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Figure 1. We extract spectral traces left by generative models to distinguish real and AI-generated images. For each generative model
(columns), we compute an average FFT magnitude spectrum for real (top row) and generated (middle row) images, and learn a mask to
amplify the specific frequencies that help make the distinction. The preprocessing before computing the spectrum is trained separately on
each model, hence the masks being different for each model. The three-channel masks are visualized as RGB images (see Fig. 3).

Abstract

Synthetic image generation methods have recently rev-
olutionized the way in which visual content is created.
This opens up creative opportunities but also presents chal-
lenges in preventing misinformation and crime. How-
ever, these methods leave traces in the Fourier spec-
trum that are invisible to humans, but can be detected
by specialized tools. This paper describes a semi-white-
box method for detecting synthetic images by revealing
anomalous patterns in the spectral domain. Specifically,
we train a mask to enhance the most discriminative fre-
quencies and simultaneously train a reference pattern that
resembles the patterns produced by a given generative
method. The proposed method produces explainable re-
sults with state-of-the-art performances and highlights cues
that can be used as forensic evidence. Code is available at
https://github.com/li-yanhao/masksim.

1. Introduction

The emergence of synthetic images represents a paradigm
shift in the landscape of visual content creation, ushering
in both innovative possibilities and significant challenges
for society. Synthetic images, often generated through
advanced techniques such as Generative Adversarial Net-
works (GANs) or Diffusion Models (DMs), have the po-
tential to revolutionize various industries, including enter-
tainment, design, and marketing. However, alongside these
opportunities, the leap of synthetic images has given rise to
substantial threats to society. One of the foremost concerns
is their use as fake evidence. Indeed, synthesized content
can convincingly depict events or individuals who never ex-
isted. It is therefore very important to characterize their na-
ture and to detect them automatically, to cope with visual
disinformation in social networks, and also to serve for au-
thenticity verification in court.

Recent progress in image generation has increased dra-
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matically the quality of synthetic images [20, 62, 65, 66],
with more and more new models being released continu-
ously. Although the detection of synthetic images is at-
tainable when they come from a known generation source,
generalization to images of unknown sources remains poor.
Previous works [10, 13, 33, 72] studying the generalization
of synthetic image detection suggest that different genera-
tive models result in related and identifiable artifacts, show-
ing the possibility of training a detector on one generator
and generalizing to another. Nevertheless, the detection per-
formance strongly relies on the artifact similarity between
the images used for training and for inference, which still
remains a challenging problem. In addition, the inherent
opacity of neural networks does not bring in the transparent
cues needed to support forensic conclusions.

The Fourier spectrum of synthetic images may contain
cues enabling their detection with generalization ability.
As observed in [24], generative models show systematic
shortcomings in replicating high-frequency characteristics
of pristine images. Generally, such models privilege the re-
construction on some specific frequencies over the rest and
fail to correctly reproduce spectral distributions [21]. Sev-
eral studies [12, 77] demonstrate that the upsampling oper-
ations in the decoder of a generative model leave distinctive
patterns that are traceable in the frequency domain. This has
also been observed in many other studies [13, 33, 46, 75].
Similar to the photo response non-uniformity (PRNU) of
cameras [49], these patterns can be seen as the fingerprints
of generative models. Although acknowledging the pres-
ence of frequency domain artifacts in generative models,
only a few existing methods [4, 75] in the literature have at-
tempted to detect images of DMs in the frequency domain.

In this paper, we propose a semi-white-box method to
detect synthetic images by revealing the abnormal spectrum
patterns left by DMs. More specifically, we enhance the
synthesis artifacts using a Convolutional Neural Network
(CNN) denoising filter [76], then we train a mask to am-
plify the abnormal patterns in the spectrum and, simultane-
ously, we train a reference pattern that resembles the am-
plified patterns of the generation model, see Fig. 1. The ra-
tionale is that generation models share similar spectral pat-
terns related to their limited decoding capacity. The train-
able mask and reference pattern explicitly reveal the arti-
facts in the spectrum of each generative model, so as to pro-
vide explainable forensic evidence. Overall, the proposed
methods establishes a new state of the art in synthetic im-
age detection, and paves the way towards explainable and
generalizable AI-generated image detection.

2. Related works

2.1. Synthetic Image Generation

The landscape of synthetic image generation has under-
gone a revolution with the emergence of generative deep-
learning frameworks such as Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), and
Diffusion Models (DMs). GANs [32] are generative mod-
els that transform low-dimensional randomly sampled la-
tent vectors into photorealistic images. Such models are
trained using adversarial learning. Well known GANs
for image generation include DCGAN [60], BigGAN [8],
GauGAN [56], ProGAN [38], StyleGAN [40], StyleGAN-
2 [41], StyleGAN-3 [39] and EG3D [11].

