
HAL Id: hal-04716653
https://hal.science/hal-04716653v1

Submitted on 10 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Power and Frequency Intrinsic Channels on gem5
Lilian Bossuet, Carlos Andres Lara-Nino

To cite this version:
Lilian Bossuet, Carlos Andres Lara-Nino. Power and Frequency Intrinsic Channels on gem5.
IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 72 (2), pp.671-684.
�10.1109/TCSI.2024.3435841�. �hal-04716653�

https://hal.science/hal-04716653v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Power and Frequency Intrinsic Channels on gem5

Lilian Bossuet1 and Carlos Andres Lara-Nino2

1. UJM St-Etienne, CNRS, LabHC UMR 5516, SAINT-ETIENNE, France.

2. Universitat Rovira i Virgili, DEIM, TARRAGONE, Spain.

February 10, 2025

Abstract

Recent works have highlighted the vulnerability of System-on-a-Chip
(SoC) platforms against intrinsic channels attacks. In this threat model,
an adversary can leverage vulnerabilities in the SoC’s firmware, the oper-
ating system, or the design tools to gain access to shared resources in the
platform and transfer data covertly. Given the diversity of attack avenues
and the constant evolution of heterogeneous SoCs, it is not practical to
study these attacks using conventional approaches. To address this issue,
we propose to employ gem5 in the study of power and frequency intrinsic
channels. Our work studies heterogeneous SoCs which feature a proces-
sor system and an FPGA. We employ the full system simulation of gem5
to emulate a reference physical device. We then describe the emulation
of different intrinsic channels which leverage the clock tree and power
distribution network of the SoC to transfer data covertly. Our findings
demonstrate that gem5 can accurately replicate the logical behavior of
power and frequency intrinsic channels.

Keywords: Frequency intrinsic channels, gem5, heterogeneous SoC, power
intrinsic channels, Zynq UltraScale+

Please cite as:

@article{BL24a,
title = {{Power and Frequency Intrinsic Channels on gem5}},
author = {Bossuet, Lilian and Lara-Nino, Carlos Andres},
journal = {IEEE Trans. Circuits Syst. I Regul. Pap.},
pages = {671--684},
volume = {72},
number = {2},
year = {2024},
doi = {10.1109/TCSI.2024.3435841}

1

1 Introduction

A System-on-a-Chip is a heterogeneous platform, constituted by the integra-
tion of general processors and hardware accelerators in the same die. Their
main components include a processor system with some memory elements, a
shared memory block, acceleration engines (ASICs, FPGAs, or ASIPs like DSPs
and GPUs), and some interconnect logic. In this work, we focus on the cases
where the accelerator is constituted by reconfigurable logic. Heterogeneous SoCs
have gained popularity given the need to improve the performance of processors
through hardware acceleration. The desire for new computing architecture has
been pushed, in part, by the loss of Dennard’s scaling and the deceleration of
Moore’s Law [JN16; Eec17]. But also, by the interesting features offered by re-
configurable hardware accelerators [KFS18; Che+20]. Along with these factors,
the monetary cost per logic-cell of FPGA fabric has dramatically decreased,
which makes them an attractive choice for bulk acceleration [Kha+18].

Understandably, modern trends in the design of heterogeneous SoCs have
been driven by the interest of drawing greater performance for emerging ap-
plications benchmarks [Cla18]. However, recent studies have shed light on the
vulnerabilities of these systems [Cha18]. A platform with a greater diversity
of hardware components will experience greater security challenges. We must
consider that each part of the system can be targeted by attackers. This is
a concern for using heterogeneous SoCs in critical applications. The design of
secure SoC architectures which maintain a competitive performance profile has
become a priority in such domains.

Covert data transmission is one of the attacks proposed against heteroge-
neous SoCs [BL23a]. Under this threat model, an adversary leverages the shared
resources between the different components of the platform to secretly transfer
information. These shared resources become intrinsic channels. The goal of
these attacks is to allow different components within the platform to exchange
information. These covert communications could bypass security policies de-
signed to isolate the platform’s components. Detecting and preventing these
attacks is an active area of research.

Studying intrinsic channels with conventional strategies presents multiple
challenges. First, the diversity of shared resources which can be leveraged by an
adversary is quite large. Even when the scope is limited to clock, and power trees
(as in this work) the number of potential attacks is unlimited. Truly, creativity
dictates the boundary. Next, there are many SoC architectures being used for
different applications. The main selling points of SoCs is that they can be
tailored for a particular use case. Unfortunately, each of these designs ought to
have particularities which make it susceptible to specific attacks. Furthermore,
studying intrinsic channels in a physical device results costly. In most scenarios,
disconnecting an intrinsic channel is simply not possible. So, if intrinsic channel
vulnerabilities are discovered once the SoC has been deployed, these could be
difficult to mitigate.

The use of pre-silicon tools, like gem5 can contribute to solving some of the
challenges associated with the analysis of intrinsic channels. By offering multiple
architectural and processor models it allows the designer to test many system
configurations. The fact that the device does not need to be manufactured re-
duces testing time. In fact, gem5 does not require hardware descriptions nor
precise physical models of components. Instead, it relies on the architectural

2

description of the platform to emulate its behavior. Given these features, the in-
terest for using gem5 in this research field is clear. In this paper, we demonstrate
that gem5 can emulate frequency and power intrinsic channels accurately.

Our main contributions include:

1. We present multiple approaches for transferring data between different
elements within a SoC.

2. We demonstrate the feasibility of these attacks by implementing the in-
trinsic channels in a physical device.

3. We show how to emulate these attacks in gem5 with a full-system ARM
simulation and outline the challenges that we have overcome in the process.

4. We provide, to the best of our knowledge, a complete literature review on
the emulation on intrinsic channels.

A conference version of this paper [BL23b] has shown that it is possible to
use gem5 in the emulation of frequency intrinsic channels. Particularly, that
gem5 can emulate the behavior of a specific device whose characteristics are
known. Earlier work [BGL23] has shown that gem5 can also simulate power
intrinsic channels. However, that work does not employ a reference device to
show the accuracy of the approach. In this paper, our goal is to bridge the
gap between earlier works by presenting power and frequency intrinsic channels
which are first implemented in a physical device and then emulated with gem5.
As in [BL23b], we provide an open repository with the source files which allow
to reproduce our findings:

https://github.com/CarlosAndresLARA/int-gem5

The rest of the paper is structured as follows. In Section 2 we review the
state of the art on intrinsic channels and the use of gem5 for their emulation.
Section 3 describes the threat model of covert communication attacks considered
in this work and their limitations. In Section 4 we detail the use of frequency and
power intrinsic channels to mount covert communications attacks in a physical
heterogeneous SoC. Subsequently, Section 5 describes the process to carry a
successful emulation of these attacks in gem5. Then, in Section 6 we discuss the
results of our work and outline different perspectives. Lastly, Section 7 presents
our final remarks and concludes the paper.

2 Related works

As mentioned, the covert transmission of data through intrinsic channels is one
of multiple threats leveraged against complex heterogeneous SoCs. These inter-
nal links may allow an attacker to transfer data between processes that would
not be allowed to communicate by the system’s security policies. Typically, a
covert transmission uses a spy application or circuit that infiltrates the system
and transfers the sensitive data to a receiver which decodes it and uses it for
illegitimate purposes.

The literature describes several methods for the utilization of intrinsic chan-
nels. Some of them rely on shared hardware resources such as memory elements.

3

In [Lip+16], Lipp et al. used a common library (shared memory) and cache
memory attacks to exchange sensitive data between two unprivileged processes.
The covert means of communication between the two processes were based on
the use of either the Flush + Reload [MR21] or the Flush + Flush [Gru+16]
cache attacks. Others are not so evident to detect. In [ZSQ23] the authors de-
scribed how to exploit the mutual exclusion and synchronization mechanism of
modern operating systems to transfer data covertly. These works highlight that
the system architecture itself is ripe with opportunities for the instantiation of
intrinsic channels.

In [Mas+15], Masti et al. evaluated the feasibility of thermal intrinsic chan-
nels. They used the thermal sensor included in a processor core to communicate
two processes running on two different cores of the same processor. To send
a logical one, their spy process would stress the core which would cause the
processor to overheat. To send a logical zero, the spy process would decrease
the workload of the core. To decode the data, their receiving process simply
took core temperature readings belonging to the same processor. A related ap-
proach was used by Tian and Szefer [TS19] to mount temporal-thermal intrinsic
channels on Cloud-based FPGAs. In their work, the authors showed that heat
generated by one user of the FPGA could be observed by another user of the
same FPGA in a subsequent session. Their attack was carried out on Microsoft
Catapult’s servers where FPGAs are available as remote acceleration platforms.
Despite the inherent limitations of the approach, the work demonstrated that
even with up to a few minutes of idle period it was possible to transmit data.

