
HAL Id: hal-04716163
https://hal.science/hal-04716163v1

Preprint submitted on 1 Oct 2024 (v1), last revised 2 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Weakly synchronous systems with three machines are
Turing powerful *

Davide Ferre’, Cinzia Di Giusto, Etienne Lozes, Nicolas Nisse

To cite this version:
Davide Ferre’, Cinzia Di Giusto, Etienne Lozes, Nicolas Nisse. Weakly synchronous systems with
three machines are Turing powerful *. 2024. �hal-04716163v1�

https://hal.science/hal-04716163v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

1

Weakly synchronous systems with three machines are Turing
powerful *

Cinzia Di Giusto †

Université Côte d’Azur, CNRS, I3S, France

Davide Ferré ‡

Université Côte d’Azur, CNRS, Inria, I3S, France

Etienne Lozes †

Université Côte d’Azur, CNRS, I3S, France

Nicolas Nisse †

Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract. Communicating finite-state machines (CFMs) are a Turing powerful model of asyn-
chronous message-passing distributed systems. In weakly synchronous systems, processes commu-
nicate through phases in which messages are first sent and then received, for each process. Such
systems enjoy a limited form of synchronization, and for some communication models, this restric-
tion is enough to make the reachability problem decidable. In particular, we explore the intriguing
case of p2p (FIFO) communication, for which the reachability problem is known to be undecidable
for four processes, but decidable for two. We show that the configuration reachability problem for
weakly synchronous systems of three processes is undecidable. This result is heavily inspired by
our study on the treewidth of the Message Sequence Charts (MSCs) that might be generated by
such systems. In this sense, the main contribution of this work is a weakly synchronous system
with three processes that generates MSCs of arbitrarily large treewidth.

Address for correspondence: etienne.lozes@univ-cotedazur.fr
*An extended abstract of this work has been published in [1].
†Research supported by the projects EUR DS4H - ANR-17-EURE-0004, UCA JEDI - ANR-15-IDEX-0001.
‡This work received funding from the France 2030 program ANR-23-PECL-0003.

2 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

a

0

1

b

0

1 2

c

0

1

a!b(m1)

a!c(m2)

b?a(m3) a?b(m1)

b!a(m3)

c?b(m
4)

a?c(m2)

a?c(m2)

c!b(m4)

a b c

m1

m2

m
2m

3

m
4

Figure 1: Example of a system of 3 CFMs (left) and of an MSC generated by it (right). a!b(m1) (resp.,
b?a(m1)) denotes the sending (reception) of message m1 from (by) process a to (from) process b.

1. Introduction

Systems of communicating finite-state machines (CFMs) are a simple, yet expressive, model of
asynchronous message-passing distributed systems. In this model, each machine performs a sequence
of send and receive actions, where a send action can be matched by a receive action of another machine.
For instance, the system in Fig. 1 (left), models a protocol between three processes a, b, and r.

A computation of such a system can be represented graphically by a Message Sequence Chart
(MSC), a simplified version of the ITU recommendation [2]. Each machine of the system has its
own “timeline” on the MSC, where actions are listed in the order in which they are executed, and
message arrows link a send action to its matching receive action. For instance, the MSC of Fig. 1
(right) represents one of the many computations of the system in Fig. 1 (left). The set of all MSCs
that the system may generate is determined both by the machines, since the sequence of actions of
each timeline must be a sequence of action in the corresponding CFM, and by the “transport layer” or
“communication model” employed by the machines. Roughly speaking, a communication model is a
class of MSCs that are considered “realizable” within that model of communications. For instance, for
rendezvous synchronization, an MSC is considered to be realizable with synchronous communication
if the only path between a sending and its matching receipt is the direct one through the message arrow
that relates them. Among the various communication models that have been considered, we can cite
p2p (or FIFO) model, where each ordered pair of machines defines a dedicated FIFO queue; causal
ordering (CO), where a message cannot overtake the messages that were sent causally before it; the
mailbox model, where each machine holds a unique FIFO queue for all incoming messages; the bag
(or simply asynchronous) model, where a message can overtake any other message (see [3, 4, 5] for
various presentations of these communication models).

The configuration reachability problem for a system of CFMs consists in checking whether a
control state, together with a given content of the queues, is reachable from the initial state. This
problem is decidable for synchronous communication, as the state space of the system is finite, and
also for bag communication, by reduction to Petri nets [6]. For other communication models, as soon
as two machines are allowed to exchange messages through two FIFO queues, reachability becomes

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 3

undecidable [7]. Due to this strong limitation, there has been a wealth of work that tried to recover
decidability of reachability by considering systems of CFMs that are “almost synchronous”.