While GANs have significantly shaped the realm of im-
age generation, their prominence has recently been eclipsed
by DMs [69]. These models conceptualize the distribution
of data as a diffusion process, progressively altering the im-
age using a straightforward prior and gradually restoring it
to the desired distribution. Noteworthy among these is the
Ablated Diffusion Model (ADM) [17], which has surpassed
the capabilities of both GANs and VAEs in the field of im-
age generation. This marks a turning point in the evolution
of DMs. Concurrently, transformer models [71] have expe-
rienced a surge in applications within computer vision. This
surge is largely attributed to the emergence of CLIP [59], a
model proficient in embedding both images and text into
a shared space. Leveraging this capability, Latent Diffusion
models [64], Stable Diffusion models (SD) [65], Glide [54],
CogView [18], Make-A-Scene [27], DALL·E [62] and Ima-
gen [66] have extended the scope of diffusion models to
generate images from text prompts within a latent feature
space. This development represents a significant advance-
ment in the capabilities of image generation, enhancing
both the diversity and photorealism of synthesized images.

However, the rapid progress in image generation has
given rise to societal concerns, particularly the menace of
deepfakes, which represent significant security risks. The
imperative to develop robust techniques for detecting syn-
thetic images and mitigating their potential misuse cannot
be emphasized enough.

2.2. Synthetic image detection

The primary focus of this paper is the detection of synthetic
images. Such an area has recently emerged as a hit research
field alongside the rapid progress in realistic image genera-
tion. AutoGAN [77] employs a classifier in the spectral do-
main to identify synthetic images based on their frequency
artifacts. Dzanic et al. [24] showed the systematic short-
comings of deep networks in replicating correctly the high-
frequency modes, and proposed to use a K-nearest neigh-
bor classifier based on the frequency spectrum for detec-
tion. PatchForensics [10] delved into the distinctive proper-
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Figure 2. Flowchart of our proposed method for computing the spectrum similarity between a reference and an image within a mask,
and predicting the synthesis probability accordingly. The cropped image is preprocessed by a filter, transformed by DFT, enhanced by a
1x1 convolution layer, element-wise multiplied with a mask, and compared with a spectrum reference to compute their similarity. The
similarity score is subsequently used for computing the synthesis probability through a simple logistic regression classifier. The modules
with trainable parameters are colored in orange.
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Figure 3. The 3-channel feature map visualized by RGB image.

ties of counterfeit images, especially face images, that make
them detectable. It discerns patterns that generalize across
various model architectures, datasets, and training modifi-
cations. McCloskey and Albright [51] leveraged the obser-
vation that the intensity values of synthetic images seldom
reach saturation. He et al. [37] proposed a detection frame-
work to re-synthesize tested images and extract visual cues
for GAN-generated images detection. Wang et al. [72] and
Gragnaniello et al. [33] trained CNNs to discriminate be-
tween pristine and GAN-generated images. Liu et al. [46]
proposed a simple classifier using noise patterns. Mandelli
et al. [50] suggested incorporating several CNN classifiers
trained in an orthogonal scheme as an ensemble detector of
GAN-generated images. However, these studies were con-
ducted before the widespread adoption of DMs and text-to-
image techniques.

Some recent methods have been proposed to specifically
tackle the detection of images generated by diffusion mod-
els. Corvi et al. [13] retrained the existing architecture of
Gragnaniello et al. [33] on DM-generated images. Ojha et
al. [55] trained a network to distinguish pristine and fake
images in the latent domain of a CLIP-trained architec-
ture [19]. Similarly, Cozzolino et al. [14] discovered that
with only a handful of example images from a single gen-
erative model a CLIP-based detector exhibits a surprising
generalization ability and high robustness across different
architectures. Zhang et al. [75] proposed a deep learning