In [Pro+19], it was demonstrated that it is possible to exploit the crosstalk
phenomenon of long wires [GER19] in the Arria 10 SoCs. In their work, the
authors showed that the crosstalk can be observed for different long wires within
these platforms. The basis for this type of attack is that the value transmitted
in a long wire across the fabric has a noticeable effect on the delay of adjacent
long wires. These wires exist to improve the routing and the performance of the
reconfigurable designs. Crosstalk between long wires causes information leakage
from one wire to another if they are close enough. When the source is used as
part of a protected region of the SoC and the receiver is a wire connected to a
malicious IP, this can lead to information leakage. If the transmitter is malicious
and seeks to send information to a different IP, the long wires can be used to cre-
ate intrinsic channels. A related approach was used by [Ram+18] to mount an
attack on an AES core on a Cyclone IV FPGA. A potential countermeasure for
these attacks was later presented by [SMS20], who proposed routing strategies
to mitigate the risks of crosstalk attacks by isolating sensitive nets from other
components. Later, [BL23a] studied the characteristics of frequency-based in-
trinsic channels in modern SoC-FPGA platforms. That work demonstrated that
frequency-based intrinsic channels can be stealthy but also high performing.

The authors of [FBL23] presented a practical use case for intrinsic channels.
That work employed the clock tree of the device to transfer a single bit of
information from a malicious application in the processor system to a malicious
IP in the FPGA. This bit was used to synchronize the acquisition of power traces
with an internal sensor. With that work, the authors showed that intrinsic
channels do not require the transfer of large volumes of data or fast data rates
to be of practical use for adversaries.

In [BGL23] the authors have used gem5 to study power analysis and intrin-
sic channel attacks on heterogeneous SoCs. Their work employs a high-demand

4

payload in the kernel to induce a noticeable increase in the activity of the em-
ulated system, which is supposed to affect the power dissipation of the device.
The authors employ the simulation statistics produced by gem5 to study the
behavior of the simulation. However, that work does not corroborate the ac-
curacy of the simulation by replicating the experiments in a physical device.
Most recently, [BL23b] showed that it is possible to employ gem5 to emulate
frequency-based covert communications. But that work does not address the
potential of gem5 for emulating the physical behavior of the circuit.

2.1 Exploiting the frequency or voltage modulation

Works like [ZBT10] have used the power distribution network (PDN) of FPGAs
to transfer data covertly to an external receiver. The technique described in
that paper employs a power pattern generator inside the core as a transmit-
ter. The receiver can be anything capable of monitoring the power trace of
the board; in their case an oscilloscope was used. In their work, the authors
did not envision the creation of intrinsic channels, but rather intended for this
communication strategy to be used in monitoring, debugging, or watermark-
ing [MBJ14; BBF16]. However, the evidence suggests that this approach could
be coupled with in-board receivers to complement a covert remote-monitoring
scheme. In this line of research, the work in [Gna+21] proposed to use the PDN
to mount actual covert communications within the FPGA. The authors used
non-combinatorial ring oscillator as transmitters and TDC-based sensors as re-
ceivers. This class of attacks underscores the significant challenges for isolation-
based protection approaches since the PDN is a common resource throughout
most SoCs. Indeed, the isolation challenges persist even when the logic is imple-
mented in different dies. This was demonstrated by [GRS19] using FPGAs with
2.5D integration of multiple dies, in concrete the Virtex Ultrascale+ series. In
their work, the authors managed to create intrinsic channels across the different
dies of the FPGA just by exploiting the perturbations induced on the PDN.
Furthermore, in [Sch+18] the authors demonstrated that an FPGA could be
used to analyze the power traces of a different FPGA within the same board.
Later, in [Haj+21] the authors proposed to use the current management tech-
niques found in modern processors to implement covert communications within
different processes.

The potential of using frequency modulation to mount intrinsic channel at-
tacks on multi core platforms was first studied by Alagappan et al. [Ala+17].
In that work, the authors demonstrated the feasibility of an intrinsic channel
using frequency modulation. Their work employed dynamic frequency adjust-
ment to transfer sensitive data between the spy process and the receiving pro-
cess. To send a logical one, their spy process would overload the CPU as in
[Mas+15], which would cause the system to change its frequency to meet the
workload being demanded by the spy process. The frequency chosen would
depend on the frequency governor mode used by the system (performance, pow-
ersave, userspace, ondemand, or conservative). To send a logical zero, their
spy process would decrease the workload applied to the processor. The re-
ceiving process performed a simple frequency reading to decode the message.
Independently, [TSS17] presented the CLKSCREW attack which exploited vul-
nerabilities in the DVFS mechanisms to bypass the protections of the system.
That work showed that a malicious driver could extract secret cryptographic

5

keys from TrustZone, and escalate its privileges by loading self-signed code into
application space. As countermeasures the authors proposed the introduction of
hardware limit regulators and division of power domains across security bound-
aries, as well as potentially redesigning the chip with additional logic and timing
redundancy to mitigate the effects of faults. Recently, the authors in [Guo+23]
have shown that novel frequency management mechanisms in Intel CPUs can
be leveraged to mount covert communication attacks.

In [BB18], the authors demonstrated for the first time a malicious use of the
frequency modulation against a TrustZone-enabled SoC. The work described
four proofs of concept to transfer sensitive data from a secure entity in the SoC
to a non-secure one. Their study used the Zybo board which is equipped with
a Zynq-7000 ARM/FPGA SoC (XC7Z010-1CLG400C). The main limitation of
this work is that their approach is restricted to the context of a specific device.
As new architectures and security systems have been proposed, these results are
now outdated.

2.2 DVFS in gem5

gem5 is a modular platform for computer-system architecture research, encom-
passing the system-level architecture as well as processor micro-architectures
[Bin+11]. This Open-Source simulator was created after merging the M5 and
GEMS simulators, preserving the processing-emulation capabilities of the for-
mer and the memory-emulation components of the latter. It allows to run cycle-
accurate simulations of multiple processor architectures, among them ARM. By
creating a conglomerate of objects (SimObjects), gem5 allows to emulate the in-
teraction between the different components of the processing system and study
their synergy, rather than simply trying to predict the outcome of some com-
putation.

The use of gem5 to emulate the DVFS-management was first introduced
in [Spi+13] where the authors extended the simulator to support full-system
DVFS modeling. Their goal was to enable energy-efficiency experiments to be
performed in gem5 and to highlight such studies. That work provided, for
the first time, clock and voltage domain declaration, online power-estimation,
a DVFS controller, and kernel drivers for full-DVFS support. Their proposal
would become the basis for the DVFS handler included in the official gem5
releases. Subsequently, works like [Yas+20] have proposed high-level improve-
ments to enhance the performance of the DVFS handler in gem5. In that work,
the authors introduced a non-intrusive application-controlled DVFS manage-
ment implementation for the system-call emulation mode. The general goals of
these works are to improve the data modeling quality or the handler’s efficiency.
This is an interesting use of gem5: it makes it possible to explore multiple design
strategies without the need to create physical prototypes which result costly in
terms of time and money.

In [For+21], the authors introduced an ongoing study aiming at analyzing
the attacks relying on the hardware vulnerabilities of the micro-architectures of
CPUs and SoCs using gem5. The main objectives of their work are to create
a virtual and open platform that emulates the behavior of micro-architectural
features and their interactions with the peripherals, like accelerators and memo-
ries in emerging technologies. The authors describe diverse attacks which can be
mounted on the gem5 simulator, among them the possibility of creating DVFS

6

covert-channels as described in [BB18].

2.3 Other emulation tools

Emulating the comportment of analogue and digital systems is a challenge which
has interested researchers for a long time. The usual goals of these analyses are
to verify the correctness of the system and to discard unintended defaults. As
such, many commercial and academic tools have been proposed to reproduce
the electrical behavior of different platforms. A reduced set of products has
been designed with the intended purpose of aiding in the security auditing of
computing architectures. These are denominated leakage verification or detec-
tion tools. However, to the best of our knowledge, only [BGL23] has dealt with
the emulation of intrinsic channels.

Being an architectural attack, the first problem with emulating covert com-
munications is that we must study the full system. There are few platforms
which conduct full-system simulations like gem5. Another problem is that fre-
quency intrinsic channels fall under the umbrella of logical behaviors, whereas
power intrinsic channels fall under the class of analogue behaviors. There are
few simulators which can produce results for both cases as well.

Leakage analysis tooling could be adopted in the study of intrinsic channels
with some adjustments. However, the state-of-the-art in this field can be divided
into two large groups: industrial and academic tooling which are not openly
available. Open-source tools for leakage verification include MAPS [LGD18]
and COCO [Gig+21]. The former is exclusive for ARM Cortex M3 systems
but is not cycle accurate. The latter can analyze any circuit but requires a
gate-level description of the platform. Another tool which relies on an open-
source initiative is SLEAK [WHK14]. This system employs gem5 to perform
the emulation of ARM Cortex A8 processors. However, SLEAK itself is not
readily available. In our work, we intend to use gem5 “as is” to boost the
reproducibility of our findings. Anybody who wishes to replicate our work can
refer to the freely available distribution of the simulator.

3 Threat model

In our work we consider two scenarios which can lead to the exploitation of
intrinsic channels in a platform. The victim is always a heterogeneous SoC with
a cluster of ARM Cortex-A53 processors running a generic Linux, a cluster of
ARM Cortex-R5F processors running third-party applications on bare-metal,
and a reconfigurable nucleus which implements third-party accelerators. In the
first case (a) we consider a malicious application running on the user space as
a transmitter which wishes to establish covert communications with a second
application also on the user space. The second case (b) is that of a malicious
application running on the user space as a transmitter which wishes to establish
covert communications with a hardware accelerator in the FPGA. The hardware
accelerator includes a malicious payload composed of ROS. In a third case (c),
the transmitter is a malicious application running on the user space which wishes
to establish covert communications with any other element in the SoC. These
three cases are illustrated in Fig. 1.

