition) using text-
based encoding can be successfully integrated during HTR training. Other studies indicate that
while LLM models can enhance the quality of inferences in seq2seq and classification task
(de Sousa Neto et al. [2020]), their use in purely causal mode, specially with pre-trained auto-
regressive models, can degrade performance. (Boros et al. [2024]).

The field of HTR for ancient writing is characterized by a symbiotic blend of historical schol-
arship and technological innovation. Generating ground-truth data for ancient scripts is a com-
plex process, necessitating deep expertise to decipher ancient languages and scripts, and to
develop methodologies that resolve ambiguities and establish precise annotation guidelines.
Besides, HTR systems face challenges largely studied by paleography and diplomatics: com-
plex variability in graphical behaviour, document typology, script families, and regional writ-
ing practices. In that sense, project initiatives coming from humanistic centers like Himanis
(Stutzmann et al. [2017]), Home (Stutzmann et al. [2021b]), Cremma (Clérice et al. [2023]),
Catmus (Clérice et al. [2024]) and Bullinger Digital (Ströbel et al. [2022]), backed by Tran-
skribus (Kahle et al. [2017]), Kraken (Kiessling [2019]) and the eScriptorium (Kiessling et al.
[2019]) platform, have been instrumental in compiling, analyzing and documenting corpora for
ancient texts as well as establishing widely accepted scientific practices and annotation stan-
dards (Guéville and Wrisley [2024]). This collaborative effort have been essential for refining
model performances, through both the rigorous analysis of prediction behaviours and the careful
curation of ground-truth data.

III CORPORA DESCRIPTION
For this work several freely available datasets were used covering a wide range of epochs,
scripts families, provenances and typologies.

Table 1 List of training and testing corpora.
Corpus / Manuscript Dates Language Typologie Script family nº lines nº tokens

TRAIN

e-NDP project 14-15th la Chapter registers Cursive 33 800 203 565
Alcar-HOME 12-15th la, fro Cartulaires (charters) Textualis, Cursive, Hybrida 103 412 737 635

Himanis 14-15th la, fro Royal registers Cursive; Hybrida 15 600 316 155
Königsfelden Abbey 14-16th la, gmh Charters and records Textualis 12 823 274 615

Bullinger Digital 15-16th la, deu Private correspondence Cursive 10 000 101 493
MLH 13-15th la, fro, gmh Cartularies, registers Textualis, Cursive 22 433 282 897

CODEA 14-16th esp, la Charters, legal records Cursive, Humanistic-Cursive 12 150 128 551

210 218 2 044 911
TEST

Cod. Sangallensis, 562 9th la Hagiographical book Carolingial Minuscule 1 410 11 597
Faithfull Transcription 14-15th la, deu, gmh Sermons, Hours books Bastarda, Textualis, Cursive 1 000 6 380
Wien ÖNB Cod. 2160 9th la Legal texts, decrets Carolingian Minuscule 1 949 8 203
Troyes, Méd. Ms 1600 14th la Exegetical, dogmatic Semi-Hybrida 1 622 7 939
Cologny, Bodmer, 168 14th fro Litterature Textualis 1 977 13 016

ANLux, A-X-42-1 14-15th la, fro Charters, comptability Textualis, Cursive 3 147 36 811

11 105 83 946
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3.1 Training Corpora

3.1.1 The e-NDP project corpus

The Notre-Dame-de-Paris registers corpus is a unique resource for HTR of late medieval doc-
umentary manuscripts, featuring decisions from weekly cathedral canon meetings from 1326
to 1504 (Claustre and Smith [2022]). The project has released 523 pages transcribed from 26
registers by historians and paleographers1. These registers, mainly in Latin with some medieval
French, use a cursive script and show an evolving layout typical for administrative documents,
including lists, margin notes, and titles. Originally intended for daily use rather than long-term
preservation, their design is less meticulous than that of literary manuscripts.

3.1.2 The HOME-Alcar corpus

The HOME-Alcar corpus (Stutzmann et al. [2021b]), comprises images of medieval manuscripts
with line-level aligned scholarly editions and detailed named entity annotations2. This bilingual
(Latin and French) collection, featuring 17 French cartularies from the 12th to the 14th centuries
across four script families, serves as a crucial tool for training Handwritten Text Recognition
(HTR) and Named Entity Recognition (NER) models. Cartularies, essential for medieval stud-
ies, include documents that were often not preserved in their original form, such as property
transfers, wills, land and debt disputes, treaties and indemnities.

3.1.3 The Himanis project

The Himanis project features documents from the French Royal Chancery, specifically registers
JJ35 to JJ211 at the Archives nationales, dating from 1302 to 14833. These registers, containing
a variety of charters such as letters of remission, mandates, and ennoblements, were meticu-
lously digitized and matched line by line with Paul Guerin’s semi-diplomatic edition (Guérin
[1881]). The training dataset released in 2021 (Stutzmann et al. [2021a]), includes 1,500 images
and 30,000 text lines, primarily written in Latin and Old French using the Cursiva script.

3.1.4 The Königsfelden Abbey corpus

The digital edition ”Charters and Records of Königsfelden 1308–1662”4, carried out by the Uni-
versity of Zurich’s Department of History from 2017 to 2020, provides comprehensive access
to 1557 charters and records from the 14th to the 17th centuries. The project distinguishes itself
by offering a fully annotated corpus in a TEI format (Halter-Pernet et al. [2021]) that includes
digital facsimiles, transcriptions, and texts with diplomatic and named entity annotations.

3.1.5 The Bullinger Digital

The bullinger Digital5 project aims to digitize and make accessible the correspondence of Hein-
rich Bullinger (1504-1575), a key figure in the Reformation. The project involves encoding the
letters in XML and providing online access to around 10,000 letters received and 2,000 letters
sent by Bullinger. These letters, primarily in Latin and Early New High German, offer valu-
able insights into the political, theological, and social contexts of the Early Modern period. In
the last years the bullinger have became a key corpus for German and Neolatin Early-modern
HTR models. A multilingual section of this vast corpus (10k lines) was randomly selected for
training.