approach using the information in the frequency domain.
However, they only trained and tested on images generated
by SD. DIRE [73], on the other hand, proposed a novel im-
age residual which measures the error between an input im-
age and its reconstructed version by a pre-trained diffusion
model; then, a simple binary classifier makes the decision
based on such residuals. Yan et al. [74] proposed to disen-
tangle method-specific and common synthetic features us-
ing a multi-task learning strategy. The detection scheme
presented in Artifact [61] tackles the generalization problem
using a multi-class scheme. CIFAKE [7] processed binary
detection with a CNN classifier and explored useful features
for detection via Gradient Class Activation Mapping [68].
Lorenz et al. [48] conducted a thorough investigation of the
multi-local intrinsic dimensionality method, originally de-
veloped for detecting adversarial examples, and validated
its detection capability for synthetic images. Arruda evalu-
ated the effectiveness of ConvNeXt [47] and Learned Noise
Patterns extraction originated from [46] for detecting syn-
thetic images. Recently, Epstein et al. [26] stated that a
classifier regularly retrained on new generators, has the op-
portunity to detect future, unreleased models, as long as
they are architecturally similar. Synthbuster [4] proposed
to highlight the artifacts left by the diffusion process in the
Fourier transform of a residual image and to use manually
selected frequency components for synthetic image detec-
tion. As the analysed frequency components are manually
selected, the method may need to be adapted for newer, dif-
ferent methods.

3. Proposed method
As pointed out by Corvi et al. [13], synthetic images gen-
erated by GANs or DMs have specific fingerprints that de-
pend on the architecture and the parameters of the genera-



tive network. Such fingerprints can be seen in the frequency
spectrum of the image residual [12, 13]. Following this ob-
servation, we aim at extracting the characteristic fingerprint
of each generative method. Still, not all the frequencies pro-
vide informative clues. Furthermore, the behaviour of some
frequencies could be shared by synthetic and pristine im-
ages. Our goal therefore is to find the peculiar regions of
the frequency domain containing the most distinctive arti-
facts left behind by generative models.

To this end, we train a multiplicative mask to amplify
the spectra of the synthetic images in certain zones that pro-
vide the most informative cues for each generation model
(see Fig. 1 with the color-map explained in Fig. 3). Be-
sides, we also train a reference pattern to which the spectra
of synthetic images should be similar. Fig. 2 summarizes
the workflow of our approach.

Given an input image Ii in three channels, a preprocess-
ing filter f is applied to the image to enhance the artifacts.
Previous research has shown that, with a denoiser such as
DnCNN [76], the synthesis artifacts are better exposed in
the frequency domain. Following this idea, we also adopt
DnCNN as the preprocessing filter, and we fine-tune it along
with other modules during training. We denote by

ri = f(Ii; θ) ∈ R3×h×w (1)

the processed image, where θ denotes the filter parameters
to be fine-tuned during training and h and w is the height
and the width of ri, respectively. We use the YCbCr color
space in order to be coherent with the space where the image
compression (e.g. JPEG and WEBP) is processed.

Then, the image spectrum is computed as

Fi = log
∣∣DFT(ri)

∣∣, (2)

where DFT is the Discrete Fourier Transform applied sep-
arately to each channel, and | · | computes the magnitude
on each pixel. In practice, we use the differentiable FFT
algorithm available in PyTorch [57] to compute the DFT.

The spectrum is then enhanced by a 3-channel 1x1 con-
volution layer, and is element-wise multiplied with a train-
able mask M ∈ [0, 1]3×h×w. The aim is to focus on the
frequencies that contribute the most to discriminating pris-
tine and synthetic images, while neglecting uninformative
frequencies. A batch normalization is applied to normalize
the multiplied spectrum:

F̂M,i = BatchNorm (Conv1x1(Fi)⊙M) , (3)

where ⊙ is the Hadamard product. Again, for 3-channel
images, a separate normalization is applied to each single
channel. This normalization step is helpful to amplify the
difference between the respective similarities of pristine and
fake images.

A second trainable element is the reference spectrum
R ∈ R3×h×w, used to compare with each enhanced spec-
trum. The reference spectrum is channel-wisely normalized
by centering as

R̂ = R−R ∈ R3×h×w, (4)

where R ∈ R3 is the channel-wise means of R. Then, we
compute the cosine similarity between the enhanced image
spectrum F̂M,i and the normalized reference spectrum R̂:

CosSim(F̂M,i, R̂) =
F̂M,i · R̂

||F̂M,i||2 ||R̂||2
, (5)

where · is the dot product between two vectorized matrices
and || · ||2 is the L2 norm.

The objective is to maximize the similarity score for syn-
thetic images and to minimize it for pristine images. Note
that the cosine similarity can be negative, and allows the
model to learn a pattern that is negatively correlated to the
pristine spectra. This can lead to overfitting to the pristine
spectra during training, while we expect M and R to only
learn the synthetic patterns. Indeed, a dataset might have
bias related to the used cameras and the data processing.
If we minimize the similarity scores on pristine spectra of
the training set in the negative range, the model might also
learn the patterns of the bias of the pristine image dataset.
To prevent this, we use the absolute cosine similarity during
training for the pristine spectra, so that the model is trained
to output the similarity scores close to 0 for pristine images.