7

FPGA
IP corePLL b

Processor system
Core0 ac Core1

Figure 1: Attack scenarios considered in this work. a) A malicious applica-
tion transfers information to a second application through a frequency intrinsic
channel. b) The receiver can also be a hardware accelerator with a malicious
payload. c) A malicious application without root privileges can encode infor-
mation by stressing the core, leveraging a power intrinsic channel.

For cases a) and b), we consider that the transmitter can modify the dividers
of the different PLLs in the SoC to encode a message through different frequency
symbols. For this, the transmitter requires root privileges which can be obtained
through privilege escalation attacks or exploiting day-zero vulnerabilities. The
receivers must be capable of monitoring the frequency of the SoC. This can be
achieved by accessing the kernel APIs or by implementing internal sensors within
the platform. The second assumption is stronger as it provides the adversary
with the capabilities of modifying the bitstream of the system. However, for case
c), we do not grant privileges to the malicious application and thus it cannot
modify the device’s clock tree. Instead, it can perform a sequence of complex
operations to stress the device and produce power drops. The receiver can be
inside or outside the SoC and is assumed to possess a certain sensing capability
to monitor the power activity of the device. Internally, this could be achieved
through accessing the kernel drivers, sensing digital delays, or monitoring the
status of the on-board power regulator. Externally, an adversary might employ
an oscilloscope, spectrum analyzer, or even a thermometer.

Covert communication attacks are less known than other physical attacks.
Their reach and limitations have not been completely studied. On one hand,
they are powerful tools which enable the attacker to bypass logical isolation
policies. On the other hand, the assumed adversarial capabilities may restrict
the exploitability of intrinsic channels. For example, in case studies a) and b)
from Fig. 1 it is assumed that the malicious application has root privileges,
but this can be thwarted with the virtualization of untrusted modules [SMP22;
Hwa+08; YB17]. Additionally, in a practical context, the sender might have
to compete with other processes for the access to the clocking resources. For
case study b) it is assumed that the adversary can integrate a malicious pay-
load in the SoC, but this can be defeated by bitstream checking techniques
[Gna+18; La+20]. Power waster applications like the one employed in case
study c) do not require privileges and could not trigger any compiler warnings.
However, their operation could be disrupted by the activity of other processes
in the system or through the implementation of active leakage-disruption coun-
termeasures [Kra+19; Gla+23]. Most recently, in [Dı́a+24] the authors have
proposed a deep learning approach for the detection of covert communications.
Overall, the study of the effectiveness of such countermeasures falls outside the
scope of this work. We are concerned with the emulation of intrinsic channels

8

and covert communication attacks. However, reproducing the behavior of the
countermeasures is a natural future step on this line of research.

4 Intrinsic channels on the physical device

4.1 The Zynq Ultrascale+ heterogeneous SoCs

The AMD-Xilinx Zynq Ultrascale+ is an interesting case study for modern
heterogeneous SoCs. We illustrate this architecture in Fig. 2. These chips
feature an application processing unit (APU), powered by an array of ARM
Cortex-A53 cores (A530 and A531 in Fig. 2), and a real-time processing unit
(RPU), which includes an array of ARM Cortex-R5F cores (R50 and R51 in
Fig. 2). Each one of these processing units has independent instruction and
data caches, and up to L2 cache in the case of the APU. The main memory of
the SoC is an external DDR unit, driven by an on-chip memory controller. There
is also a smaller on-chip memory which can be shared by the different cores, and
a memory management unit which performs the necessary assignments. These
boards also feature a nucleus of programmable logic: an array of reconfigurable
elements and silicon accelerators. The interconnection between processors and
accelerators follows the AMBA-AXI specification through two main switches.
The reconfigurable fabric of the SoC can implement a wide range of customized
accelerators. For our work this means that we can use this module to create
internal sensors based on reconfigurable logic.

In Fig. 2, in blue, we illustrate part of the clock tree in the Zynq Ultrascale+
SoC. A main reference clock (PSS REF CLK) is used to source the five main
PLLs of the architecture (RPLL, IOPLL, APLL, VPLL, DPLL). To generate
the PLL output, the reference clocks are multiplied by a constant. The resulting
oscillators are then divided by one or two six-bit constants to produce specific
clock domains for the distinct parts of the architecture.

From Fig. 2 it can also be seen how there are three main power domains
in these Ultrascale+ SoCs. The Low Power Domain will source the RPU, the
peripherals, the on-chip memory, and one of the interconnect switches. The Full
Power Domain will supply the APU, the memory management unit, the memory
controller, and the central interconnect switch. The PL Power Domain will
supply the reconfigurable fabric. The goal for this separation of power domains
is to improve the system’s energy efficiency by allowing it to shut down complete
areas of the SoC when not used. For the low and full power domains, the five
main PLLs can be used to generate clocks. For the FPGA, only three of the
PLLs (RPLL, IOPLL, DPLL) can be used to generate the four clocks available
to the fabric (from the processing system, since it is also possible to use external
clocks.)

Ultrascale+ SoCs allow the use of the RPU and the APU independently. The
cores in the RPU would normally run a real-time operating system [Dic+03] or
standalone applications. The cores in the APU, on the other hand, are more
complex and their full potential can best be drawn by a kernel, like Linux. In
this work, we presume that both clusters can be operated independently. We
implement bare metal applications in the RPU and Linux-based applications
in the APU. These chips also feature a power management unit (PMU) which
oversees the monitoring and configuration of the PDN. The PMU features anti-

9

APU
A530 A531

RPU
R50 R51

DDR4
DDRC

L2 CacheSCU

I/D Cache

Low Power Switch

On-Chip Memory

I/D Cache

MMU

Central Switch

FPGA

RO

TDC DMA

PLL MMCM

PWC
Peripherals

GE

SPI CAN

I2C UART

USB

Low Power Domain Full Power Domain PL Power Domain

PSS_REF_CLK

RPLL

IOPLL

APLL

VPLL

DPLL

DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV

33.33 MHz

DIVDIVDIVDIV

Zy
nq

 U
ltr

as
ca

le
+

So
C

VCC_PSINTLP (0.85V)
VCC_PSPLL (1.2V)

VCC_PSINTFP (0.85V)
VCC_PSDDR_PLL (1.8V)

VCCINT (0.85V)
VCCBRAM (0.85V)

Figure 2: The architecture of the AMD-Xilinx xczu2cg. The clock tree and
power domains of these platforms are also illustrated. This image is adapted
from [BL23b].

tampering characteristics which increase the difficulty of modulating the power
supply of the chip. In this regard, as illustrated in Fig. 2, the SoC under
analysis uses multiple voltage levels to source its different components.

In practice, however, the power domains employ different power supplies
but some are shared (Fig. 3a). Moreover, depending on the prototyping board
just one or two power management integrated circuits (PMIC) may be used
to generate the different power levels required by the chip (Fig. 3b). This
connection strategy found in several commercial boards creates as a result a
strong eclectic coupling between the different components of the SoC. Thus,
facilitating the instantiation of intrinsic power channels.

4.2 Frequency modulation in the Zynq Ultrascale+

The frequency of the different clocks can be modified by editing their multiplier
or divider values. The multiplier register will affect the PLL output, and in
turn modify the frequency of all the SoC components which rely on that given
oscillator. In contrast, the divider registers are specific for a given clock and
modifying them will only modify the frequency of a particular clock signal.

10

POWER
MIO

UIO

CONFIG

MGT

M
EM
OR
Y

1.2V

0.85V

1.8V

3.3V

1.1V

Zynq Ultrascale+ SoC

(a) voltage regions and power domains of the Zynq Ul-
trascale+

SPC
LTC4365

VIN 5V PMIC
DA9062

PMIC
DA9062

VCCINT +0.85V

+3.3V

PS +1.8V

PSPLL +1.2V

LPDDR4 +1.1V
MGTRAVCC +0.85V
MGTRAVTT +1.8V
PL +1.8V

POWER (VCC_PSPLL)

MEMORY (BANK 504)

MIO (BANK 500, BANK 501)
POWER (VCCINT, VCC_PSINT, VCCINT_IO)

MGT (BANK 505)

UIO (BANK 65, BANK 66)

POWER (VCC_PS, DDR_PLL)
MIO (BANK 502)

CONFIG (BANK 503)
UIO (BANK 26)

(b) two PMIC are used to generate all the voltage levels for the TE0802

Figure 3: The power distribution network of the TE0802.

There are clocks which use one and two dividers. These are stored as a six-bit
section of a 32-bit register. To modify the frequency of an oscillator it is then
necessary to edit the contents of these control registers.

At low level, like in bare-metal applications, the control registers of the
SoC can be edited through direct access operations. For example, using the
xil io library. However, to edit one of these control registers it is necessary to
edit multiple security and configuration registers so that the frequency change
is enacted. Furthermore, the application performing the operation must have
access rights.