1https://doi.org/10.5281/zenodo.7575693
2https://doi.org/10.5281/zenodo.5600884
3https://doi.org/10.5281/zenodo.5535306
4https://doi.org/10.5281/zenodo.5179361
5https://github.com/bullinger-digital/bullinger-korpus-tei
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3.1.6 The Monumenta Historica Luxemburgensica

This is a ongoing project hosted by the University of Luxembourg which comprises several
medieval manuscripts produced in Luxembourg institutions between the 12th and the 15th cen-
turies6. It entails the transcription and digital edition of cartulaires, feudal books and registers
digitezed by the National Archives or hosted in The Great Regions repositories. The documents
spans a three languages register: french, German and Latin.

3.1.7 The CODEA corpus

The CODEA corpus (Corpus of Spanish Documents Prior to 1800), launched in 2012 by the
University of Alcalá (Sánchez-Prieto Borja [2012]), offers a wide landscape of the evolution of
Spanish from the High Middle Ages7. The corpus includes a broad typological range of doc-
uments, including both public records—such as privileges, mandates and grants—and private
documents like contracts, sales and letters coming from chancelleries, city offices, notaries, and
small scriptoria from the 11th to the 16th centuries. Currently, the CODEA corpus comprises
2,500 charters. For research purposes, a subset of 250 documents has been randomly selected
and manually aligned to facilitate the study of HTR on Old Spanish documentary sources.

3.2 Testing Corpora
In order to offer a large scope of the capabilites of the models we choose six curated manuscripts
unseen during training. From this we aim to propose a complete landscape of medieval and
early-modern production varying genres, languages and chronologies:

1. The Saint-Gall database (late 9th century)8, which is a binarized version of the Codex
Sangallensis 562, the oldest copy of the vitae of St. Gallus and St. Otmar in the version
of Walahfrid Strabo. The Saint-Gall is one of the most used corpus in HTR benchmarks
for ancient documents.

2. The Cremma medieval dataset9. This is a modified version of the original Cremma cor-
pus which use a graphematic transcription, to include the expanded abbreviations of some
books (13th-15th) as the Chanson d’Otinel (Cologny, Bodmer, 168, 211ra-222rb).

3. Faithful Transcriptions: Published in 202110: The curated version from the Transcribathon
(Staatsbibliothek zu Berlin) of 181 pages coming from 12 medieval manuscripts (14th-
15th) in German (Middle High variants and Low German), Dutch, and Latin, featuring
various scripts such as Textualis, Gothic Cursive, and Bastarda. These manuscripts in-
cludes historical Bibles, prayer books, and sermon collections.

4. The Liber Feudorum (ANLux, A-X-42-0111) which is a feudal book (14th-15th cen-
turies) contending copies of feudal charters, county incomes and list of revenues, included
in the Monumenta Luxemburguensica and written in Latin, French and High German.

5. The Wien ÖNB Cod. 2160 (Attwood et al. [2023])12. This is the transcribed version of
Vienna, Österreichische Nationalbibliothek, 2160 (9th century) contending a copied ver-
sion of a well-known legal compilation, the Mosaicarum et Romanarum Legum Collatio.

6www.tridis.me
7https://corpuscodea.es/
8https://fki.tic.heia-fr.ch/databases/saint-gall-database
9https://doi.org/10.5281/zenodo.7506657

10https://doi.org/10.5281/zenodo.5582483
11https://query.an.etat.lu/Query/detail.aspx?ID=212411
12https://doi.org/10.5281/zenodo.7537204
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6. The Summa of abstinentia or Dictionarius pauperum attributed to Nicolas de Byard
(Médiathèque de Troyes Champagne Métropole, Ms 160013). This a highly abbreviated
copy (14th century) from a famous collection written at the end of 13th century of preach-
ing material and advice on behaviour intended for help clerics during his work.

Figure 1 Eight examples of act datation from training corpora manuscripts:

1. e-NDP : Anno domini millesimo CCCC° tricesimo sexto die jovis decima quarta mensis junii.
2. Nesle : datum Edue anno Domini M° CC° sexagesimo tercio mense septembri .
3. Molesmes : fecimus roborari. Actum anno Domini M°. CC°. duodecimo, mense junio.
4. Fervaques : Che fu fait en l’an de l’incarnation nostre seigneur M et C
5. Clairmarais : Actum paris Anno domini Mº . CCº . nonagesimo quarto .
6. CODEA : ocho dias del mes de otubre anno del nasçimiento de nuestro salvador
7. Königsfelden : sampstag vor misericordia domini , anno domini funfftzechen hundert unnd
8. MLH : communitas. Datum anno Domini M°. CC°. LXX°. nono, feria secunda post festum beati

In Latin, French and German, all eight follow a similar datation pattern based on the year of the incarna-
tion using roman numerals.

3.3 Datasets configuration
The training corpus comprises five primary writing families, over a hundred distinct hands (the
precise number of interventions remains indeterminable), and four main languages (refer to
Table 1). As proved by other works in ancient handwriting (Torres Aguilar and Jolivet [2023])
blending families, hands and languages during training is a recommended strategy. This is
not only because it appears to yield robust models by limiting the over-fitting on some hands
clusters, but also because ancient manuscripts, especially those from the medieval and early
modern periods, can display more than one writing family or include several hand interventions

13https://gallica.bnf.fr/ark:/12148/btv1b10510290t
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within a single document or even a single page. Moreover, multilingual approaches, particularly
those employing LLMs, seem to provide a more extensive and robust linguistic foundation for
models designed to generalize across a wide range of sources spanning several centuries.

Figure 2 The complete set of 123 characters used to transcribe the training corpus.

Both the training and test corpora are multilingual, but with an unbalanced distribution. Latin,
French, and Spanish are predominantly represented in an overall ratio of 5:2:1 for both the
training and testing sets. Pages written in High German variants can also be found, albeit in a
more marginal quantity (less than 5%). Moreover, as the corpora are derived from diplomatic
editions, the transcriptions adhere to the semi-diplomatic standard with normalization, but not
regularization (manuscript spellings are keeped, vg. echevin, eskevin, eschevin). This implies
that all abbreviations (by suspension and contraction) and abbreviating symbols have been ex-
panded, punctuation has been standardized, named entities have been capitalized, and variants
of a given letter (allographs, for instance, for “s” long or “a” round) have been mostly reduced
to the canonical letter, with no distinctions made between them.