The similarity score of image Ii during training is given
by

simi := CosSim(F̂M,i, R̂) · yi (6)

+
∣∣∣CosSim(F̂M,i, R̂)

∣∣∣ · (1− yi) (7)

where yi is the label associated to image Ii, equal to 0 for
pristine images and to 1 for synthetic images from the tar-
get model. The uniform similarity score without absolute
operation is used during evaluation:

simi := CosSim(F̂M,i, R̂). (8)

We compute a similarity score for each of the three channels
and take the average as the final similarity outcome.

The logistic regression classifier is adopted to predict the
probability that the image Ii belongs to the family repre-
sented by R from its similarity score simi. Since we de-
signed the similarity score to be close to 1 for synthetic im-
ages and close to 0 for pristine images, the predicted proba-
bility of synthesis should increase with the similarity score.
Taking this into consideration, the classifier is constructed
as:

P synth
i = sigmoid(ea simi + b). (9)



where a and b are two trainable parameters.
The whole network is trained using the cross entropy loss

L = −
N∑
i=1

[
yi log(P

synth
i ) + (1− yi) log(1− P synth

i )
]
,

(10)

where P synth
i is the predicted probability for the image Ii.

The same procedure is repeated to obtain one set of pa-
rameters for each generative model.

4. Experiments
We evaluated the proposed method with synthetic images
from Synthbuster [4] and PolarDiffShield [3] datasets and
pristine images from Mit-5k [9], Raise [15], the curated
subset of HDR-Burst [35], Dresden [31] and a subset of
COCO [45] dataset. Both Synthbuster [4] and PolarDiff-
Shield [3] datasets cover 7 diffusion models: Stable Diffu-
sion (SD)-1, SD-2, SD-XL, DALL·E 2, DALL·E 3, Midjour-
ney and Firefly, with 1000 images per model.

The Mit-5k dataset contains 5000 processed images
saved in TIFF format. The Raise-1k [15] dataset contains
1000 processed images saved in TIFF format. The HDR-
Burst [35] dataset contains 153 raw images, which under-
went the default processing pipeline provided by Adobe
Lightroom1 and were saved in TIFF format. The Dres-
den [31] dataset contains 1488 raw images, which were
processed with libraw [1] and demosaiced with several de-
mosaicing methods: AICC [22, 23], RI [42], MLRI [43],
ARI [53], CDMCNN [25, 70], CS [30], GBTF [58], Alter-
nating Projections [28], HA [34], LMMSE [29] and bilinear
demosaicing, as explained in [2, 5, 6]. The used subset of
COCO dataset contains 5000 JPEG images.

We used all the pristine images of Mit-5k and Dresden,
and half of the pristine images of COCO for training. The
validation was processed on HDR-Burst and the other half
of COCO. The synthetic images from PolarDiffShield were
used both for training and validation. The mixture of differ-
ent datasets helped prevent the detection model from over-
fitting on the specific characteristics of the limited camera
models and image processing pipelines used for creating
the datasets. Balanced resampling was adopted between
pristine and synthetic images during training. The test was
done using synthetic images from Synthbuster and pristine
images from Raise-1k. The Synthbuster [4] dataset was
constructed using text prompts matching the Raise-1k [15]
images, thus the synthetic images from Synthbuster are se-
mantically similar to the Raise-1k pristine images. There-
fore, the test was not biased on the semantics. Detailed data
scheme is showed in Tab. 1.

1Lightroom version: 7.1.2 arm64 (Dec. 10, 2023)

As the raw pristine images are generally much larger and
the COCO images are smaller than the synthetic images,
we cropped each pristine image in the maximum square
shape and resized to 1024 × 1024 in order to eliminate the
frequency discrepancy due to the resolution difference be-
tween pristine images and synthetic images. The dimension
of the input image was set to 512× 512, thus random crop-
ping at 512 × 512 was applied to all the training images.
JPEG compression with random quality factors between 65
and 100 was also applied to both the images during train-
ing in order to enhance the detection robustness to different
levels of JPEG compression.

nb. images training validation test

Mit-5k [9] 5000 ✓
Dresden [31] 1488 ✓
COCO [45] 5000 ✓ ✓
HDR-Burst [35] 153 ✓
Raise-1k [15] 1000 ✓

PolarDiffShield [3] 1000 per class ✓ ✓
Synthbuster [4] 1000 per class ✓

Table 1. The data scheme for training, validation and test. The
top part is for pristine image datasets, and the bottom part is for
synthetic image datasets.