In weakly synchronous systems, processes communicate through phases in which messages are first
sent and then received, for each process; graphically, the MSCs of such systems are the concatenation
of smaller, independent MSCs, within which no send happens after a receive. For instance, the MSC
in Fig. 1 (right) is weakly synchronous, as it is the concatenation of three “blocks” (namely {m1},
{m2}, and {m2,m3,m4}), within which all sends of a given machine happen before all the receives
of this same machine. It is known that reachability is decidable for mailbox weakly synchronous
systems [8], whereas it is undecidable for either p2p or CO weakly synchronous systems with at least
four machines. On the other hand, reachability is decidable for two machines (since any p2p MSC
with two machines is also mailbox). In this work, we deal with weakly synchronous systems with
three machines, and conclude that reachability is undecidable for these systems. Our result is based
on a study of the unboundedness of the treewidth for MSCs that may be generated by these systems.
The first contribution of this work is a weakly synchronous system with only three machines that is
“treewidth universal”, in the sense that it may generate MSCs of arbitrarily large treewidth. The second
contribution, strongly inspired by the treewidth universal system, is showing that weakly synchronous
systems with three processes are Turing powerful. To do so, we establish a one-to-one correspondence
between the computations of a FIFO automaton (a finite state machine that may push and pop from a
FIFO queue, which is known to be a Turing powerful computational model) on the one hand, and a
subset of the MSCs of the treewidth universal system on the other hand.

Related work. Beyond weakly synchronous systems, several similar notions have been considered to
try to capture the intuition of an “almost synchronous” system. Reachability of existentially bounded
systems [9, 10] is decidable for FIFO, CO, p2p, or bag communications. Synchronizable systems [11]
were an attempt to define a class of systems with good decidability properties, however reachability for
such systems with FIFO communications is undecidable [12]. The status of reachability for k-stable
systems [13] is unknown. Finally, reachability for k-synchronous systems [14] is decidable for FIFO,
CO, p2p, or bag communications.

Another form of under-approximation of the full behaviour of a system of CFMs is the bounded
context-switch reachability problem, which is known to be decidable for systems of CFMs, even with a
controlled form of function call [15, 16].

Finally, weak synchronizability share some similarities with reversal-bounded counter machines [17,
18]: in the context of bag communications, a send is a counter increment, a receive a decrement, and
weak synchronizability is a form of bounding the number of reversals of increment and decrement
phases.

Outline. Section 2 introduces the necessary terminology and some important definitions regarding
systems of communicating automata and MSCs. Section 3 introduces essential concepts from graph
theory and shows how a weakly synchronous system with three machines may generate MSCs of
arbitrarily large treewidth. Then, Section 4 discusses the undecidability of the configuration reachability
problem for weakly-synchronous systems with three machines. Finally, Section 5 concludes with some
final remarks and future research directions.

4 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

2. MSCs and communicating automata

We recall here concepts and definitions related to MSCs and communicating automata. Assume a finite
set of processes P and a finite set of messages M. A send action is of the form p!q(m) where p, q ∈ P
and m ∈M; it is executed by p and sends message m to process q. The corresponding receive action,
executed by q, is p?q(m). Let Send(p, q,) = {p!q(m) | m ∈ M} and Rec(p, q,) = {p?q(m) |
m ∈ M}. For p ∈ P, we set Send(p, ,) = {p!q(m) | q ∈ P \ {p} and m ∈ M}, etc. Moreover,
Σp = Send(p, ,) ∪ Rec(, p,) ∪ {ε} will denote the set of all actions that are executed by p.
Finally, Σ =

⋃
p∈PΣp is the set of all the actions.

Definition 2.1. (p2pMSC)
A (p2p) MSC M over P and M is a tuple M = (E ,→,�, λ) where E is a finite (possibly empty) set
of events and λ : E → Σ is a labeling function. For p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set
of events that are executed by p. → (the process relation) is the disjoint union

⋃
p∈P →p of relations

→p ⊆ Ep × Ep such that→p is the direct successor relation of a total order on Ep. � ⊆ E × E (the
message relation) satisfies the following:

(1) for every pair (s, r) ∈ �, there is a send action p!q(m) ∈ Σ such that λ(s) = p!q(m), λ(r) =
p?q(m), and p ̸= q;

(2) for all r ∈ E with λ(r) = p?q(m), there is a unique s ∈ E such that s� r;

(3) letting ≤M = (→∪�)∗, we require that ≤M is a partial order;

(4) for every s1 ∈ E and pair (s2, r2) ∈ � with λ(s1) = p!q(m1) and λ(s2) = p!q(m2), if
s1 →+

p s2, then there exists r1 such that (s1, r1) ∈ � and r1 →+
q r2.