In addition, as modern editors have introduced dots and commas (or semicolons) to indicate
pauses in the sentences, even though such punctuation marks were not always present in the
original manuscript, the accuracy results will be presented (Table 6) considering both a fully
edited transcription (hereafter referred to as “raw”) and a transcription that omits punctuation
marks and diacritics (hereafter referred to as “cleaned”). This will facilitate the visualization of
the impact of modern editorial interventions on the accuracy of the model’s predictions.

The choice of transcription guidelines for any project is influenced by their intended application.
In libraries, archives and most online editions, transcription criteria that normalize the text can
enhance searchability, content parsing, and processing through NLP and NLU tools for the
general reader. However, for researchers in paleography or philology, more specific criteria
that follow a transliteration or graphemic / graphetic transcription schema may be preferred
(Robinson and Solopova [1993], Guéville and Wrisley [2024]). This approach preserves as
much graphical information as possible from the original manuscript, including special letter
forms, abbreviations, allographs, and marks through an extended Unicode standard. While
this last transcription schema facilitates HTR training by reducing the number of linguistic
layers that models must learn, it faces challenges on our approach. Firstly, LLMs and explicit
vocabularies which are typically trained on millions of normalized documents could fall short
applied on these specialized texts. Secondly, creating diplomatic critical editions can be labor-
intensive as they are seldom seen in academia publications for practical reasons. This scarcity
may complicate the production of diverse ground-truth. As a countermeasure, recent datasets
have emerged that allow for multiple transcription levels linked in TEI collating schemes as
well as projects to catalog plural HTR datasets (Chagué and Clérice [2022]).
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Our perspective in this article is to propose generalistic models from legacy diplomatic edi-
tions of documentary and book manuscripts, mostly from the late medieval and early modern
periods (12th-16th centuries) on the base of semi-diplomatic transcriptions. These models are
designed to provide a standardized and consistent text directly compatible with modern text
processing tools, facilitating semantic annotation and serving as a foundation for developing
new documentary editions or incorporating diplomatic layers into critical editions.

IV HTR ARCHITECTURE

4.1 The CRNN model
The CRNN architecture employed as a baseline in this study has 6.3 million parameters. It
consists of: (i) four CNN layers for extracting images local features; (ii) three bidirectional
LSTMs layers for processing temporal sequences; and (iii) a CTC algorithm for loss calculation
and text rendering as it allows the model to handle sequences of varying lengths and align the
predicted characters with the ground-truth. The convolutional block uses layers with different
kernel sizes (4x16, 3x8) and 16n filters per layer (32, 32, 64, 64). Each layer is followed
by MaxPooling and a 2D dropout with 0.1 probability. The activation function is ReLU. A
reshape layer collapses non-1 height dimensions into a single value, accommodating different
manuscript line sizes with a fixed image height of 140 pixels. This is an architecture designed
to capture both local and temporal features, which makes it highly effective for sequence tasks
such as HTR where adaptability to different text styles, layouts and spacing is crucial.

In Kraken, which uses the VGSL network specification, this train architecture can be fully repli-
cated by using : -s ’[1,140,0,1 Cr4,16,32 Do0.1,2 Mp2,2 Cr4,16,32 Do0.1,2

Mp2,2 Cr3,8,64 Do0.1,2 Mp2,2 Cr3,8,64 Do0.1,2 S1(1x0)1,3 Lbx256 Do0.3,2

Lbx256 Do0.3,2 Lbx256 Do0.3]’

4.2 The Transformer model
We adopt the encoder-decoder architecture proposed in the TrOCR paper (Li et al. [2023]),
which includes an image Transformer for feature extraction and a text Transformer for language
modeling. The decoder is initialized with the Deit model trained on ImageNet (Touvron et al.
[2021]), while the encoder utilizes the English RoBERTa model (Liu et al. [2019]). The original
model (microsoft/trocr-large-handwritten) was pre-training over hundred of millions synthetic
text lines images, providing a robust foundation for recognizing diverse text patterns.

The Encoder breaks down input images into patches, which are then flattened and projected
into D-dimensional vectors. The “[CLS]” token aggregates patch information, and positional
embeddings are added. Unlike CNNs that process images holistically, Transformers handle im-
ages as sequences of patches. The Decoder generates the wordpiece sequence, considering both
the encoder output and its previous iteration. These hidden states are projected to the vocabu-
lary size, with probabilities computed via softmax. The final output generation employs beam
search (Von Platen [2020]), selecting the most probable sequence from multiple candidates.

This architecture’s flexibility allows for experimentation with various language models as tok-
enizers or decoders. For instance, while the TrOCR paper uses an English RoBERTa model as
tokenizer, it’s entirely feasible to use other models fine-tuned for specific tasks. In our case, we
could conduct an experiment using a RoBERTa model trained on historical texts (RoBERTa-
med) and a GPT-2 model (GPT-2 med) fine-tuned on the same material. These experiments
aim to verify the impact of domain-specific language models on the system’s performance and
guide us in selecting the most suitable model for general and specific tasks.
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Table 2 List of corpora used to train LLM models. As the major corpora were crawled from the internet,
some GB of data are overlapping. The cleaned ensemble has 5GB, for about 750 million tokens.

Corpus Size Dates Languages Typology
Corpus Corporum 3,2Gb 5th BC - 16th la Charters and Litterature

CC100 3,0Gb 5th BC - 18th la Articles and books
Wiki-latin 1,2Gb 5th BC - 20th la Articles and books

CEMA 320Mb 9th - 15th la, fro Charters
HOME + e-NDP 38Mb 10th - 15th la, fro Charters and Registers

CODEA 13Mb 10th - 17th la, esp Charters and Registers
BFM 34Mb 13th - 15th fro Litterature
NCA 19Mb 13th - 15th fro Litterature

OpenMedFr 5Mb 12th-15th fro Litterature

∼7,8Gb
750M tokens (5Gb)

4.3 The LLM model
The Roberta-medieval model used during experiments was training from scratch (10 epochs)
using a base architecture (768 dimensions, 12 attention heads, 12 hidden layers) on a 8k vo-
cabulary. The training corpora, also used on GPT-2, includes several freely available me-
dieval and classical Latin, Old Frech and Old Spanish datasets (See table 2) spanning from
the classical Latin period (5th BC) to the 20th century: The Corpus Corporum14, Common-
crawl 10015, Wikipedia in Latin16, CEMA (Cartae Europae Medii Aevi)17, HOME18, e-NDP19,
Base de Français Médiéval20, Nouveau Corpus d’Amsterdam21, Open Medieval French22.