Our detector was trained respectively on the images of
each diffusion model, resulting in one detector per model
{Dm : Ii 7→ P synth

i } where m indexes the different diffu-
sion models, Ii an image and P synth

i the probability of syn-
thesis. Our method was studied on three criteria:
• generalization ability of single detector: the perfor-

mance of detecting the images from all the classes with
one single detector Dm. Here the detector trained with
synthetic images from SD-2 was chosen as it shows the
best performance when testing on all the classes of im-
ages;

• generalization ability of merged detector: the per-
formance of the generalized detector trained on all the
classes of synthetic images except the tested class m,
for which we merge the detectors of all the classes ex-
cept m by taking the maximum predicted probability
Dm

general = maxn ̸=m Dn, and test the generalized detec-
tor Dm

general on the images from the class m;
• generic detection ability: the performance of the generic

detector Dgeneric merged by taking the maximum pre-
dicted probability of all the detectors: Dgeneric =
maxm Dm.
We compared our method to the detection methods of

UFD [55], Wang [72], Corvi [13], Grag [33], PatchFor [10],
and Synthbuster [4]. All of the compared detectors except
Synthbuster [4] were trained on other types of synthetic im-
ages different from those for test. The Synthbuster detector
was trained on synthetic images from PolarDiffShield.



AUC / ACC (%) SD-1 SD-2 SD-XL DALL·E 2 DALL·E 3 Midjourney Firefly AVG

UFD [55] 67.0 / 54.9 83.1 / 71.2 75.7 / 62.8 90.6 / 77.0 43.3 / 46.8 50.6 / 48.4 94.5 / 84.6 72.1 / 63.7
Wang [72] 51.5 / 50.0 63.9 / 50.8 60.6 / 50.1 69.5 / 50.3 19.8 / 49.9 38.8 / 49.9 85.3 / 51.2 55.6 / 50.3
Corvi [13] 100.0 / 99.6 99.5 / 97.2 98.9 / 80.4 48.8 / 49.9 54.9 / 49.7 99.8 / 95.0 86.2 / 52.4 84.0 / 74.9
Grag [33] 85.1 / 56.7 81.0 / 60.5 52.5 / 49.9 69.3 / 50.1 23.3 / 49.8 49.0 / 50.1 96.1 / 74.0 65.2 / 55.9

PatchFor [10] 55.1 / 50.2 71.3 / 50.1 37.6 / 50.1 42.9 / 50.1 46.4 / 50.0 43.1 / 49.8 39.0 / 49.3 47.9 / 49.9

ours, SD-2 89.4 / 75.5 99.1 / 95.9 96.6 / 90.0 68.2 / 55.4 90.2 / 75.3 96.4 / 90.9 76.0 / 64.0 88.3 / 79.4
ours, generalized 85.3 / 77.1 77.2 / 68.8 95.0 / 85.9 70.2 / 60.2 89.9 / 81.2 97.1 / 87.4 82.4 / 73.6 85.3 / 76.3

ours, generic 97.9 / 87.9 98.2 / 88.2 97.9 / 88.2 96.7 / 87.6 96.4 / 88.1 98.0 / 88.0 86.0 / 78.2 96.2 / 86.6

Table 2. The AUC / ACC (%) of the compared methods, our method trained on SD-2, the merged detector trained on all the classes of
synthetic images except the one being tested (generalized), and the merged detector trained on all the classes (generic) for detecting JPEG-
compressed synthetic images of different classes. The images were compressed at random qualities between 65 and 100. Fixed threshold
at 0.5 was used to calculate the accuracy (ACC) scores. The last column shows the average score over the seven classes for each method.
The best and the second best results of each column are highlighted in bold and by underlining, respectively.

AUC (%) w/o proc. Q=90 Q=80 Q=70

UFD [55] 76.7 76.4 72.5 69.9
Wang [72] 52.1 54.8 55.8 56.6
Corvi [13] 82.5 81.2 84.6 86.2
Grag [33] 68.8 64.1 64.4 65.6

PatchFor [10] 29.7 50.1 49.0 48.7
Synthbuster [4] 98.5 92.6 91.7 91.3

ours, SD-2 90.9 90.5 88.3 87.0
ours, generalized 89.5 88.6 85.6 83.6

ours, generic 98.3 97.9 96.6 95.5

Table 3. The AUC (%) over all the tested classes of synthetic
images for images without post-processing and JPEG-compressed
images at quality factors Q for 90, 80 and 70.