In the presence of a kernel, the modulation of frequency can be simplified
with the help of drivers which allow to request the modification of specific clocks.
For example, the processor clocks (by using the cpufreq driver of Linux) or
the FPGA clocks (by using the fclk drivers of Xilinx). This scenario is more
favorable for attackers since the complexity of the kernel may allow them to
hide malicious applications more easily.

11

4.3 Frequency detection

A frequency detector can be a circuit built from logic elements which can mea-
sure the variation in the propagation delay of a digital signal [RA10]. These
fluctuations are generated from changes in the power dissipation, electromag-
netic coupling, and thermal fluctuations of the circuit. For this reason, such
sensors have been employed to perform internal monitoring of the chip [VCR17;
ZS18; Gra+20]. The main types of such sensors are based in time-to-digital con-
verters and ring oscillators. The former are more accurate and provide greater
resolution in the sampling but must be calibrated precisely and placed directly
in the platform. In contrast, sensors based in ring oscillators (ROS) do not re-
quire any precise placement directives and provide sufficient information when
enough samples are available.

Our work employs ring oscillator-based sensors due to their simplicity [ZS18;
Gra+20]. In these architectures, the ring oscillator provides a consistent oscil-
latory wave whose period fluctuates according to the nominal operation of the
circuit. This signal is then used to source a counter, which is subsequently sam-
pled by an external clock to produce a measurement. The number of counts
retrieved in a sampling period is thus correlated to the frequency of the ring
oscillator, and in turn to the operation of the circuit. However, we are more
interested in the sampling clock of the sensor. By modifying this signal, we can
obtain an offset in the measurements due to the periodicity of the small counter.

The frequency fluctuation can be detected from the FPGA by observing the
output of the sensor. Or from the processors, by reading the value of the divider
registers. In this work we focus on the interaction between the processors and
the programmable logic, so we prefer the latter method to monitor the frequency
variation in the SoC. For this, we created a simulation model of the sensor which
can produce a digital output as response to the frequency change.

4.4 Characterization of the system

To understand the limits of the proposed intrinsic channels we first studied
the behavior of a PLL in the target platform. For all the proposed cases we
used the IOPLL which can be used to source clocks in all the power domains
of the SoC. Using a digital oscilloscope we sampled the time-response of these
components when requesting a change in the output frequency. The oscilloscope
was connected to a physical output of the prototyping board (PMOD), a TE0802
manufactured by Trenz electronic. The GPIOs are routed from the PS through
the FPGA to the chip ports, then through the PCB to the physical PMODs
powered with a constant voltage of 3.3V. The FPGA itself allows for different
voltage levels, but the physical outputs in the I/O Bank 26 used by the TE0802
only admit V cco = 1.8V (LVCMOS18). As reference, we generated a digital
trigger through the processor’s GPIOs. We then measured the width of these
pulses. We also captured the activation of the MSB bit in the output of the
delay sensor.

The experimental setup is illustrated in Fig. 4. We captured the behavior
of the IOPLL output as a response to a change request from a bare-metal
application which produces a digital trigger and the most-significant bit in the
sensor output. Our intention was to measure the response time of the IOPLL
and of the sensor to find the channel’s minimal latency. Our findings suggest

12

Zynq Ultrascale+ SoC

FPGA

ROS

PL Power Domain
RPU

Low Power Domain

R50

DIVIOPLL

TE0802

Ba
nk

 2
6

PM
OD

RE
F

CL
K

Os
ci

llo
sc

op
e

12

4

3

Figure 4: The experimental setup used to characterize the frequency intrinsich
channels in the Zynq Ultrascale+ SoC. 1) The ARM Cortex-R5F produces a
digital trigger to signal the start of the operation. 2) It request a frequency
change by updating the dvider of the IOPLL. 3) The IOPLL updates its output
frequency as response to the processor’s request. 4) The internal sensor detects
the frequency change and produces an output offset.

that the minimum response time for a frequency change is approximately 600ns.
That is the time elapsed from the moment one of the RPU cores modifies the
register until the output of the sensor is updated. Therefore, assuming that we
could transfer one bit per transition, the maximum bandwidth for the proposed
channels would be 1.6 MBps. Note that this is the theoretical limit, without
considering the necessary delay to achieve a consistent transmission (low-error
rate).

With the configuration shown in Fig. 4 we are not able to test for additional
GPIO or PMOD voltage levels on the TE0802. However, we suspect that the
time response of the GPIOs would be different with other conditions (i.e., in
other prototyping boards). In particular, the frequency response of the outputs
might differ, which could impact the accuracy of the measurement of interest:
the delay in the PLL response. Empirically, we verified that the PMODs of the
TE0802 are accurate up to 100MHz. This gives us a resolution of 10ns. That
is, 1/60th of the perceived response delay (600ns). Therefore, we believe that
the impact of the prototyping board is not large enough to impede achieving an
accurate characterization of the PLLs in the Zynq Ultrascale+ SoC.

We also characterized the ROS which would be used to detect the frequency
change. For this, we implemented a matrix of 64 sensors and sampled it using
different frequencies. Results for this experiment are provided in Fig. 5. It
was possible to clearly differentiate between the multiple sample windows, with
greater separation between 100, 150, and 300 MHz. This analysis was useful to
document the sensor’s behavior and create a model which could be used in the
simulation.

4.5 Intrinsic channels within the APU

The first intrinsic channels we investigated are those that can be implemented
within the APU of the platform. That is, we assume that a malicious application
or driver being executed in one of the cores can transfer some information to a

13

375 300 250 215 188 167 150 136 125 115 107 100 94 88 83 79 75

Experiments (MHz)

0

200

400

600

800

1000

1200
S

e
n

s
o

r
o

u
tp

u
t

(1
0

-b
it
)

Figure 5: Characterizing the output of the ROS as a function of the sampling
frequency. The selected frequencies range from 375 MHz (dividing the output
of the IOPLL at 1.5 GHz by four) to 75 MHz (dividing the same oscillator by
20). Each observation consists of 40,000 samples.

receiver in a different part of the APU. This kind of attack might be interesting
for applications which delegate one or more of the cores to perform trusted
computations.

A regular Linux kernel, if configured properly, will feature the cpufreq driver
which allows to modify the frequency of the underlying system. This can be
leveraged to implement an intrinsic channel between different cores controlled
by the same operating system. We used this driver, available in the Linux
distribution of AMD-Xilinx, to modify the processor clock of the APU. This os-
cillator is used by all the cores plus other components in this system. Therefore,
through frequency modulation it is possible to transfer information between var-
ious parts of the APU. To demonstrate the feasibility of this attack, we created a
sender program and a receiver program. They were cross-compiled and loaded
in the file system using Petalinux. Subsequently each application was executed
in different cores of the APU. We transmitted the 16-byte message “This is a
covert secret message!” encoded with a straightforward modulation strategy of
Alg. 1. This approach is viable since the cpufreq driver in Zynq Ultrascale+
platforms offer four frequency values.

In Fig. 6a we illustrate some of the samples captured by the receiver applica-
tion. In this case, the transmitting and receiving delays should be similar since
both applications are running in Linux and both perform the task of opening
and writing/reading a file, which is slow. So, to increase the number of samples
being retrieved and thus reduce the error rate we added a delay of 350 µS after
the transmission of each symbol.

4.6 Intrinsic channels between the APU and the FPGA

The second type of intrinsic channels under evaluation were those that originate
from an application executed in the APU and target the reconfigurable fabric.
Our intended receiver was the delay sensor based on ring oscillators. To transmit

14

Algorithm 1 Frequency modulation for low-width windows.

Require: f1, f2, f3: three frequency symbols.
for byte in message do
for bit in byte do
if bit then
fclk ← f1

else
fclk ← f2

end if
fclk ← f3

end for
end for

the data, we targeted one of the clocks sourcing the FPGA from the processing
system. This signal was used as the sampling clock for the delay sensor.

In the case of the Linux distribution of AMD-Xilinx, the kernel also features a
set of APIs (/sys/devices) which allow to modify the frequency of the FPGA
clocks. These drivers use configuration files which can be managed from the
application space. Thus, performing the modification of an FPGA oscillator is
a matter of locating the adequate file, opening it, modifying its contents, and
closing it again (the file must be closed for the change to be detected).

We applied a straightforward modulation strategy with a C-language ap-
plication in Linux. The receiver was also a ring-oscillator based delay sensor
implemented in the FPGA. We could read its output through an AXI channel.
In this case, the sampling frequency of the FPGA was greater than the sending
rate, so we removed the additional delay after the transmission of the symbols
used in the previous attack. Instead, we used a 10 µS delay in the acquisition
of samples. In Fig. 6b we illustrate the results for this experiment.

From this attack we could appreciate how the output of the delay-sensor
fluctuated in function of the operation of the SoC, but also of the sampling rate.
For a sampling frequency of 100 MHz, we observed a mean output value of 450
counts, for 150 MHz a mean output of 540 counts, and for 300 MHz a mean
output value of 770 counts. Whereas the “noise” produced by the sensor showed
a variation of ± 10 counts. We did not implement anything besides the sensor
in the FPGA, thus we assumed there were no data-dependent components in
the experiment. Nonetheless, there ought to be some influence from the activity
of the processor system, but it was deemed negligible. In this experiment we
could also observe how the transmission delay was far greater than the sampling
rate, which was reduced with an additional sampling delay. The limiting factor
being the requirement for the sender to perform frequency modulation through
the fclk API.