In this work the decoding using the LLM model was done using a beam search (value 3), which
is an strategy that maintains a set of the most promising sequences at each step of the decoding
process. This approach allows the model to explore multiple possible sequences simultaneously,
and not just choosing the most probably option, effectively balancing between exploration and
exploitation in the search space.

4.4 The GAN model
Our experiments utilized synthetic lines generated using the HiGAN+ architecture (Gan et al.
[2022]), a state-of-the-art Generative Adversarial Network (GAN) designed for synthesizing
realistic handwritten text. Unlike conventional methods, it can mimic calligraphic styles, gen-
erate variable-sized images, and handle arbitrary textual contents, including out-of-vocabulary
words. It disentangles textual contents and calligraphic styles using a writer-specific auxiliary
loss and contextual loss, which enable precise one-shot handwriting style transfer. The archi-
tecture comprises five concurrent models:

1. Style-Controlled Generator: Generates variable-length images based on arbitrary textual
content.

14https://mlat.uzh.ch/
15https://data.statmt.org/cc-100/
16https://dumps.wikimedia.org/backup-index.html
17https://cema.lamop.fr/
18https://doi.org/10.5281/zenodo.5600884
19https://zenodo.org/record/7575693
20https://nakala.fr/collection/10.34847/nkl.1279lie9
21http://srcmf.org/
22https://github.com/OpenMedFr
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2. Global Discriminator: Verifies the fidelity of synthetic images.
3. Patch Discriminator: Refines local texture details of synthetic image by verifying patch

fidelity.
4. Style Encoder: Disentangles calligraphic styles from arbitrary handwriting images.
5. Text Recognizer: Guides the generator to produce readable handwriting images condi-

tioned on arbitrary textual content.
For our experiment, we adapted the system to handle color images, lines up to 30 characters, 4
pixels patches, and generate images with variable width and a fixed height of 64 pixels.

The GAN model was trained on a subset of our HTR training corpus. We select all lines that
contained until 12 tokens. The number of writers was defined to 372, and the writer styles
interpolation was enabled to generate a variety of new styles. The texts for the new graphical
lines were extracted from the charters and literature collections mentioned in Section 4.3, for
which we have no annotated graphical lines. We generated a total of 420k lines (2x our training
GT), each varying in size from 8 to 12 tokens. Examples of some synthetic lines are illustrated
in Figure 3.

Figure 3 Five synthetic generated lines imitating hand-based Cursiva and Textualis styles on real and
fictional texts:

1. Latin: solidis Matisconensibus : sita ut obligati idem Gauterius usque
2. Spanish : por fazer bien e merçed a aquellos que sacaron moravedies de
3. Latin : Quomtumque persona absque alicuius impulsionis molestia teneant et
4. Neo-Latin : Aut fac aut noli facere conata nihil valent (Yoda dixit)
5. English : handwritten Text recognition is a really hard task

4.5 Hyperparameters

4.5.1 CRNN (Kraken)

The baseline CRNN model follows a classical 3CNN + 3RNN + CTC architecture. We feature
a pad size of {24} pixels, useful in providing more space to the kernel for better coverage of
the image. Additionally, we ran a {ReduceOnPlateau} optimizer with patience {3} which can
helps prevent overshooting the minimum of the loss function on constant LR models.

4.5.2 Transformers (TrOCR)

When RoBERTa medieval is used as decoder some modifications were introduced before reuse
the TrOCR-large weights, as they were exclusively pre-trained on English data:

1. Re-initialization of the embedding layer and the fully connected layer in the decoder in
order to allow these layers to better learn representations specific to ancient languages.
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2. Re-starting the positional encoding layer in the decoder. This can be beneficial to better
understand the order of tokens in sequences which are variable for each language.

4.5.3 GAN (HiGAN+)

The GAN model follows a custom optimization: The regularization term λkl , is set to 1×10−4,
controlling how closely the encoder’s latent distribution fits the prior. The context loss, λctx is
set to {5.0}, weighting the importance of preserving textual content in the total loss function.
The remaining hyper-parameters, λls are dynamically adjusted during training using a gradient
balancing strategy.

4.5.4 LLM (RoBERTA-med)
As was observed by (Grobol et al. [2022]), for smaller datasets (under 1 Billion tokens), em-
ploying a restricted vocabulary can potentially enhance the performance on the mask tokens
task as it helps to mitigate the risk of the model erroneously selecting rare words or uncommon
phrases as output. In our case the vocabulary sizes ranges from 10k to 8k tokens, which is
optimized to balance the model’s performance and the complexity of the language data.

All the LLM, GAN and HTR training cycles were realized on a Threadripper PRO (24-cores)
using a dual A100 (32GB vRAM) coupled to 128GB of RAM. In all cases, data augmentation
techniques, such as distortion, blur, rotation and blots were also applied to the images to enhance
training performance.

Table 3 Summary of Model Training Hyper-Parameters and Results. CER (Character Error Rate), WER
(Word Error Rate), FID (Fréchet inception distance), KID (Kernel Inception Distance ), PP (Perplexity).
Lower is better in all results.

Model Batch Learning Rate Warmup Epochs Emb Dim Other Results ↓

CRNN 8 3× 10−4 (linear) 0 65 768
pad{24} CER = 0.084
RoP{3} WER = 0.185

Transformers 24 6× 10−5 (cosine) 0.03 15 1024 FT epochs{10} CER = 0.068
WER = 0.142

GAN 12 1× 10−4 (linear) 0.02 70 256
voc size{85} WID = 0.42
n styles{372} KID = 0.51

RoBERTa-Med 48 5× 10−5 (linear) 0.04 10 768
voc size{8k} Loss = 1.25
mlm{0.15} PP = 4.64

V EXPERIMENTS
In this work we will explore two training corpus:

1. The full documentary medieval and Early modern corpus (See Table 1).
2. The aforementioned corpus + 420k synthetic medieval data pairs. (TR γ)

The VLM (Visual Language Models) architectures were trained on three flavours:

1. The TrOCR large (1024 dimensions) weights with english RoBERTA as decoder (TR α)
2. The TrOCR large weights using the RoBERTa medieval as tokenizer. (TR β)
3. The Vision Transformer (ViT) weights using the GPT-2 medieval as tokenizer and de-

coder on causal mode (TR δ & TR γ)

The CRNN models, trained on Kraken v4, used here as our baseline, will be also trained on
aforementioned datasets. (CRNN α and CRNN β)
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We generated a total of 6 models (See Table 4) with three primary objectives in mind:

1. Exploring the advantages and limitations of using a Transformers-based model compared
to the CRNN+CTC solutions.

2. Determining the impact of integrating an LLM model into the decoder part of the archi-
tecture.

3. Measuring the enhancement provided by synthetic material, both during the pre-training
and the training phase of the models.