Condition (1) above ensures that message arrows relate a send event to a receive event on a distinct
machine. By Condition (2), every receive event has a matching send event. Note that, however, there
may be unmatched send events in an MSC, which do not have a corresponding receive event. An MSC
is called orphan free if all send events are matched. Condition (3) ensures that there exists at least one
scheduling of all events such that each receive event happens after its matching send event. Condition
(4) captures the p2p communication model: a message cannot overtake another message that has the
same sender and same receiver as itself.

Let M = (E ,→,�, λ) be an MSC, then SendEv(M) = {e ∈ E | λ(e) is a send action},
RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E | there is f ∈ E such that
e� f}, and Unm(M) = {e ∈ E | λ(e) is a send action and there is no f ∈ E such that e� f}. We
do not distinguish isomorphic MSCs. Let E ⊆ E such that E is ≤M -downward-closed, i.e, for all
(e, f) ∈ ≤M such that f ∈ E, we also have e ∈ E. Then the MSC M ′ = (E,→,�, λ) obtained by
restriction to E is called a prefix of M . If M1 = (E1,→1,�1, λ1) and M2 = (E2,→2,�2, λ2) are
two MSCs, their concatenation M1 ·M2 = (E ,→,�, λ) is as expected: E is the disjoint union of E1
and E2, � = �1 ∪ �2, λ is the “union” of λ1 and λ2, and→ = →1 ∪ →2 ∪ R. Here, R contains,
for all p ∈ P such that (E1)p and (E2)p are non-empty, the pair (e1, e2), where e1 and e2 are the last
and the first event executed by p in M1 and M2, respectively. Due to condition (4), concatenation is
a partially defined operation: M1 ·M2 is defined if for all s1 ∈ Unm(M1) and s2 ∈ SendEv(M2)

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 5

that have the same sender and destination (λ(s1) ∈ Send(p, q,) and λ(s2) ∈ Send(p, q,)), we
have s2 ∈ Unm(M2). In particular, M1 ·M2 is defined when M1 is orphan-free. Concatenation is
associative.

We recall from [19] the definition of weakly synchronous MSC. We say that an MSC is weakly
synchronous if it can be broken into phases where all sends are scheduled before all receives.

Definition 2.2. (weakly synchronous MSC)
We say that M ∈ MSC is weakly synchronous if it is of the form M = M1 ·M2 · · ·Mn such that for
every Mi = (E ,→,�, λ) SendEv(Mi) is a ≤Mi-downward-closed set.

We now recall the definition of communicating system, which consists of finite-state machines Ap

(one per process p ∈ P) that can exchange messages.

Definition 2.3. (communicating system)
A (communicating) system over P and M is a tuple S = ((Ap)p∈P). For each p ∈ P, Ap =
(Locp, δp, ℓ

0
p, ℓ

acc
p) is a finite transition system where: Locp is the finite set of (local) states of p,

δp ⊆ Locp × Σp × Locp (also denoted ℓ
a−−→
Ap

ℓ′) is the transition relation of p, ℓaccp ∈ Locp is the final

state of p.

Given p ∈ P and a transition t = (ℓ, a, ℓ′) ∈ δp, we let source(t) = ℓ, target(t) = ℓ′, action(t) =
a, and msg(t) = m if a ∈ Send(, ,m) ∪ Rec(, ,m).

Definition 2.4. (accepting run)
An accepting run of S on an MSC M is a mapping ρ : E →

⋃
p∈P δp that assigns to every event e the

transition ρ(e) that is executed at e by Ap, and satisfies the following:

(i) for all e ∈ E , we have action(ρ(e)) = λ(e),
(ii) for all (e, f) ∈ →, target(ρ(e)) ε−−→

Ap

∗
source(ρ(f)),

(iii) for all (e, f) ∈ �, msg(ρ(e)) = msg(ρ(f)),
(iv) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with f → e, we have source(ρ(e)) = ℓ such

that ℓ0p
ε−−→
Ap

∗
ℓ,

(v) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with e→ f , we have target(ρ(e)) = ℓ such
that ℓ ε−−→

Ap

∗
ℓaccp , and

(vi) Unm(M) = ∅.

Essentially, in an accepting run of S every Ap takes a sequence of transitions that lead to its
final state ℓaccp , and such that each send action will have a matching receive action (i.e., there are no
unmatched messages). We can now give the definition of language of a system, which is the set of
MSC on which there is an accepting run.

Definition 2.5. (language of a system)
The language of S is L(S) = {M ∈ MSC | there is an accepting run of S on M}.

6 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

Definition 2.6. (weakly synchronous system)
We say that S is weakly synchronous if, for all M ∈ L(S), M is weakly synchronous.

The emptiness problem is the decision problem that takes as input a system S and addresses the
question “is L(S) empty?”. This problem is a configuration reachability problem, and under several
circumstances, its decidability is closely related to the one of the control state reachability problem.
In this work, we will study the emptiness problem with the additional hypothesis that S is a weakly
synchronous system with three machines only.