As discussed before, the FPGA clocks can also be modified by overwriting
the value of their dividers in a register. This can be achieved in Linux by
mapping the control registers of the SoC through the mmap utility. We used this
approach to create a new sender application which would obtain access to the
CTRL APB registers, and to the PLX REF CTRL registers which contain the dividers
for the FPGA clocks. We used the same modulation strategy as in previous
experiments, added a small transmission delay, and removed the sampling delay
from the previous experiment. The results are illustrated in Fig. 6c.

15

0

100

200

300

400

500

600

F
re

q
u
e
n
c
y
 (

M
H

z
)

10 20 30 40 50 60 70 80 90 100

Samples

0 1 0 0 0 1 1

(a) between different cores in the APU (f1 = 300 MHz, f2 = 400
MHz, f3 = 600 MHz)

0

200

400

600

800

S
e
n
s
o
r

o
u
tp

u
t

0 50 100 150 200 250 300

Samples

0 1 0 0

(b) from the Kernel to the FPGA: through drivers (f1 = 100 MHz,
f2 = 300 MHz, f3 = 150 MHz)

0

200

400

600

800

S
e

n
s
o

r
o

u
tp

u
t

0 20 40 60 80 100 120

Samples

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T h i s

(c) from the Kernel to the FPGA: through registers (f1 = 100 MHz,
f2 = 300 MHz, f3 = 150 MHz)

Figure 6: Frequency intrinsic channels in the Zynq Ultrascale+ SoC. The
frequency-modulation is performed according to Alg. 1 with frequency sym-
bols selected from Fig. 5. These images appeared in [BL23b].

16

int iter = (int)strtoul(argv[1], NULL, 0);

volatile int i;

float a,b,c,d;

int e;

float nums[1000000];

for (i = 10; i < iter; ++i){

a = i + i;

b = i * i;

c = b - a;

d = c / (b + 1);

e = (int)b % 1000000;

nums[e] = d;

}

Figure 7: A malicious application which stresses the core to transfer data

4.7 Power intrinsic channels

Some authors [Gna+21] have documented the feasibility of covert data trans-
missions over power intrinsic channels. These attacks leverage the characteristic
of SoCs of sharing a common power distribution network. If the system under
attack includes programmable voltage regulators, then these might be used to
perform voltage scaling. Such regulators are normally connected to the proces-
sor through I2C buses. Therefore, an adversary with access to this bus could
mount such attacks. In Linux systems, the DVFS controller modifies not only
the frequency but also the voltage of the core, this has been documented in
[BGL23]. The kernel may switch between operating performance points prede-
fined by the manufacturer. In this case, the adversary can obtain root privileges
in the kernel and modify the system voltages to perform covert data transmis-
sion. Alternatively, a malicious application running on the kernel space can
stress the processor to induce frequency fluctuations. This eliminates the as-
sumption of granting root privileges to the adversary.

In a general sense, that is, even without the availability of a DVFS system,
when a malicious application stresses the core, its behavior should have an im-
pact on the power footprint of the system. The work in [Gna+21] demonstrated
this phenomenon by employing power wasters in the FPGA. However, gaining
access to the programmable logic and remaining undetected is challenging for an
adversary. Instead, in our work, we have created a malicious transmitter appli-
cation which simply performs a series of arithmetic operations. The application
was coded in C and loaded into the kernel using Petalinux. The stress payload
is presented in Fig. 7. This routine is called with a variable number of iterations
(iter) to induce stress periods of variable length. The duration of such periods
is then used to encode information. This modulation algorithm is detailed in
Alg. 2. This modulation strategy allows to parameterize the activation and rest
periods of the encoding which could potentially be used to optimize the transfer
rate of the intrinsic channel. As there is no need to access any system files or
registers then the limit is simply the recovery time of the capacitive elements in
the board.

We studied the impact of the sender on the platform we monitored the
main power supply of the board using a digital oscilloscope. The results are

17

Algorithm 2 Voltage modulation for a power intrinsic channel

Require: n a given number of iterations
Require: t a given wait time
for byte in message do
for bit in byte do
if bit then
stress(2n)

else
stress(n)

end if
wait(t)

end for
end for

0 0.02 0.04 0.06 0.08 0.1 0.12

Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

V
o

lt
a

g
e

 (
fi
lt
e

re
d

)

0 1 0 0 0 1 1 0

n n 2n

t t

Figure 8: The transmission of a stream of bits over a power intrinsic channel

provided in Fig. 8. We applied a basic filtering of the power trace, and the
activity of the transmitter became evident. This implies that the activity of
the processor system has an impact on the main power supply, and therefore on
the SoC as a whole. This attack highlights the challenge in mitigating intrinsic
channel attacks. An adversary does not require any special privileges to induce
a noticeable effect on the computing device.

5 Intrinsic channels on gem5

5.1 DVFS in gem5

The gem5 simulator offers support for dynamically scaling the frequency of the
system and its voltage levels. This is achieved by modeling an energy controller
which performs frequency modulation. The registers of the EnergyCtrl SimOb-
ject can be read from a bare-metal application or through drivers in the Linux
kernel. While this energy controller also performs voltage scaling, the simulator

18

does not provide a regulator SimObject to monitor this value.
The hardware components (PLLs, voltage regulators) of the system are mod-

eled using software scripts (SimObjects): EnergyCtrl, DVFSHandler, ClockDomain.
The ClockDomain SimObject allows to define a clock domain with a frequency
number and connect it to a component of the design. The EnergyCtrl and
DVFSHandler SimObjects allow to apply a clock domain frequency (the clock
source) according to the performance level chosen by the driver, if the platform
is simulating a Linux environment, or according to the register contents if the
system is bare-metal.

To use the DVFS system in the gem5 simulator, the user must integrate the
three SimObjects described, enable the use of the DVFSHandler, compile the
Linux kernel with the CPUfreq driver and define the clock sources in the device
tree. Then, the simulation script must also specify the operating performance
points for the platform. Recall that these are pre-defined frequency/voltage
pairs. These parameters can be either defined in the simulation script or pro-
vided as arguments. The latter approach allows for greater flexibility and is
hence favored.

5.2 The cpufreq driver and gem5

Emulating Linux-based operating systems like Ubuntu is a well understood pro-
cess in gem5. The community has compiled a large set of binaries which can be
used to run complete simulations.1 The sources for the kernel and other binaries
can also be obtained from online repositories.2 However, the simulator offers
the potential to use just any generic kernels and binaries for any purpose that
the users might be interested in. For example, if we want to emulate an Zynq
Ultrascale+ platform we would seek to use the AMD-Xilinx binaries, including
their distribution of Linux.3

It is trivial to compile a generic Linux and load it into a gem5 simula-
tion. However, when it comes to DVFS, there are two critical components
missing on regular kernels which are required by gem5. One is an exten-
sion of the cpufreq driver to include the gem5 energy control and the gem5
multi-core utilities. The other is an extension of the clk driver to include the
gem5 energy control clock. To emulate the proposed attacks, it was first neces-
sary to “patch” the kernel with the missing drivers. After editing the kernel’s
source, it is necessary to ensure that the CONFIG ARCH GEM5 ENERGY CTRL and
CONFIG ARM GEM5 MULTI CLUSTER CPUFREQ are set in the configuration file. We
verified that applying this strategy to the official Linux kernel as well as the
AMD-Xilinx Linux kernel allows to generate kernel binaries which can be used
to emulate DVFS in gem5. The kernels were patched with source codes from the
publicly available gem5 repositories.2 The method for patching a Linux kernel
is fully detailed in our public repository:

https://github.com/CarlosAndresLARA/patches

1https://www.gem5.org/documentation/general_docs/fullsystem/guest_binaries
2https://gem5.googlesource.com
3https://github.com/Xilinx/linux-xlnx

19

FPGA

Processors Memory

VExpress_GEM5_Foundation

IP SimObject

CORE: MinorCPU

L1I: 48kB L1D: 32kB

L2: 1MB

DDR3: 2GB

Gem5 SoC model

CORE: MinorCPU

L1I: 48kB L1D: 32kB

Timers

Interrupts

EnergyCtrl

IP SimObject

IP SimObject IP SimObject

Bootmem

RAM

Flash

Figure 9: The virtual platform emulated with gem5

5.3 The virtual platform

The APU of the Zynq Ultrascale+ SoC is an array of Cortex-A53 cores clocked
at a top frequency of 1.3 GHz. Each one of these cores has independent instruc-
tion and data caches and shares a common L2 cache and DDR memory. Our
methodology aims at reproducing a virtual platform based on this board as close
as possible with common gem5 components. In theory, any computing device
can be emulated with gem5, but the development time required may vary. In
Fig. 9 we illustrate the components of the virtual platform used in our work.