The performance of each model will be evaluated on two scenarios :

1. Validation during training on 10% of the train-dataset (Table 4)
2. Validation against 6 external manuscripts in few-shot (Table 5) and zero-shot mode (tables

5 and 6).

VI RESULTS
The Results will be presented using widely recognized metrics, including CER (Character Error
Ratio), WER (Word Error Ratio) and BERT-score, which computes cosine similarity between
candidate texts and reference texts in a BERT-embedded space. These metrics allows us to un-
derstand not only how accurately the model is transcribing lines at a word and character level,
but also how well it preserves the meaning, and by extension, the readability of the original con-
tent. Besides metrics will be computed on both, raw mode (R), without applying normalization,
and in a cleaned mode (C), ignoring diacritics and punctuation’s signs.

Table 4 Evaluation results for the six models during training. CRNN : Convolutional Recurrent Net-
works; ϕ : Type of textual sequence (R : raw; C : cleaned); CER : Character Error Rate; WER : Word
Error Rate; BERT : BERT-score)

Validation ImprovingModel code name
/ Scores

ϕ Model Content Lines
CER WER BERT ∆CER ∆WER ∆BERT

R 7.1 20.9 92.2
CRNN α C

Kraken v4 (CRNN + CTC)
from scratch (only GT)

210 218
6.4 19.3 93.0

R 10.0 23.8 90.8
TR α C

FT on TrOCR-large (Tridis)
Pretrain on IAM (GT)

210 218
8.5 20.7 92.2 -33% -7% -1%

R 7.6 16.4 93.2
TR β C

FT on TrOCR-large
+ med-RoBERTa as decoder (GT)

210 218
6.4 14.3 94.2 +0% +26% +2%

R 6.4 14.4 94.5
TR γ C

TR β config
(GT + Synthetic dataset)

630 654
5.7 12.9 95.3 +11% +33% +3%

R 11.2 28.4 89.4
TR δ C

FT on Vit-base +
+ med-GPT2 as decoder (GT)

210 218
9.7 24.8 90.9 -52% -28% -2%

R 6.2 17.8 93.3
CRNN β C

Kraken v4 (CRNN + CTC)
from scratch (GT + synthetic)

630 654
5.8 16.4 93.8 +9% +15% +1%

During our experiments, the CRNN models, serving as our baseline, demonstrated notable im-
provements when synthetic data was incorporated into the training process. Specifically, the
CRNN β model, which was trained with both ground-truth and synthetic data, achieved a CER
of 0.058 and a WER of 0.164. This represents a relative improvement of 9% and 15% in CER
and WER validation over the CRNN α model, which was trained solely with ground-truth data.
These results underscore the significant impact of synthetic material, particularly given that the
CRNN architecture does not leverage an explicit LLM vocabulary.
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Table 5 Evaluation results on out-of-domain manuscripts using models on Zero-shot and Few-Shot
(150 lines) modes. CRNN (Models based on Convolutions + Recurrent networks. TR: Models based on
encoder-decoder transformers.(See table 4). ϕ : Type of textual sequence (Z: Zero-Shot, F: Few-Shot).
∆: improvement percentage comparing to the baseline.

Saint-Gall ∆ Cremma exp. ∆ Faithful ∆Model
/ Scores ϕ CER WER BERT CER WER CER WER BERT CER WER CER WER BERT CER WER

Z 12.5 41.8 85.7 11.0 50.4 87.9 13.2 43.3 83.2
CRNN α F 10.1 35.6 87.4 9.5 46.7 88.9 11.7 39.6 84.4

Z 13.1 36.4 85.5 -5 +13 10.9 44.6 88.1 +1 +12 11.9 39.8 86.3 +10 +8
TR α F 9.8 26.1 89.0 +3 +27 9.2 41.5 89.0 +3 +11 9.4 30.2 87.6 +20 +24

Z 12.0 33.8 86.5 +4 +19 10.5 42.0 88.6 +5 +17 11.6 38.0 87.1 +12 +12
TR β F 9.0 25.4 89.8 +11 +29 8.7 39.2 89.8 +8 +16 9.1 29.2 87.7 +22 +27

Z 10.9 30.4 88.1 +13 +27 9.8 41.2 89.3 +11 +18 11.2 37.8 87.3 +15 +13
TR γ F 7.6 24.0 91.5 +25 +33 8.1 37.3 90.6 +15 +20 8.5 27.9 88.5 +27 +29

Z 14.2 40.2 83.7 -14 +4 12.2 48.4 86.2 -11 +4 13.6 42.6 84.4 -3 +1
TR δ F 11.7 32.2 85.8 -16 +9 11.0 46.6 87.6 -16 +0 12.2 38.6 85.1 -4 +2

Z 12.1 40.7 86.2 +3 +3 10.4 47.8 88.5 +6 +5 12.2 41.3 86.5 +8 +5
CRNN β F 9.5 34.2 87.8 +6 +4 9.1 44.8 89.2 +4 +4 9.0 31.8 87.4 +23 +20

Table 6 Evaluation results on out-of-domain manuscripts. CRNN (Models based on Convolutions +
Recurrent networks. TR: Models based on encoder-decoder transformers.(See table 4). ϕ : Type of
textual sequence (R: raw, C: cleaned). ∆: improvement percentage comparing to the baseline.