Finally, we recall the less known notion of “FIFO automaton”, a finite state machine that can push
into and pop from a FIFO queue. This is a system of communicating machines with just one machine,
whose semantics is a set of MSCs with a single timeline, for which we exceptionally relax condition (1)
of Definition 2.1, so to allow a send event and its matching receive event to occur on the same machine.
The following result is proved in [12, Lemma 4].

Lemma 2.7. ([12])
The emptiness problem for FIFO automata is undecidable.

3. Treewidth of weakly synchronous p2p MSCs

There is a strong correlation between MSCs and graphs. An MSC is a directed graph (digraph in the
following) where the nodes are the events of the MSC and the arcs are represented by the→ and the �
relations. We are, therefore, able to use some tools and techniques from graph theory to possibly derive
some interesting results about MSCs. A graph parameter which is particularly important in this context
is the treewidth [20] mostly due to Courcelle’s theorem that, roughly, states that many properties can be
checked in classes of MSCs with bounded treewidth. For instance, in [19], it is shown that the class of
weakly synchronous mailbox MSCs has bounded treewidth. Interestingly enough, it is also shown that
the bigger class of weakly synchronous p2p MSCs has unbounded treewidth, by means of a reduction
to the Post correspondence problem. Here we give a more direct proof, for all weakly synchronous
systems that have at least three processes. We begin with some terminology:

First, for completeness, let us recall the definitions of tree-decompositions and treewidth.

Definition 3.1. A tree-decomposition of a graph G = (V,E) is a pair (T,X = {Xt | t ∈ V (T)})
such that T is a tree, and X is a set of subsets (called bags) of V , one for each node of T , such that:

•
⋃

t∈V (T)Xt = V (G);

• for every {u, v} ∈ E(G), there exists t ∈ V (T) such that u, v ∈ Xt;

• for every v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} induces a subtree of T .

The width of a tree decomposition (T,X) is maxt∈V (T) |Xt| − 1, i.e., the size of the largest bag
minus one. The treewidth tw(G) of G is the minimum width over all possible tree decompositions of
G.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 7

Definition 3.2. To contract an arc (u, v) in a (di)graph G means replacing u and v by a single vertex
whose neighborhood is the union of the neighborhoods of u and v. A (di)graph H is a minor of a
(di)graph G if H can be obtained from a subgraph of G by contracting some edges/arcs.

In what follow, we will use the following classical result from literature.

Theorem 3.3. (Minor theorem [20])
For any minor G of a graph H , we have tw(G) ≤ tw(H).

Next, we show how to build a family of weakly synchronous MSCs with three processes (a, b and
c) and unbounded treewidth. We want to find a class of MSCs that admit grids of unbounded size
as a minor. The idea is illustrated in Fig. 2, and it consists in bouncing groups of messages between
processes so to obtain the depicted shape. The class of MSCs is indexed by two non-zero natural
numbers: h and ℓ. Intuitively, h represents the number of consecutive events in a group, and ℓ is the
number of groups per process, divided by 2. The graph depicted on the top left of Fig. 2 is not an MSC,
because it is undirected and there are multiple actions associated to the same event. Nonetheless, the
connection with MSCs is quite intuitive, and formalized in Lemma 3.4.

We, now, specify how to build a digraph Gh,ℓ = (V (Gh,ℓ), E(Gh,ℓ)), from which our MSC G∗
h,ℓ

will be obtained. The set of vertices V (Gh,ℓ) = A ∪ B ∪ C contains all the events of each process:
A = {si,ja , ri,ja | 1 ≤ i ≤ h, 1 ≤ j ≤ ℓ}, B = {si,jb , ri,jb | 1 ≤ i ≤ h, 1 ≤ j ≤ ℓ}, and C = {si,jc , ri,jc |
1 ≤ i ≤ h, 1 ≤ j ≤ ℓ}.

For x ∈ {a, b, c} and y ∈ {r, s}, we add the following arcs to E(Gh,ℓ), which will represent the
“timelines” connecting events of each process:

1. for each group of h events/messages and 1 ≤ j ≤ ℓ, Colx,y,j = {(yi,jx , yi+1,j
x) | 1 ≤ i < h};

2. then, to link groups together {(yh,jx , y1,j+1
x) | 1 ≤ j < ℓ};

3. and finally, to link the phase of sendings with the one of receptions: (sh,ℓx , r1,1x).