4.1. Detection on JPEG-compressed images

The first evaluation was done on JPEG-compressed images
at various quality factors between 65 and 100. We com-
pared the generalization ability of our detector trained on
SD-2. the generalization ability of our merged detector, and
the generic detection ability of the merged detector with the
other methods. Here Synthbuster detector [4] was excluded
as it was originally designed for fixed JPEG compression
quality. The area under the ROC curve (AUC) and the ac-
curacy were adopted as performance metrics. The results
are shown in Tab. 2.

We observe that, in average, our method outperforms the
compared methods. Nevertheless, Corvi et al. performs
better on the family of Stable Diffusion (SD) models and
Midjourney, while our method generalizes much better to
DALL·E 2 and DALL·E 3 than Corvi et al. Note that the de-
tection method of Corvi et al. was trained on a large num-
ber of pristine images from COCO [45], ImageNet [16] and
UCID [67] and on 200K synthetic images from the Latent
Diffusion model [63], while our method was only trained
on 9K pristine images and 1K synthetic images per diffu-
sion model. The Latent Diffusion model and the family of
SD models have very similar network architectures, their
resulting images thus feature similar artifacts. This shows

that using a larger dataset could help increase the detection
ability for images with very similar artifacts, but might de-
crease the generalization ability for images with less similar
artifacts.

We further evaluated the method using JPEG-
compressed images at fixed quality factors 90, 80 and
70. The average AUC over all the classes of synthetic
images was computed for each detection method and each
JPEG quality, shown in Tab. 3. Note that both Synthbuster
detector and our generic detector have seen all the tested
classes of images during training. Besides, Synthbuster
detector was trained separately for images without post-
processing or compressed images at fixed qualities, while
our method was trained on a mix of both unprocessed
images and images compressed at various qualities. As it
can be seen, the generic version of our method is slightly
worse than Synthbuster detector for unprocessed images
but outperforms all the other methods for compressed
images. As for the other compared methods, which have
never seen the tested classes of synthetic images, it is
fairer to compare them with our generalized detector. It
is shown that both of our detectors are superior to the
compared methods at all the compression settings. The
better generalization ability of our detector to unseen types
of images can be attributed to the higher sensibility it has
to the peak frequency artifacts, and also to the variety of
types of synthetic images used for training our generalized
detector.

4.2. Robustness to WebP compression

Even though our detectors were trained on JPEG-
compressed images, they are also robust to WebP compres-
sion. We evaluated our method on WebP-compressed im-
ages at fixed quality factors 90, 80 and 70 and at random
quality factors between 65 and 100, with results shown in
Tab. 4. The difference in the score obtained by each vari-
ant of our method for WebP-compressed images with re-
spect to the JPEG-compressed ones at the same quality is
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Figure 4. Generalization ability measured in AUC (%) across dif-
ferent classes of synthetic images. The tested images were com-
pressed by JPEG at quality factors between 65 and 100. Each
box stands for performance of the detector trained on one class (in
rows) of synthetic images and tested on another class (in columns).

shown in brackets. It can be seen that our method trained
on JPEG-compressed images is also applicable to detecting
WebP-compressed images, with only a slight drop of per-
formance.

AUC (%) Q=90 Q=80 Q=70 mixed Q

our, SD-2 88.4 (-2.1) 88.2 (-0.1) 87.4 (+0.4) 88.0 (-0.3)
our, generalized 84.0 (-4.6) 83.9 (-1.7) 82.3 (-1.3) 83.0 (-2.3)

our, generic 96.5 (-1.4) 95.9 (-0.7) 94.4 (-1.1) 95.9 (-0.3)

Table 4. The AUC (%) over all the tested classes of synthetic im-
ages for WebP-compressed images at fixed quality factors Q for
90, 80 and 70 and at mixed quality factors between 65 and 100.
Each value in brackets shows the performance difference between
WebP and JPEG for the same detector variant and the same com-
pression. The detection performance is only slightly dropped from
JPEG to WebP.

4.3. Cross validation

We further evaluated the detection ability of our method
across different classes of images, by studying the perfor-
mance of the detector trained on a class of synthetic images
and tested on another class, with the cross detection results
shown in Fig. 4. The images for training and testing were
compressed by JPEG at quality factors between 65 and 100.
It is observed that the detection performs well in general for
the in-class detection task where the training and test classes
are the same. An exception is observed for Firefly images,
which might be due to overfitting on the limited Firefly im-
ages in the training set. We can also see the generalization
abilities when training and testing on different classes of
images. In particular, our method trained on SD-2 has the

best generalization performance to unseen classes.