Collatio ∆ S. Abstinentia ∆ Liber Feudorum ∆Model
/ Scores ϕ CER WER BERT CER WER CER WER BERT CER WER CER WER BERT CER WER

R 29.5 86.1 73.1 18.7 56.9 81.8 15.6 40.8 83.4
CRNN α C 28.0 84.2 74.0 16.5 48.1 83.6 12.6 33.6 85.5

R 29.1 80.4 77.7 +1 +7 17.6 46.3 85.8 +6 +19 14.2 34.9 86.5 +9 +15
TR α C 24.0 67.5 79.0 +14 +20 14.4 37.8 86.8 +13 +21 11.0 26.9 88.5 +13 +20

R 23.4 73.8 79.5 +21 +14 19.8 51.5 82.2 -6 +9 13.1 32.9 87.3 +16 +19
TR β C 19.5 64.2 80.0 +30 +24 17.5 46.6 84.0 -6 +3 10.0 24.8 89.3 +21 +26

R 22.7 71.6 80.3 +23 +17 16.7 44.5 86.5 +11 +22 12.8 32.7 87.5 +18 +20
TR γ C 18.3 59.5 81.8 +34 +29 13.7 36.5 87.5 +17 +24 9.6 24.1 89.6 +24 +28

R 31.2 87.2 74.0 -6 -1 22.1 61.9 78.8 -18 -9 16.3 39.4 84.8 -4 +3
TR δ C 27.7 81.2 75.8 +1 +4 19.4 52.0 81.3 -18 -8 12.9 32.0 87.8 -2 +5

R 22.8 79.3 76.1 +23 +8 17.1 52.1 83.5 +9 +8 16.0 41.4 83.1 -2 -1
CRNN β C 21.1 76.6 77.1 +24 +9 14.9 41.9 85.2 +10 +13 12.8 34.0 85.3 -1 -1

Interestingly, the TR α model, trained on the English weights of TrOCR, and the TR δ model,
which employs a specific LLM (GPT-2) and ViT as encoder, produced subpar classifiers (See
Figure 4). These experiments were designed to investigate the performance of standard pre-
trained weights (TrOCR + RoBERTa English) and auto-regressive modes on HTR. Unlike TR
β and TR γ, which leverage historical-specific tokenizers and synthetic data, TR δ relies on
generic pre-trained weights (ViT) on causal mode (GPT-2). On the other hand, the TR β model’s
exhibits an important improvement (+26% on WER metrics and +2% in the BERT-score) by
simply replacing the decoder with a historical-specific. This suggests that while general pre-
training provides a solid foundation, aligning the tokenizer and decoder with the target domain,
even when other components of the architecture remain unchanged, can become crucial for
achieving optimal performance in specialized tasks such as HTR on historical manuscripts as it
allows the model to better adheres to the linguistic and stylistic conventions of these documents.

Moreover, the addition of synthetic data in the training of transformer models led to further
enhancements. The TR γ model, our best-performing model overall, trained with both ground-
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Figure 4 % of relative progression in CER and WER across CRNN and TRansformers models in zero-
shot scenarios for the six external test corpus (Tables 5 and 6). Values in the box plots are the medians.

truth and synthetic data, achieved a CER of 0.064 and a WER of 0.143 during training valida-
tion. This represents a relative improvement of 11% in CER and a remarkable 33% in WER
compared to the baseline (See Table 4). This indicates that the inclusion of such data can bridge
the gap between general pre-training and domain-specific requirements. Synthetic data not only
enhances the model’s ability to generalize but also helps in capturing new patterns of medieval
scripts, which heterogeneity can not be fully represented in standard datasets.

On out-of-domain external manuscripts test (Tables 5 and 6), the models exhibited varying lev-
els of performance. However, the trend of improved performance with the use of Medieval
RoBERTa as a tokenizer and the inclusion of synthetic data in training remained evident (See
Figure 4). For instance, our best TR γ model surpassed the baseline in CER, WER, and BERT
score, with a median improvement of 14% in CER and 19% in WER in ‘raw mode’. The per-
formance further improved in ‘cleaned mode’, achieving 26% in CER and 27% in WER. This
suggests that a significant portion of the transformers’ errors are concentrated on punctuation,
diacritics, and spaces (See Section VII). Therefore, future work should focus on enhancing the
model’s handling of these elements. This could involve developing more sophisticated tok-
enization strategies or adding additional pre-training on datasets that address these aspects.

In few-shot scenarios (150 lines, ca.3 pages), there was an overall progression of 2-3 points in
CER and 5-8 points in WER for all models compared to zero-shot. On homogeneous corpora
such as Saint-Gall and Cremma, the best models (TR γ, TR β) achieved SOTA performance in
zero-shot mode (circa 0.10 CER), consistently outperforming the baseline in WER. In the case
of Cremma and Summa of Abstinentia, the high WER must be attributed to the nature of the
editors transcription, which prefers to follow the original writing spacing (scripta continua) and
does not introduce full modernization by splitting words as HTR models do. Moreover, when
applied to linguistically diverse corpora such as Faithful, which includes languages that are ei-
ther novel (Low German, Dutch) or have limited training data for the model (German variants),
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transformer-based solutions face significant challenges due to their inability to leverage specific
linguistic knowledge. Their performance are robust but only marginally superior to that of best
CRNN models in all metrics. (cf. TR γ vs CRNN β).

It is noteworthy that even subpar models such as TR α delivered useful inferences in out-of-
domain scenarios (Table 6). This is not the case for TR δ, which, despite being pre-trained with
specific ancient texts, delivers degraded inferences in all cases. The model’s reliance on a strict
causal mode with GPT-2 limited its ability to utilize bidirectional context, leading to inaccurate
predictions. This highlights the importance of considering both the training data and the mode
of operation when designing models for historical text recognition. Interestingly, TR α, despite
its poor validation performance, provided better inferences in CER and WER in real-world
cases. This underscores the effectiveness of transformers in generalization demands, which
is particularly advantageous in low-resource settings such as historical document transcription
where annotated data is scarce. The performance of specific-data models like TR β and TR γ in
zero-shot tests, which largely exceeded their validation results, further supports this observation.

On the other hand, the CRNN β model, although improved with synthetic data compared to
the baseline, still lags behind transformer-based models (+7% and +5% in CER and WER in
median improvement against 14% and 19% respectively from TR γ). As we will see in sec-
tion VII, this discrepancy is not only due to the absence of an explicit language model but also
stems from the inherent advantages (v.g. The self-attention mechanism and the Maximum Like-
lihood Estimation) of the transformer architecture in capturing implicit language patterns and
dependencies in historical manuscripts.