It remains to add the arcs that correspond to the messages exchanged by the processes. Intuitively,
each vertex si,jx corresponds to two messages sent by process x to the other two processes (except
for j = 1 and x = a, in which case it will correspond to a single message), and each vertex ri,jx will
correspond to two messages received by process x from the other two processes (except for j = ℓ and
x = c, in which case it will correspond to a single message). Formally:

EM ={(si,ja , ri,jb), (si,jc , ri,jb), (si,jc , ri,ja), (si,jb , ri,ja), (si,jb , ri,jc) | 1 ≤ i ≤ h, 1 ≤ j ≤ ℓ}
∪ {(si,j+1

a , ri,jc) | 1 ≤ i ≤ h, 1 ≤ j < ℓ}. (1)

Lemma 3.4. For any h, ℓ ∈ N+, Gh,ℓ is the minor of a graph arising from a weakly synchronous p2p
MSC G∗

h,ℓ with 3 processes and a single phase.

Proof:
Fig. 3 exemplifies the transformation below. Note that some vertices of Gh,ℓ have degree 4 while any

8 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

Figure 2: The undirected graph of G4,2 (top left) with a 4× 12 grid as a minor (top right and bottom).
All arcs go from top to bottom.

MSC is a subcubic graph (i.e., every vertex has degree at most 3). For every si,jx with degree 4, let α
(resp., β) be the in-neighbor (resp., out-neighbor) of si,jx in Px and let γ and δ be the other two neighbors
of si,jx . Replace si,jx by two vertices sui,jx and sdi,jx , with the 5 arcs (α, sui,jx), (sui,jx , sdi,jx), (sdi,jx , β), (sui,jx , γ)
and (sdi,jx , δ). Do a similar transformation for every ri,jx with degree 4. A similar transformation is
done for the four vertices (with degree 3) s1,1b , s1,1c , rh,ℓa and rh,ℓb . Let G∗

h,ℓ be the obtained digraph. It is
clear that G∗

h,ℓ is an MSC and that Gh,ℓ is a minor of G∗
h,ℓ.

Note that for any x ∈ {a, b, c}, X ∈ {A,B, C} induces a directed path Px with first the vertices si,jx
(in increasing lexicographical order of (j, i)) and then the vertices ri,jx (in increasing lexicographical
order of (j, i)). The fact that G∗

h,ℓ is weakly synchronous with one phase directly follows the fact that,
for every x ∈ {a, b, c}, the vertices s, su and sd (corresponding to sendings) appear before the vertices
r, ru and rd (corresponding to receptions) in the directed path Px.

Moreover, for every x, y ∈ {a, b, c}, x ̸= y, the arcs from Px to Py are all parallel (i.e., for every
arc (u, v) and (u′, v′) from Px to Py, if u is a predecessor of u′ in Px, then v is a predecessor of v′ in
Py). This implies that G∗

h,ℓ is p2p. ⊓⊔

Note that, for fixed i ≤ h and j < ℓ, Pi,j = (si,ja , ri,jb , si,jc , ri,ja , si,jb , ri,jc , si+1,j
a) is a (undirected)

path with 6 arcs linking si,ja to si,j+1
a . From this, it is not difficult to see that Gh,ℓ admits a grid of size

h× 6ℓ as a minor, which is the content of next lemma (see Fig. 2 for an example).
Let tw(Gh,ℓ) be the treewidth of the underlying undirected graph of Gh,ℓ.

Lemma 3.5. For any h, ℓ ∈ N∗, tw(Gh,ℓ) ≥ min{h, 6ℓ}.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 9

Figure 3: Transformation described by Lemma 3.4.

Proof:
The subgraph obtained from Gh,ℓ by keeping the arcs in item 1 and Equation 1: G′

h,ℓ = (V (Gh,ℓ), EM∪⋃
x∈{a,b,c},y∈{r,s},1≤j≤ℓColx,y,j), is a h× 6ℓ grid. From [20], we know that tw(G′

h,ℓ) ≥ min{h, 6ℓ}
and, since treewidth is closed under subgraphs [20], tw(Gh,ℓ) ≥ tw(G′

h,ℓ) ≥ min{h, 6ℓ}. ⊓⊔

We can then easily derive the main result for this section.

Theorem 3.6. The class of weakly synchronous p2p MSCs with three processes (and a single phase)
has unbounded treewidth.

Proof:
From Lemma 3.4, G∗

h,ℓ is a weakly synchronous p2p MSC with 3 processes and Gh,ℓ is a minor of
G∗

h,ℓ. Hence, from Lemma 3.5 and the fact that the treewidth is minor-closed (Theorem 3.3), we get
that tw(G∗

h,ℓ) ≥ min{h, 6ℓ}. ⊓⊔

Notice that, a similar technique, this time exploiting four processes instead of three, can be used to
show that we can build a weakly synchronous p2p MSC that can be contracted to whatever graph.

Theorem 3.7. Let H be any graph. There exists a weakly synchronous p2p MSCs with four processes
that admits H as minor.