The first step to construct the simulation was to compile the gem5 simu-
lator targeting the ARM architecture in optimized mode. We then created a
full-system simulation script based on a multi-core architecture. We instantiate
a variable number of cores with fixed instruction and data caches, as well as
a shared L2 cache. To emulate the Cortex-A53 we opted for the CpuCluster

SimObject with the MinorCPU model. The caches were emulated using the
L1 ICache, L1 DCache, and L2Cache SimObjects. The voltage and frequency
domains were provided through command line arguments, using the values avail-
able for the Zynq Ultrascale+ SoCs. To enable the emulation of the trusted
firmware we used the VExpress GEM5 Foundation machine type. We relied on
the automatic generation of gem5 to source the device-tree blob. As binaries,
we used one of the bootloaders shipped with the gem5 simulator. The kernel
was our custom Linux binary. We used an Ubuntu image found online1 and
edited it by manually cross-compiling and packaging the attack applications.

We created a custom SimObject and added it to gem5 to emulate the be-
havior of the delay sensor in the FPGA. This module would read the control
registers of the EnergyCtrl SimObject and produce an output through a debug
flag. The output was modeled using our observations from Fig. 6b as a base
offset according to the frequency plus a ±10 random component. At this point
we did not expand on the data-dependent component of the sensor output, but
it would be interesting to implement more complex models as function of the
state of different SimObjects in the simulation, for example the contents of the
caches.

20

5.4 APU-to-APU intrinsic channels

The first intrinsic channel to be emulated was straightforward. We cross-
compiled the sender and receiver applications and loaded them into the file
system. Then we launched the simulation and started the applications. The
results are shown in Fig. 10a. The main challenge to emulate the results from
Subsection 4.5 was determining the transmission delay of the sender. We ob-
served that while the physical cores can maintain a constant delay due to the
availability of a real-time clock, the delays in gem5 depend on the operating
frequency of the processor.

5.5 APU-to-FPGA intrinsic channels

Next, we emulated the intrinsic channels between a Cortex-A53 core and the
delay sensor SimObject. For this scenario we modified the sender to also trans-
fer some customization parameters to the receiver, for example the frequency
symbols that would be used and the transmission delay. The results are shown
in Fig. 10b. In this case, the main challenge was to identify the target registers
since gem5 does not include FPGA clocks. Instead, the EnergyCtrl SimObject
allows to create multiple clock domains and assign a frequency to each domain
through a couple of control registers. The delay-sensor SimObject was simply
pointed to these registers. Thanks to the parametrization of our system, it was
easier to achieve the desired results. We could adjust the transmission delay
from the live simulation until the number of samples per bit was equivalent to
the results observed in Subsection 4.6.

Finally, this dynamic modulation strategy was used to replicate the attacks
where the kernel application has direct access to the registers. These results are
illustrated in Fig. 10c. In this case we show more data and demonstrate the
decoding of the message. As it can be noted, the difference in the transmission
delay can accumulate over many samples causing the transmission rates between
the real experiments and the emulation to diverge.

5.6 Emulating power intrinsic channels

gem5 is a cycle-accurate architectural simulator. Therefore, there is a big ques-
tion of whether it is possible to approximate physical behaviors with gem5. The
most evident magnitude would be to approach the power footprint of the system
from the simulation activity. This has been studied in [BGL23] with moderate
success. In that work, the authors intended to investigate the statistical re-
lationship between the simulation activity and the application data. And the
emulation of power intrinsic channels by observing the simulation statistics while
the operating system processes a large payload (e.g. the AES trusted applica-
tion found in OP-TEE). We complement that work by showing that gem5 can
indeed emulate power intrinsic channels even with smaller applications. And
that it is possible to reproduce the behavior observed in a physical device.

We employed the virtual platform described in Subsection 5.3 and enabled
the statistics reporting of gem5 as described in [BGL23]. We then implemented
the malicious application used in Subsection 4.7 in the virtual environment. We
set a statistics dump rate of 1e− 6 and fixed reference values for n, t. We also
disabled the DVFS system to remove its influence. We limited the scope of our

21

0

100

200

300

400

500

600

F
re

q
u
e
n
c
y
 (

M
H

z
)

20 30 40 50 60 70 80 90 100 110

Samples

0 1 0 0 0 1 1

(a) between different cores in the APU

0

200

400

600

800

S
e
n
s
o
r

o
u
tp

u
t

0 50 100 150 200 250 300

Samples

0 1 0 0

(b) from the Kernel to the FPGA: through drivers

0

200

400

600

800

S
e
n
s
o
r

o
u
tp

u
t

0 20 40 60 80 100 120

Samples

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T h i s

(c) from the Kernel to the FPGA: through registers

Figure 10: Frequency intrinsic channels emulated with gem5. These images
appeared in [BL23b]. These results are associated with the experimental results
shown in Fig. 6.

analysis to the statistics associated with the processor system’s activity. Some
of these observations are illustrated in Fig. 11a. As can be noted, statistics
like the instructions per cycle, the activity of the data cache, and the type

22

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

core IPC

d-cache overalMisses

committedInst IntAlu

(a) simulation statistics

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
a

m
p

lit
u

d
e

0 1 0 0 0 1 1 0

n n 2n

t t

(b) transmission of a stream of bits

Figure 11: A power intrinsic channel emulated with gem5. This result is asso-
ciated with the experimental result shown in Fig. 8.

of committed instructions can indeed provide insights on the workload of the
operating system.

We assume that the statistics reported by gem5 have a physical cost. In the
physical device these statistics represent a given number of operations which
have taken place in the device. These operations involve some energy expen-
diture. Therefore, we can approximate the power footprint of the SoC with a
function of different statistics and some gain constants. For example, a basic
power model like the one described in [BGL23] can be used to approximate the
dynamic power of the virtual platform. This model is presented in Fig. 11b.
Normally, from a physical device we have access to the product of all the “im-

23

plicit” statistics of the SoC. But with gem5 the process is inverted in the sense
that we have the fine-grained statistics, and we seek to approximate the power
model. The results from Fig. 11b are meant to be analogue to those in Fig.
8. In this case we can also observe a small timing discrepancy which can be
reduced by adjusting the t parameter in the virtual platform.

6 Discussion and Perspectives

gem5 is an interesting platform for the analysis of intrinsic channels. It enables
the emulation of the behavior of software routines and custom hardware mod-
ules. The latter are described as python classes which can define their behavior
using multiple programming languages. For example, in this work we have em-
ulated a Hardware Trojan to function as a receiver in our covert communication
attacks. In this sense, gem behaves as a logical emulator which allows us to
verify the correctness of the system. However, at a lower level it also lets us
approach the system’s physical behavior. A gem5 simulation produces statistics
which register the status of the architecture at regular intervals. As shown in
[BGL23], these statistics might reveal insights on the physical behavior of an
equivalent device. Nonetheless, there are multiple limitations which ought to
be addressed to improve the usability of gem5 for the emulation of intrinsic
channels and other physical attacks.

One of the main challenges for the use of gem5 is the slow learning curve
for beginners. The gem5 project is quite active, but the documentation lags at
times. The “know how” about certain functionalities might get lost as a result
and new users might be left without help. Additionally, some changes adopted
by the main gem5 distribution are quite large but not quite thorough. This
can render years of parallel development outdated. Thus, modules that rely on
a particular version of the kernel can have limited usability. To prevent this
problem, we have avoided modifying the platform as much as possible. How-
ever, even basic simulation scripts can become obsolete given the dynamicity
of the gem5 community. The statistics-reporting of the simulator is affected
by these problems. Being one of the earliest components of the system it has
remained operational through many iterations of changes. However, as statis-
tics are not usually harvested in large volumes the dumping mechanism itself
remains quite rudimentary. Some authors have opted for harvesting data us-
ing the applications themselves or the debug utilities of the kernel [For+21].
But these approaches are useful when we know what exactly it is that we are
looking for. Indeed, leakage verification and analysis benefit from “all” of the
information to conduct a holistic study.

Another interesting perspective in the use of gem5 is the emulation of coun-
termeasures. Once the attacks are known, for example as reported in this paper,
then it is possible to propose countermeasures. gem5 would remove the tech-
nology dependency which so often limits the reproducibility of results. The
results obtained in this work provide confidence that the results shown in the
simulator would also apply to the physical device. For example, logical protec-
tions seeking to limit the interaction between the kernel space and the hardware
could be implemented simply by changing the simulation binaries. Or leakage
randomization strategies could be studied by constructing power models from
the simulation statistics.

24

Overall, gem5 offers great potential with its modularity. It is simple to create
virtual models of hardware components and to include them into a full system
simulation. This enables the analysis of individual modules in a larger context
such a SoC with a full operating system. Nonetheless, approaching the behav-
ior of hardware elements is always a challenge. For example, a simple solution
would be to create SimObjects which produce statistics based on their input
parameters. Power leakage could be approached through the Hamming weight
of some function of these data. But there are better methods for generating
synthetic data if we already know the model. Indeed, the relevance of employ-
ing automated tools in the analysis of physical attacks is discovering unintended
or hidden behaviors. A potential improvement could be to read hardware de-
scriptions from netlists or to support simulation activity files to replicate the
functionality of circuits.

7 Conclusions

In this paper, we have presented our results regarding the use of gem5 to emulate
the covert transmission of data on heterogeneous SoCs. Our results illustrate
that despite the differences between the real and the emulated platform, the
emulation is flexible enough to allow for parametrization of different components
and values. This can bring the results closer to the expected observations.