VII ERROR TAXONOMY
Word or Sub-word Mis-predictions. Most errors from Transformer models are linked to mis-
predictions at the word or sub-word level, paradoxically increasing the CER more than the
WER. Transformers, trained on large datasets, predict words based on observed statistical pat-
terns. During inference, they leverage their understanding of broader linguistic patterns to com-
plete difficult readings with statistically plausible vocabulary items. This strategy is highly
effective, as evidenced by the significant difference in WER between Transformer and CRNN
models. CRNN models often propose seemingly verbatim transcriptions due to falling into
local optima during training, leading them to “imitate” the input, especially when faced with
unfamiliar words or phrases, rather than understanding the underlying linguistic patterns. Con-
sequently, many of their outputs ignore the lexical relationships within the text, resulting in
transcriptions that may be technically accurate at the character level but correspond to non-
existent or nonsensical words.

Statistical Pattern Misleading. However, as observed in the examples displayed in Figure 5,
Transformers can also be misled by the statistical patterns learned during training, leading them
to propose incorrect readings in situations where first inferences are not in the vocabulary, were
poorly observed during training or conversely, were highly observed, causing a bias problem.
This is a common scenario in ancient documents, where stereotyped (formulaic) discourse co-
exists with unique occurrences, specific vocabulary, and dialectal variants, a challenge exacer-
bated by the fragmentary nature of surviving collections. Named entities, for instance, are a
well-known example of this as they do not belong to the language dictionary and could appear
as rigid designators. Experience indicates that in many cases (v.g place names, locative names,
surnames, periphrastic names) they can benefit more from imitative transcriptions than from
vocabulary-based completion.
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Its well-known that in medieval times, the pool of personal names was quite restricted, leading
to frequent abbreviations. Developing these abbreviations correctly is impossible unless to rely
on external knowledge bases, a requirement that poses a significant challenge for HTR pipelines.
For instance, in Example 1, two instances of “H.” (”Henrions” and ”Henri”) were completed
as ”Hugues” (a common baptismal name) in the first instance and verbatim transcribed in the
second (”H.”). Such false positives leaded by beam-based decoding can highly penalize TR
accuracy at CER level as they introduce many individual character mistakes.

Figure 5 Four transcribed lines from external datasets. For each one three model erroneous transcrip-
tions are displayed. GT (ground-truth), TR (Transformers), CRNN (Convolutional Recurrent models).

1. ANLux, A-X-42-1. fol. 36r (Liber Feudorum)
2. Wien ONB Cod. 2160. fol. 184r (Collatio)
3. Médiathèque de Troyes, Ms 1600. fol. 36r (Summa of Abstinentia)
4. Leipzig, UB, Ms 758. fol. 24v (Faithfull Transcriptions)

Abbreviation Expansion. In addition to this, contracted and suspended abbreviations as well as
token co-occurrences that are underrepresented in the training data, can be a significant source
of errors for similar reasons. This is seen in Examples 1, 2 and 3 where at least four ab-
breviations have been incorrectly expanded at different levels. In many cases the completion
depends on declension or language state variations (”messsires” completed as ”mesigneur”;
”quando” as ”que”), which are easier to predict for TR models. However, the models struggle
with abbreviations that are rooted in regional or historical contexts. For example, ”Lucelburch”
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completed as ”Luce”; ”d’Yrei” as ”Dyrei”; ”stultus esset” as ”scultus esset”) are challeng-
ing because they are not widely known and require specific local knowledge that goes beyond
general language patterns. Despite these challenges, the contextual and vocabulary-based re-
placements, even when incorrect, are in general lexically closer to the ground-truth (higher
BART-score) and consequently easier to process and read than the transcriptions proposed by
the CRNN systems, which in many cases propose hapax or false-lemma outputs.

Line-level Transcription Limitations. Besides, since we are working on line-level transcriptions
the models may have limited their ability to capture long-range dependencies. This limitation
becomes particularly problematic when dealing with short lines, such as those found in double-
column manuscripts, or with words split across lines or pages. When confronted with broken
words, even if they are well-read, TR models face significant challenges because the reading
of a broken word will correspond to an out-of-vocabulary word, a scenario that can be difficult
to handle for this kind of models. This issue is clearly illustrated in Example 2 of Figure 5,
where all the models struggle to accurately transcribe the end of the line. In this instance, the
occurrence “defuncti paren // tis” is replaced by ”defuncti patri” and ”defuncti Petri” by the
Transformer models as their attempt to find a likelihood replacement, is hindered by its inability
to visualize the content of the next line.

Editorial Normalization. Examples 2 to 4 aims to demonstrate that Transformer models can
effectively learn the editorial normalization practices. When working with semi-diplomatic
transcriptions, HTR models learns to develop abbreviations, split words, and modernizing punc-
tuation. This is a reflection of their training, which involves large amounts of normalized text.
However, the way these models handle word splitting and graphical pauses can vary signifi-
cantly depending on the manuscript. Word splitting is not always evident in ancient texts, and
this can lead to different outcomes for the two types of models. On the same test CRNN models
can infer non-existing words (“defunctiparei”, “tisqui”, “natisunt”, ”infusus.stultus”, figrua-
tum) due to the model’s attempt to transcribe the text in a verbatim mode. On the other hand,
TR models apply the separation correctly to correspond to two or more vocabulary tokens. This
suggests that TR models are better at recognizing and handling word boundaries which is in
general positive for semi-diplomatic transcriptions paradigms, but can hardly affect WER per-
formances on diplomatic ones. This ability likely stems from the model’s attention mechanism,
which allows it to consider the entire input sequence when making predictions.

Contextual Syntax Replacements. Moreover, TR models are more adept at avoiding wrong
syntax replacements by exploiting the context, as seen in the examples 2 and 3 (“ex fodem” vs
“ex eodem”, ”quando esset” vs ”que essent”, ”et tr Rd” vs ”et cetera. Quod”). This ability
to consider the broader context is one of the key strengths of TR models and is a major factor
in their superior performance not only on HTR but on most NLP processing tasks. However,
it’s important to note that this strength can also lead to over-correction errors when the model’s
assumptions about the context (the statistical best path) do not fit the actual text as we can
observe in examples 3 and 4 (”dyabolus” remplaced by ”dyaconus”, ”esset infusum” by ”esset
in futurum”, ”figuratum” by ”sigillatum”, ”Iudeis” by ”Indeis”).