Proof:
Let V (H) = {v1, · · · , vh} and E(H) = {e1, · · · , eℓ}. Take graph Gh,ℓ defined above. Add a new
directed path (d1, · · · , dℓ) (which corresponds to the fourth process). Finally, for every 1 ≤ j ≤ ℓ, and
edge ej = {vi, vi′} ∈ E(H), add two arcs (ri,ja , dj) and (ri

′,j
a , dj). Let G be the obtained graph.

Using similar arguments as in the proof of Lemma 3.4, G arises from a weakly synchronous p2p
MSC with 4 processes. Now, to see that H is a minor of G, first remove all “vertical” arcs from G.
Then, for every 1 ≤ i ≤ h, contract the path

⋃
1≤j≤ℓ Pi,j into a single vertex (corresponding to vi), and

finally contract the arc (ri
′,j
a , dj) for every edge ej = {vi, vi′}. These operations lead to H . ⊓⊔

10 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

4. Reachability for weakly synchronous p2p systems with 3 machines

In [19], it is shown that the control state reachability problem for weakly p2p synchronous systems with
at least 4 processes is undecidable. The result is obtained via a reduction of the Post correspondence
problem. In the same paper, following from the boundedness of treewidth, it is also shown that
reachability is decidable for systems with 2 processes. The arguments easily adapt to show the same
results for the emptiness problem instead. The decidability of reachability, or emptiness, remained
open for systems with 3 processes. We already showed that the treewidth of weakly synchronous p2p
MSCs is unbounded for 3 processes. But, this result alone is not enough to prove undecidability, still it
gives us a hint on how to conduct the proof. Indeed, inspired by the proof of the unboundedness of the
treewidth, we provide a reduction from the emptiness problem for a FIFO automaton S1 (undecidable,
see Lemma 2.7) to the emptiness problem for a weakly synchronous system S3 with three machines.
The reduction makes sure that there is an accepting run of S1 if and only if there is one for S3,
which shows the undecidability of the emptiness problem for weakly synchronous systems with three
machines.

For the remainder of this section, without loss of generality, we focus on systems where the automata
satisfy certain properties. We demonstrate that any automaton can be encoded into an equivalent one
that meets these properties.

Proposition 4.1. Given a communicating automaton A, there exists an encoding Aε such that (i) from
each state there are either only outgoing epsilon-transitions or a single outgoing non-epsilon transition,
(ii) and there are no self-loops (i.e., transitions that start and land in the same state).

Let S be a communicating system, and Sε be the system obtained from S taking, for each of the
processes p ∈ P, the corresponding encoding Aε

p. Then, L(Sε) = L(S).

Proof:
Let Ap = (Loc, δ, ℓ0, ℓacc) be a communicating automaton for process p. Its encoding into an automaton
with single non-epsilon transitions is the automaton Aε

p = (Locε, δε, ℓ0, ℓacc) where

• Locε = Loc ∪ {ℓt | t ∈ δ}

• δε = {(ℓ, ε, ℓt), (ℓt, a, ℓ′) | t = (ℓ, a, ℓ′) ∈ δ}

We can observe that from each state ℓ ∈ Locε there are either only epsilon-transitions or a single
non-epsilon transition. Indeed, if ℓ ∈ Loc then all transitions t = (ℓ, a, ℓ′) ∈ δ are replaced by
the pair of transitions (ℓ, ε, ℓt) and (ℓt, a, ℓ

′). This entails that ℓ only has outgoing ε-transitions. If
ℓ ∈ {ℓt | t ∈ δ} there is at most one non-epsilon transition that is labeled with the action corresponding
to transition t. For a similar reason, there are no self loops in Aε

p.
Take a system S and its encoding Sε. We show that L(Sε) = L(S). M ∈ L(S) iff there exists

an accepting run ρ of S on M . From ρ we can obtain a mapping ρε : E →
⋃

p∈P δ
ε
p in such a

way that for all ρ(e) = (ℓ, λ(e), ℓ′) = t ∈ δp for some p ∈ P, then ρε(e) = (ℓt, λ(e), ℓ
′) . Hence

target(ρ(e)) = target(ρε(e)) and if source(ρ(e)) = ℓ by construction there exists an epsilon-transition
from ℓ to source(ρε(e)) Now, it is easy to show that the mapping ρε satisfies items (i) - (vi) in Definition
2.4. Similarly one can reverse the construction and obtain ρ from ρε. Hence ρε is an accepting run of
Sε on M iff M ∈ L(Sε), concluding the proof. ⊓⊔

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 11

ℓ0b ℓ?b ℓaccb

ℓmb0

ℓmb?