The proposed methodology allows to study the implementation of power
and frequency-based intrinsic channels in ARM systems. However, given the
flexibility of gem5 it is simple to modify the parameters of the system to emulate
a different platform. In this case we only need to adjust the response time of the
virtual models to account for technology variations. The gem5 simulator allows
to emulate any kernel which is to be run in the physical device (given enough
processing resources) hence the interaction of the same drivers can be replicated.
Furthermore, the simulator offers support for different processor architectures
such as RISC-V so it would also be possible to emulate non-ARM SoCs and
study the proposed attacks in these platforms.

In this paper, we filled a gap in the state of the art by emulating power
intrinsic channels and demonstrating that the simulation’s behavior approaches
that of a physical device. We have also demonstrated that an adversary may
leverage the simple behavior of an unprivileged application to mount power
intrinsic channels on the target device. This removes many of the assumptions
found in the literature.

Acknowledgments

This work was supported in part by the French Government through the Agence
Nationale de la Recherche in the framework of Project “micro-ARCHItectural
SECurity ” (ARCHISEC) under Grant ANR-19-CE39-0008. C.A. Lara-Nino
acknowledges support from the Spanish Instituto Nacional de Ciberseguridad
(INCIBE) through project HERMES; the Spanish government through project
ACITHEC (PID2021-124928NB-I00); and the Catalonian Agència de Gestió
d’Ajuts Universitaris i de Recerca (AGAUR) through grant 2021 SGR 00115.

25

References

[Ala+17] Murugappan Alagappan, Jeyavijayan Rajendran, Miloš Doroslovački
and Guru Venkataramani. “DFS covert channels on multi-core plat-
forms”. In: Proc. 25th IFIP/IEEE Int. Conf. Very Large Scale In-
tegr. (VLSI-SoC). IEEE, 2017, pp. 1–6. doi: 10.1109/VLSI-SoC.
2017.8203469.

[BB18] El Mehdi Benhani and Lilian Bossuet. “DVFS as a Security Failure
of TrustZone-enabled Heterogeneous SoC”. In: Proc. 25th IEEE Int.
Conf. Electron. Circuits Syst. (ICECS). IEEE, 2018, pp. 489–492.
doi: 10.1109/ICECS.2018.8618038.

[BBF16] Lilian Bossuet, Pierre Bayon and Viktor Fischer. “Electromagnetic
Transmission of Intellectual Property Data to Protect FPGA De-
signs”. In: VLSI-SoC: Design for Reliability, Security, and Low
Power. Cham: Springer, 2016, pp. 150–169. doi: 10.1007/978-
3-319-46097-0_8.

[BGL23] Lilian Bossuet, Vincent Grosso and Carlos Andres Lara-Nino. “Em-
ulating Side Channel Attacks on gem5: lessons learned”. In: Proc.
7th IEEE Eur. Symp. Secur. Privacy Workshops (EuroS&PW).
IEEE, 2023, pp. 287–295. doi: 10.1109/EuroSPW59978.2023.
00036.

[Bin+11] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Com-
put. Archit. News 39.2 (2011), pp. 1–7. doi: 10.1145/2024716.
2024718.

[BL23a] Lilian Bossuet and Carlos Andres Lara-Nino. “Advanced Covert-
Channels in Modern SoCs”. In: Proc. 16th IEEE Int. Symp. Hard-
ware Oriented Secur. Trust (HOST). IEEE, 2023, pp. 80–88. doi:
10.1109/HOST55118.2023.10133626.

[BL23b] Lilian Bossuet and Carlos Andres Lara-Nino. “Emulating Covert
Data Transmission on Heterogeneous SoCs”. In: Proc. 8th Asian
Hardware Oriented Secur. Trust Symp. (AsianHOST). IEEE, 2023,
pp. 1–7.

[Cha18] Sumanta Chaudhuri. “A Security Vulnerability Analysis of SoCF-
PGA Architectures”. In: Proc. 55th ACM/ESDA/IEEE Des. Au-
tom. Conf. (DAC). IEEE, 2018, pp. 1–6. doi: 10.1109/DAC.2018.
8465932.

[Che+20] Jin Chenglu, Gohil Vasudev, Karri Ramesh and Rajendran Jeyavi-
jayan. Security of Cloud FPGAs: A Survey. Preprint 2005.04867v1.
arXiv, 2020. url: https://arxiv.org/abs/2005.04867.

[Cla18] Alvin Clark. Xilinx Machine Learning Strategies For Edge. Pre-
sented in Xilinx Machine Learning Live Presentations. 2018. url:
https://web.archive.org/web/20220407054353/https://

www.xilinx.com/publications/events/machine- learning-

live/san-diego/xilinx_machine_learning_strategies_for_

edge.pdf.

26

[Dı́a+24] Alán Rodrigo Dı́az-Rizo, Abdelrahman Emad Abdelazim, Hassan
Aboushady and Haralampos-G. Stratigopoulos. “Covert Communi-
cation Channels Based On Hardware Trojans: Open-Source Dataset
and AI-Based Detection”. In: Proc. 17th IEEE Int. Symp. Hardware
Oriented Secur. Trust (HOST). 2024, pp. 101–106. doi: 10.1109/
HOST55342.2024.10545414.

[Dic+03] R.P. Dick, G. Lakshminarayana, A. Raghunathan and N.K. Jha.
“Analysis of power dissipation in embedded systems using real-time
operating systems”. In: IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 22.5 (2003), pp. 615–627. doi: 10.1109/TCAD.2003.
810745.

[Eec17] Lieven Eeckhout. “Is Moore’s Law Slowing Down? What’s Next?”
In: IEEE Micro 37.04 (2017), pp. 4–5. doi: 10.1109/MM.2017.
3211123.

[FBL23] Anis Fellah-Touta, Lilian Bossuet and Carlos Andres Lara-Nino.
“Combined Internal Attacks on SoC-FPGAs: Breaking AES with
Remote Power Analysis and Frequency-based Covert Channels”.
In: Proc. 7th IEEE Eur. Symp. Secur. Privacy Workshops (Eu-
roS&PW). IEEE, 2023, pp. 281–286. doi: 10.1109/EuroSPW59978.
2023.00035.

[For+21] Quentin Forcioli et al. “Virtual Platform to Analyze the Security of
a System on Chip at Microarchitectural Level”. In: Proc. 5th IEEE
Eur. Symp. Secur. Privacy Workshops (EuroS&PW). IEEE, 2021,
pp. 96–102. doi: 10.1109/EuroSPW54576.2021.00017.

[GER19] Ilias Giechaskiel, Ken Eguro and Kasper B. Rasmussen. “Leakier
Wires: Exploiting FPGA Long Wires for Covert- and Side-Channel
Attacks”. In: ACM Trans. Reconfigurable Technol. Syst. 12.3 (2019).
doi: 10.1145/3322483.

[Gig+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard and
Roderick Bloem. “Coco: Co-Design and Co-Verification of Masked
Software Implementations on CPUs”. In: Proc. 30th USENIX Se-
cur. Symp. USENIX Association, 2021, pp. 1469–1468.

[Gla+23] Ognjen Glamočanin, Anjela Kostić, Staša Kostić and Mirjana Sto-
jilović. “Active wire fences for multitenant FPGAs”. In: Proc. 26th
Int. Symp. Des. Diagn. Electron. Circuits Syst. (DDECS). IEEE,
2023, pp. 13–20. doi: 10.1109/DDECS57882.2023.10138941.

[Gna+18] Dennis R. E. Gnad, Sascha Rapp, Jonas Krautter and Mehdi B.
Tahoori. “Checking for Electrical Level Security Threats in Bit-
streams for Multi-tenant FPGAs”. In: Proc. 17th Int. Conf. Field-
Programmable Technol. (FPT). IEEE, 2018, pp. 286–289. doi: 10.
1109/FPT.2018.00055.

[Gna+21] Dennis R. E. Gnad, Cong Dang Khoa Nguyen, Syed Hashim Gillani
and Mehdi B. Tahoori. “Voltage-Based Covert Channels Using FP-
GAs”. In: ACM Trans. Des. Autom. Electron. Syst. 26.6 (2021).
issn: 1084-4309. doi: 10.1145/3460229.

27

[Gra+20] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, Philippe
Loubet Moundi and Francis Olivier. “Remote Side-Channel Attacks
on Heterogeneous SoC”. In: Proc. 19th Int. Conf. Smart Card Res.
Adv. Appl. (CARDIS). Springer, 2020, pp. 109–125. isbn: 978-3-
030-42068-0. doi: 10.1007/978-3-030-42068-0_7.

[GRS19] Ilias Giechaskiel, Kasper Rasmussen and Jakub Szefer. “Reading
Between the Dies: Cross-SLR Covert Channels on Multi-Tenant
Cloud FPGAs”. In: Proc. 37th IEEE Int. Conf. Comput. Des. (ICCD).
IEEE, 2019, pp. 1–10. doi: 10.1109/ICCD46524.2019.00010.

[Gru+16] Daniel Gruss, Clémentine Maurice, Klaus Wagner and Stefan Man-
gard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: De-
tection of Intrusions and Malware, and Vulnerability Assessment.
Cham: Springer, 2016, pp. 279–299. isbn: 978-3-319-40667-1.