VIII DISCUSSION
These results demonstrate the potential of transformer-based models for HTR tasks, especially
when combined with language-specific decoders and synthetic data. Transformers are particu-
larly effective for tasks that involve capturing contextual and temporal sequences, such as HTR.
However, they require large quantities of data (and computational resources) for pre-training
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and training phases to be on par with CRNN solutions trained from scratch. This could explain
the decrease in performance of our models using an standard Vision Transformer (TR δ) and
unspecific encoders which generates mediocre inferences (TR δ, TR α).

The choice of decoder can also play a significant role on the quality of the output. The use of
a Medieval RoBERTa as a decoder (TR β) leads to initial improvements in performance, espe-
cially on token and sub-token levels. The effect is unclear during validation, but when applied
to real-world data, the power of a specific LLM model trained on ancient texts clearly surpasses
the English RoBERTa used by the original TrOCR. However when the model encounters lan-
guages it was not specifically trained on (like those in the Faithful corpus), the advantages of the
specialized decoder diminish. The tokenization becomes generic, and the performance may not
surpass that of robust CRNN-based models. This proves that the customization of the decoder
and tokenizer is not merely a technical detail, but a key consideration in the implementation of
transformer-based models for HTR tasks.

Employing synthetic lines in training could provide additional variability and novel data scenar-
ios boosting the generalization capacities of the model face to unseen data. This is evident from
the broad improvement in performance of the CRNN β and TR γ models, which are trained
with both ground truth and synthetic data. From the results, the risk of over-fitting seems mit-
igated, which suggest that synthetic data is representative of the real data and the increase in
bias do not lead the model to prematurely converge to local minima during the training process.

In an overall scope, these VLM (Visual Language Models) solutions based on transformers out-
perform classical CRNN models in generating reliable and realistic transcriptions in a one-step
training process. This is achieved through the use of explicit LLM decoders combined with
implicit language patterns. Transformers, with their parallelizable processing and self-attention
mechanisms, excel in handling long-range dependencies and processing multiple data represen-
tations simultaneously rather than step-by-step. This allows them to consider the entire input
sequence at once, leading to more contextually aware transcriptions. The LLM post-correction
process, typically applied on CRNN inferences, is integrated into the training of transformers,
eliminating the need for a separate process. Additionally, smoothing the probability distribu-
tion over the output vocabulary during training helps the model to generalize more effectively in
low-resource scenarios. These combined techniques make transformer-based VLMs an efficient
and scalable solution for HTR tasks.

Many of the local errors in TR transcriptions (See Section VII) originate from the inherent tran-
scription level of HTR documentary ground-truth. Firstly, models tend to statistically replicate
normalization practices and diplomatics conventions, leading to transcriptions that often inter-
pret content not necessarily present graphically in the manuscript (a common issue in CRNN
systems as well). This is particularly evident in the case of abbreviations, signs, and glyphs.
Their development depends not only on conventional writing practices, but also on discourse
context, local references, and syntactic coherence. Accurately transcribing these elements using
semi-diplomatic transcriptions becomes significantly more complex as it goes beyond simple
character recognition and involves a deeper understanding of the manuscript’s content. Restor-
ing the correct interpretation, especially for heavily abbreviated manuscripts, remains an open
challenge and is a primary goal of most post-correction systems. On the other hand, as we have
seen in Section VIII, the transformer decoder, when facing a hard lecture, can also propose full
and sub-word replacements that are close but do not necessarily match the full graphical writ-
ing. This mechanism, based on beam search and vocabulary leverage, while highly effective on
WER, can become penalizing on CER or diminishing his boost effect on unseen languages.
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Moving to other point, the line-based training approach limits the effectiveness of transformers
on large-range sequences. Contexts such as short lines, broken lines, tables, and marginalia pose
more difficulties than full lines due to their fragmented or incomplete nature. This limitation
reduces the number of output paths and could leads to inconsistencies in the transcription, as
the model struggles to maintain the overall structure and flow of the text resulting in errors that
are not as prevalent in more continuous text sequences.

These challenges highlight the inherent limitations of current models architectures and sug-
gest that future models could benefit from mechanisms that better control interpreted transcrip-
tions. For instance, integrating external knowledge bases like Retrieval-Augmented Generation
(RAG) on named entities or lexical thesaurus embeddings could provide additional specific
context. Additionally, more effective handling of short-context scenarios could be achieved by
introducing paragraph or full-page level systems and incorporating more sophisticated layout
analysis techniques which would allow the model to face complex structures.

IX CONCLUSION
In this study, we extensively evaluated Visual Language models (VLM) for Handwriting Text
Recognition (HTR), specifically tailored for documentary manuscripts from the 10th to the 16th
centuries. Our experiments demonstrated that transformer-based models outperform conven-
tional CRNN+CTC models across all metrics. Notably, they improve the classical CER:WER
ratio from 3.5:1 to a more favorable 2.5:1. Furthermore, they provide more reliable and realistic
transcriptions, thereby enhancing the BERT score, a robust indicator of output legibility. Addi-
tionally, our tests on unseen data reveal that these state-of-the-art models can achieve an overall
BERT score of 85% in zero-shot scenarios and surpass 90% in few-shot situations (150 lines)
across a wide range of manuscript typologies.

Moreover, our experiments have proved that extending the capabilities of VLM systems through
domain-specific LLMs and synthetic ground-truth data can further enhance robustness. This
combination introduces both explicit and implicit linguistic patterns, which assists the model to
decide on more varied and contextually accurate interpretations and reduces the need to apply
vocabulary-based corrections in a separate step.

X MODEL REPOSITORIES
The weights and models supporting this study are available under open source licences:

Transformers models:

https://huggingface.co/magistermilitum/tridis_HTR

https://huggingface.co/magistermilitum/tridis_v2_HTR_historical_manuscripts

Kraken-based CRNN model:

baseline: https://doi.org/10.5281/zenodo.10788591

Enhanced: https://doi.org/10.5281/zenodo.13862096

GAN ancient-writing model:

https://github.com/magistermilitum/HiGANplus

RoBERTA-med model:

https://huggingface.co/magistermilitum/RoBERTa_medieval
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Paul Guérin. Recueil de documents concernant le Poitou contenus dans les registres de la Chancellerie de France,
volume 11. Société des archives historiques de Poitou, 1881.
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