ε

b!a(m) b!c(m)

ε

a?b(m)c?b(m)

Ab ℓ0c ℓ?c ℓaccc

ℓmc0

ℓmc?

ε

c!b(m) c!a(m)

ε

b?c(m)a?c(m)

Ac

Figure 4: Sketch of Ab and Ac of S3 (only a single message m is considered).

Let S1 = (A), with A = (Loc, δ, ℓ0, ℓacc) be a communicating system with a single process over M.
We provide an encoding of the FIFO automaton S1 into the system S3 = (Aa, Ab, Ac) over M ∪ {D},
where D is an additional special message called the dummy message. We show that S3 is weakly
synchronous, and that L(S1) ̸= ∅ if and only if L(S3) ̸= ∅. Processes b and c (see Fig. 4) are used as
forwarders so that messages circulate as in Fig. 2. Basically, process b (resp., process c) goes through
two phases, the first one in which messages are sent to a and c (resp., a and b), and the second in which
messages can be received. In Fig. 4, there should be one state ℓmb0 (resp., ℓmb?), which is the in and
out-neighbor of ℓ0b (resp., ℓ?b), per message m ∈M ∪ {D}. Formally, Ab = (Locb, δb, ℓ

0
b , ℓ

acc
b) where

Locb ={ℓ0b , ℓ?b, ℓaccb } ∪ {ℓmb0 , ℓ
m
b?
| m ∈M ∪ {D}}

δb ={(ℓ0b , ε, ℓ?b), (ℓ?b, ε, ℓaccb)} ∪ {(ℓ0b , b!a(m), ℓmb0), (ℓ
m
b0 , b!c(m), ℓ0b),

(ℓ?b, b?a(m), ℓmb?), (ℓ
m
b?
, b?c(m), ℓ?b) | m ∈M ∪ {D}}

and symmetrically Ac = (Locc, δc, ℓ
0
c , ℓ

acc
c) where

Locc ={ℓ0c , ℓ?c, ℓaccc } ∪ {ℓmc0 , ℓ
m
c?
| m ∈M ∪ {D}}

δc ={(ℓ0c , ε, ℓ?c), (ℓ?c, ε, ℓaccc)} ∪ {(ℓ0c , c!b(m), ℓmc0), (ℓ
m
c0 , c!a(m), ℓ0c),

(ℓ?c, c?b(m), ℓmc?), (ℓ
m
c?
, c?a(m), ℓ?c) | m ∈M ∪ {D}}.

Process a mimics the behavior of A. Fig. 5 shows an example of how Aa is built, starting from
A. At a high level, Aa is composed of two parts: the first simulates A, and the second (after state ℓDa)
receives all messages sent by b and c. In the first part of Aa, each send action of A is replaced by a
send action addressed to process b, and each reception of A is replaced by a send action to process c.
We then use some dummy messages to ensure that our encoding works properly. Roughly, we force Aa

to send a dummy message to b after each message sent to c, and we let Aa send any number of dummy
messages to c right before each message sent to b, or right before entering the "receiving phase" of Aa,
where messages from b and c are received. Similarly, after Aa sends a dummy message to b, it is also
allowed to send two other dummy messages (the first one to c and the second one to b) an unbounded

12 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

Figure 5: The automaton Aa for the system S3, built from the automaton A of S1. Arcs without actions
represent ϵ transitions.

number of times. Formally, Aa = (Loca, δa, ℓ
0, ℓacca), where:

Loca =Loc ∪ {ℓt1 , ℓt2 | t = (ℓ, ?m, ℓ′) ∈ δ}∪
{ℓDa , ℓ?a, ℓacca } ∪ {ℓma? | m ∈M ∪ {D}}

δa ={(ℓ, a!b(m), ℓ′), (ℓ, a!b(D), ℓ) | (ℓ, !m, ℓ′) ∈ δ}∪
{(ℓ, a!c(m), ℓt1), (ℓt1 , a!b(D), ℓt2),

(ℓt2 , a!c(D), ℓt1), (ℓt2 , ε, ℓ
′) | t = (ℓ, ?m, ℓ′) ∈ δ}∪

{(ℓ, ε, ℓ′) | (ℓ, ε, ℓ′) ∈ δ}∪
{(ℓacc, ε, ℓDa), (ℓDa , a!c(D), ℓDa)}∪
{(ℓDa , ε, ℓ?a), (ℓ?a, ε, ℓacca)}∪
{(ℓ?a, a?c(m), ℓma?), (ℓ

m
a?
, a?b(m), ℓ?a) | m ∈M ∪ {D}}

In Fig. 5, colors show the mapping of states from an instance of A to the corresponding automaton Aa.
Fig. 6 illustrates an accepting run of some system S1 and one of the corresponding accepting runs of
the associated S3.