[Guo+23] Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang and Jun Yang.
“Uncore Encore: Covert Channels Exploiting Uncore Frequency
Scaling”. In: Proc. 56th Annu. IEEE/ACM Int. Symp. Microarch.
(MICRO). New York, NY, USA: ACM, 2023, pp. 843–855. doi:
10.1145/3613424.3614259.

[Haj+21] Jawad Haj-Yahya et al. “IChannels: Exploiting Current Manage-
ment Mechanisms to Create Covert Channels in Modern Proces-
sors”. In: Proc. 48th ACM/IEEE Annu. Int. Symp. Comput. Arch.
(ISCA). IEEE, 2021, pp. 985–998. doi: 10.1109/ISCA52012.2021.
00081.

[Hwa+08] Joo-Young Hwang et al. “Xen on ARM: System Virtualization Us-
ing Xen Hypervisor for ARM-Based Secure Mobile Phones”. In:
Proc. 5th IEEE Consumer Commun. Networking Conf. (CCNC).
IEEE, 2008, pp. 257–261. doi: 10.1109/ccnc08.2007.64.

[JN16] Lennart Johnsson and Gilbert Netzer. “The impact of Moore’s Law
and loss of Dennard scaling: Are DSP SoCs an energy efficient alter-
native to x86 SoCs?” In: J. Phys. Conf. Ser. 762 (2016), p. 012022.
doi: 10.1088/1742-6596/762/1/012022.

[KFS18] Christoforos Kachris, Babak Falsafi and D. Soudris. Hardware Ac-
celerators in Data Centers. 1st. Cham: Springer, 2018. doi: 10.
1007/978-3-319-92792-3.

[Kha+18] Ahmed Khawaja et al. “Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS”. In: Proc. 13th USENIX
Symp. Operating Syst. Des. Implementation. USENIX Association,
2018, pp. 107–127.

[Kra+19] Jonas Krautter, Dennis R.E. Gnad, Falk Schellenberg, Amir Moradi
and Mehdi B. Tahoori. “Active Fences against Voltage-based Side
Channels in Multi-Tenant FPGAs”. In: Proc. 2019 IEEE/ACM Int.
Conf. Comput.-Aided Des. (ICCAD). IEEE, 2019, pp. 1–8. doi:
10.1109/ICCAD45719.2019.8942094.

28

[La+20] Tuan Minh La, Kaspar Matas, Nikola Grunchevski, Khoa Dang
Pham and Dirk Koch. “FPGADefender: Malicious Self-Oscillator
Scanning for Xilinx UltraScale + FPGAs”. In: ACM Trans. Recon-
figurable Technol. Syst. 13.3 (2020). issn: 1936-7406. doi: 10.1145/
3402937.

[LGD18] Yann Le Corre, Johann Großschädl and Daniel Dinu. “Micro-architectural
power simulator for leakage assessment of cryptographic software
on ARM Cortex-M3 processors”. In: Proc. 9th Int. Workshop Con-
str. Side-Channel Anal. Secure Des. (COSADE). Springer. 2018,
pp. 82–98. doi: 10.1007/978-3-319-89641-0_5.

[Lip+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile De-
vices”. In: Proc. 25th USENIX Secur. Symp. USENIX Association,
2016, pp. 549–564.

[Mas+15] Ramya Jayaram Masti et al. “Thermal Covert Channels on Multi-
core Platforms”. In: Proc. 24th USENIX Secur. Symp. USENIX
Association, 2015, pp. 865–880.

[MBJ14] Cédric Marchand, Lilian Bossuet and Edward Jung. “IP watermark
verification based on power consumption analysis”. In: Proc. 27th
IEEE Int. Syst.-on-Chip Conf. (SOCC). IEEE, 2014, pp. 330–335.
doi: 10.1109/SOCC.2014.6948949.

[MR21] Prashant Mata and Nanditha Rao. “Flush-Reload Attack and its
Mitigation on an FPGA Based Compressed Cache Design”. In:
Proc. 22nd Int. Symp. Qual. Electron. Des. (ISQED). IEEE, 2021,
pp. 535–541. doi: 10.1109/ISQED51717.2021.9424252.

[Pro+19] George Provelengios et al. “Characterization of Long Wire Data
Leakage in Deep Submicron FPGAs”. In: Proc. 2019 ACM/SIGDA
Int. Symp. Field-Programmable Gate Arrays (FPGA). ACM, 2019,
pp. 292–297. doi: 10.1145/3289602.3293923.

[RA10] Gordon W. Roberts and Mohammad Ali-Bakhshian. “A Brief In-
troduction to Time-to-Digital and Digital-to-Time Converters”. In:
IEEE Trans. Circuits Syst. II: Express Briefs 57.3 (2010), pp. 153–
157. doi: 10.1109/TCSII.2010.2043382.

[Ram+18] Chethan Ramesh et al. “FPGA Side Channel Attacks without Phys-
ical Access”. In: Proc. 2018 IEEE Annu. Int. Symp. Field-Programmable
Custom Comput. Mach. (FCCM). IEEE, 2018, pp. 45–52. doi: 10.
1109/FCCM.2018.00016.

[Sch+18] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi and Mehdi B.
Tahoori. “Remote Inter-Chip Power Analysis Side-Channel Attacks
at Board-Level”. In: Proc. 2018 IEEE/ACM Int. Conf. Comput.-
Aided Des. (ICCAD). IEEE, 2018, pp. 1–7. doi: 10.1145/3240765.
3240841.

[SMP22] Bruno Sá, José Martins and Sandro Pinto. “A First Look at RISC-V
Virtualization From an Embedded Systems Perspective”. In: IEEE
Trans. Comp. 71.9 (2022), pp. 2177–2190. doi: 10.1109/TC.2021.
3124320.

29

[SMS20] Zeinab Seifoori, Seyedeh Sharareh Mirzargar and Mirjana Stojilović.
“Closing Leaks: Routing Against Crosstalk Side-Channel Attacks”.
In: Proc. 2020 ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays (FPGA). ACM, 2020, pp. 197–203. doi: 10.1145/3373087.
3375319.

[Spi+13] Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, Peter Ald-
worth and Stefanos Kaxiras. “Introducing DVFS-Management in
a Full-System Simulator”. In: Proc. 21st IEEE Int. Symp. Mod-
ell. Anal. Simul. Comput. Telecommun. Syst. (MASCOTS). IEEE,
2013, pp. 535–545. doi: 10.1109/MASCOTS.2013.75.

[TS19] Shanquan Tian and Jakub Szefer. “Temporal Thermal Covert Chan-
nels in Cloud FPGAs”. In: Proc. 2019 ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays (FPGA). ACM, 2019, pp. 298–
303. doi: 10.1145/3289602.3293920.

[TSS17] Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo. “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”.
In: Proc. 26th USENIX Secur. Symp. USENIX Association, 2017,
pp. 1057–1074.

[VCR17] Ion Vornicu, Ricardo Carmona-Galán and Ángel Rodŕıguez-Vázquez.
“Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-
Flight Image Sensors”. In: IEEE Trans. Circuits Syst. I: Regular
Papers 64.11 (2017), pp. 2821–2834. doi: 10.1109/TCSI.2017.
2706324.

[WHK14] Dan Walters, Andrew Hagen and Eric Kedaigle. SLEAK: A side-
channel leakage evaluator and analysis kit. Tech. rep. AD1107774.
MITRE CORP BEDFORD MA, 2014.

[Yas+20] Yahya H. Yassin, Magnus Jahre, Per Gunnar Kjeldsberg, Snorre
Aunet and Francky Catthoor. “Fast and Accurate Edge Comput-
ing Energy Modeling and DVFS Implementation in GEM5 Using
System Call Emulation Mode”. In: J. Signal Process. Syst. 2021.93
(2020), pp. 33–48. doi: 10.1007/s11265-020-01544-z.

[YB17] Sadegh Yazdanshenas and Vaughn Betz. “Quantifying and miti-
gating the costs of FPGA virtualization”. In: Proc. 27th Int. Conf.
Field Programmable Logic Appl. (FPL). 2017, pp. 1–7. doi: 10.
23919/FPL.2017.8056807.

[ZBT10] Daniel Ziener, Florian Baueregger and Jürgen Teich. “Using the
Power Side Channel of FPGAs for Communication”. In: Proc. 18th
IEEE Annu. Int. Symp. Field-Programmable Custom Comput. Mach.
(FCCM). IEEE, 2010, pp. 237–244. doi: 10.1109/FCCM.2010.43.

[ZS18] Mark Zhao and G. Edward Suh. “FPGA-Based Remote Power
Side-Channel Attacks”. In: Proc. 34th IEEE Symp. Secur. Privacy
(S&P). IEEE, 2018, pp. 229–244. doi: 10.1109/SP.2018.00049.

[ZSQ23] Jiliang Zhang, Chaoqun Shen and Gang Qu. “Mex+Sync: Software
Covert Channels Exploiting Mutual Exclusion and Synchroniza-
tion”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
42.12 (2023), pp. 4491–4504. doi: 10.1109/TCAD.2023.3291669.

30