4.4. Qualitative analysis

Furthermore, a qualitative analysis was conducted by study-
ing several successfully classified examples of pristine and
synthetic images. Fig. 5 shows each original image in the
first row, the spectrum of its residuals after DnCNN pre-
processing in the second row, and the similarity map in the
third row. The similarity map is computed by F̂M,i⊙R̂

||F̂M,i||2·||R̂||2
where F̂M,i is the enhanced spectrum and R̂ is the reference
spectrum in Eq. 5. The reference and mask correspond to
the detector trained on SD-2. For the tested image of SD-2,
it can be seen that values on the peak frequencies contribute
a lot to the overall similarity score, and the contributing val-
ues are located at different peak positions. As for the im-
ages of other classes, only a part of peak frequencies con-
tribute to the overall similarity score, and the contributing
frequency components can vary from class to class.

4.5. Implementation details

The pretrained DnCNN denoiser was used and finetuned
during the training. All the modules of our model were
jointly trained, with the learning rate at 1×10−4 for DnCNN
and 1 × 10−3 for the rest of the modules. The ADAM op-
timizer [44] was used with exponential decay rate at 0.99.
The batch size was 8, the image size was 512×512, and the
number of epochs was 50. The training time of one detector
using 2 NVIDIA A100 GPUs and 8 CPUs at 3.1 GHz was
3 hours. During training the model resulting in the smallest
validation loss was selected as the final model.

The proposed detector contains 1.8M parameters in to-
tal, including 0.4M parameters for DnCNN denoiser, and
0.7M parameters for the mask and the spectrum reference,
respectively. The inference time is 0.03 second per image
on single NVIDIA A100 GPU.
5. Discussion
The proposed method is complementary to other meth-
ods. Even though Synthbuster [4] detector shows slightly
better performance than our method on unprocessed syn-
thetic images, it relies on the manual selection of infor-
mative frequency components, while our method automat-
ically learns them. Our method is more portable to future
generative models. Compared to the CNN-based detection
methods [10, 13, 33, 72], our method allows us to make a
straightforward analysis on what it has learned for detec-
tion, and gives a better understanding of the specific traces
of each type of synthetic images. Compared to the methods
by Ojha et al. [55] and Cozzolino et al. [14] that transform
an image to a low-dimensional latent space, our method
works in a high-dimensional Fourier space and is thus more
sensitive to the subtle traces left by the imperfect decoding
during image synthesis.
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Figure 5. Example results of successfully classified images of different classes by the detector trained on SD-2. Top: cropped input image;
middle: spectrum of its residual; bottom: the similarity map between the spectrum enhanced by the mask of SD-2 and the reference
spectrum of SD-2. All the similarity maps share the same range of colormap for better comparison. Both the spectra and similarity maps
are visually enhanced by dilation. One can see that other classes of synthetic images also contain a part of synthesis artifacts revealed by
the detector trained on SD-2.

Still, the proposed method is limited by several factors.
First, it is unable to deal with rescaled synthetic images
whose synthesis artefacts are shifted in the frequency do-
main depending on the rescaling ratio. The fixed mask and
reference therefore fail to reveal the frequencies of the ar-
tifacts at unfixed positions in the spectrum. Second, our
method only works for entirely synthetic images, while the
images inpainted by generative models are beyond its detec-
tion capacity. Third, the proposed method is not yet avail-
able for practical use as it does not give a trustworthy deci-
sion with default threshold at 0.5. A thorough analysis on
the post-validation of the outputs is necessary for a reliable
detection with controlled number of false alarms, which will
be further studied in future work. Finally, the robustness to
various post-processings such as recompression and image
enhancements is to be analyzed.

In addition, the Fourier spectrum adopted by our method
assumes that the image is periodic, which actually is not
true. As a result, the contrast from one border to the other
leads to undesirable horizontal and vertical artifacts in the
Fourier spectrum (see Fig. 1) that mix with the synthesis ar-
tifacts, making the detection more difficult. These undesir-
able artifacts can potentially be cancelled out by approaches
such as the periodic-plus-smooth decomposition [52].

Last but not least, some preliminary experiments showed
that the method without preprocessing by DnCNN denoiser
results in similar detection performance. The introduction
of DnCNN aims at suppressing the textures of an image
and revealing the low-level synthesis artifacts, at the cost of
more difficulty of its training. This will require an in-depth
study of the optimal component for preprocessing and its

customized training strategy.

6. Conclusion

We proposed a method for detecting synthetic images by
revealing abnormal frequencies. This involved learning
a mask to amplify abnormal informative frequencies and
learning a spectrum reference to compare with the ampli-
fied spectrum. Experiments showed that our method is
comparable to but more general than Synthbuster [4] and
outperforms all others. The proposed method is robust to
both JPEG and WEBP compression. As a semi-white-box
method, its learned mask and reference enable us to clearly
interpret which frequency components contribute to the fi-
nal decision. This characteristic not only facilitates inter-
pretable detections but also paves the way for a more gen-
eralized approach to identifying synthetic images.
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MaskSim: Detection of synthetic images by masked spectrum similarity analysis

Supplementary Material

1. Detailed visualization
We further visualize the masks and spectrum references of
our proposed method trained on different classes of syn-
thetic images in Fig. 6. The detection of different classes
of synthetic images depends on different combinations of
frequencies which meanwhile share certain informative fre-
quencies. For instance, the masks and spectrum references
for Stable Diffusion family, Midjourney and Firefly images
having the similar grid of peak values show the importance
of the 8- and 16-period frequency components for their de-
tection, while the detection of DALL·E images rely on cer-
tain peak frequency components at both axes. In addition to
the common peak frequencies, each class of images requires
its own distinct subset of frequencies for detection.

We also visualize the average spectra of pristine images
of Raise dataset [15] in Fig. 7 and the average spectra of dif-
ferent classes of synthetic images in Fig. 8. The images for
each spectrum have undergone different post-compressions
by JPEG, and have been preprocessed by the DnCNN de-
noiser of the model trained for detecting a specific class of
synthetic images. Except for DALL·E 2, each synthetic av-
erage spectrum shows a similar regular grid of peak values,
while the same grid is also present in the pristine average
spectra. When zooming in, the peaks at the regular grid are
clearer when the JPEG compression is stronger, due to the
fact that JPEG compression is processed on 8x8 and 16x16
blocks and leave the similar artifacts at the 8- and 16-period
frequency components.

2. Comparison with ResNet-50
A further comparison was performed between our proposed
architecture and ResNet-50 [36] which is one of the most
popular architectures for synthetic image classification. We
trained the ResNet-50 classifier in the same data scheme
using the pre-trained weights for classification task on Ima-
geNet [16]. Similarly to what was done for our method, we
trained one ResNet-50 detector for each class of synthetic
images with the same data augmentation, and evaluated the
performance of the SD-2 detector, its generalization ability
of merged detector and its generic detection ability at differ-
ent compression quality factors. The average performances
presented by AUC over all the tested classes of images are
shown in Tab. 5.

As can be seen, our proposed architecture is generally
more effective than ResNet-50 detector except for the gen-
eralized performance for JPEG-compressed images com-
pressed at quality factor 70. This can be attributed to the fact
that the ResNet-50 overfits easily on the used training set.

post-JPEG method SD-2 generalized generic

None ResNet-50 88.3 82.9 95.9
ours 90.9 89.5 98.3

Q=90 ResNet-50 87.1 83.1 95.6
ours 90.3 87.5 97.9

Q=80 ResNet-50 86.2 82.4 95.2
ours 87.8 84.0 96.6

Q=70 ResNet-50 86.5 82.4 95.3
ours 86.6 81.7 95.5

Table 5. The average AUC (%) over all the classes of synthetic
images for our detection method and for the classifier based on
ResNet-50. Both detection methods are trained, validated and
tested in the same data scheme. Different post-JPEG compres-
sions at quality factors Q=90, 80 and 70 have been applied to the
tested images.

Also, our proposed method is able to explicitly discover the
peak frequencies that contribute to the generalization abil-
ity for detecting different classes of synthetic images, while
ResNet-50 composed of small convolution kernels can be
less sensitive to these informative peak frequencies.
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Figure 6. The masks (top) and spectrum references (bottom) of the proposed detection models trained on different classes of images
compressed by JPEG at quality factors between 65 and 100.

Stable Diff. 1 Stable Diff. 2 Stable Diff. XL DALL·E 2 DALL·E 3 Midjourney Firefly

Figure 7. The average spectra of pristine images from Raise dataset. Each column shows the average pristine spectra after the preprocessing
of the model trained on the corresponding class of synthetic images. The three rows show the average pristine spectra of uncompressed
images (top) and images compressed by JPEG respectively at quality factors 90 (middle) and 70 (bottom).



Stable Diff. 1 Stable Diff. 2 Stable Diff. XL DALL·E 2 DALL·E 3 Midjourney Firefly

Figure 8. The average spectra of synthetic images of different classes. Each column shows the average spectra of a class of synthetic
images after the preprocessing of the model trained on the same class of synthetic images. The three rows show the average spectra of
unprocessed synthetic images (top) and synthetic images compressed by JPEG respectively at quality factors 90 (middle) and 70 (bottom).
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