Definition 4.2. Given a sequence of send and receive actions !m and ?m, where m can be any message,
we call it a FIFO sequence if (i) all messages are received in the order in which they are sent, (ii) there
are no unreceived messages, and (iii) no message is received before being sent.

As mentioned before, the automaton Aa mimics send actions of A by sending messages to process
b, and receive actions by sending messages to process c. To make it easier to talk about such sequences
of send actions, we also introduce another definition of FIFO sequence.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 13

Figure 6: Above, a run with two messages for some system S1 with a single process (timeline drawn
horizontally). Below, one possible corresponding MSC realized by the associated S3. Gray lines
correspond to dummy messages.

Definition 4.3. Let γ′ be a sequence of send actions a!b(m) and a!c(m) taken by Aa. We call γ′ a
FIFO sequence if, when interpreting each a!b(m) and a!c(m) action as !m and ?m, respectively, γ′ is a
FIFO sequence according to Def. 4.2.

As detailed in later proofs, dummy messages are used to ensure that the sequence of send actions
taken by Aa in an accepting run of S3 is a FIFO sequence.

Theorem 4.4. There is an accepting run of S1 if and only if there is an accepting run of S3.

Sketch of proof. Before providing the full proof, we outline a sketch of it to help intuition.
(⇒) We design Algorithm 2, which takes an accepting run σ of S1, and returns an accepting run µ for
S3. At a high level, Algorithm 2 takes the sequence of actions taken by A in σ, rewrites each !m and
?m action as a!b(m) and a!c(m), and then adds some actions related to dummy messages. We first
show that the sequence of actions γ′ returned by Algorithm 2 is a sequence of send actions that takes
Aa of S3 from state ℓ0 to ℓacc (note that this is not the final state of Aa, see Fig. 5 for an example). We
then show that γ′ is a FIFO sequence, and prove that there exists an accepting run of S3 in which Aa

starts by executing exactly the sequence of actions in γ′. Finally, we show that Algorithm 2 always
terminates.
(⇐) Let µ be an accepting run of S3, from which we show that it is easy to build a sequence of actions
γ taken by A in an accepting run of S1. Let γ′ be the sequence of send actions taken by Aa in the
accepting run µ. The first step is to show that γ′ is a FIFO sequence. The three automata Aa, Ab, and
Ac are built so to ensure that γ′ is always a FIFO sequence. This is closely related to the shape of
the MSCs associated to accepting runs of S3; these MSCs exploit the same kind of pattern seen in
Section 3 to bounce messages back and forth between the three processes. We then prove that, if we
ignore actions related to dummy messages in γ′ and interpret each a!b(m) and a!c(m) action as !m

14 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

and ?m, we get a sequence of actions γ that takes A from its initial state ℓ0 to its final state ℓacc in an
accepting run of S1. ⋄

Proof of Theorem 4.4. (⇒) Follows from Lemma 4.10, which uses Lemmata 4.5 to 4.9.
(⇐) Follows from Lemma 4.13, which uses Lemmata 4.11 and 4.12. All Lemmata are stated and
proved below. ⊓⊔

Let µ be an accepting run of a system S, over a set M of messages and a set P of processes, on
an MSC M = (E ,→,�, λ). For p ∈ P, we will use αµ

p to denote the sequence of actions, ignoring
ε-actions, taken by Ap in the run µ; more formally, αµ

p is the sequence of actions in {action(t) | t ∈
µ(e), e ∈ Ep, action(t) ̸= ε}, ordered according to the→P relation, i.e., given a1 = action(µ(e1))
and a2 = action(µ(e2)), such that e1 →p e2, then a1 is right before a2 in αµ

p , which we abbreviate

as a1
p
99K a2 (or simply a1 99K a2, when the process p is clear from the context). The lightweight

notation αp will be used when the run µ is clear from the context, and we omit p when the system only
has one process. The j-th action in αµ

p will be denoted by αµ
p (j). In this section, when talking about an

accepting run of a system S = ((Ap)p∈P) on an MSC M , we will often not even mention M , and only
focus on the sequence of actions taken by the automata Ap.

Let S1 = (A) be any communicating system with a single process and one queue, and S3 =
(Aa, Ab, Ac) be the weakly synchronous system obtained from S1 with the reduction described in
Section 4. For p ∈ {a, b, c}, we use !αµ

p and ?αµ
p to denote the sequence of send actions and,

respectively, receive actions taken by Ap. Note that αµ
p =!αµ

p+?αµ
p , where + is the concatenation of

two sequences, since S3 is a weakly synchronous system with one phase.

Lemma 4.5. Let γ = a1 . . . ak be a sequence of send actions taken by Aa to get from ℓ0a to ℓ?a, where
Aa is also allowed to take extra ε-actions in any state. If γ is a FIFO sequence, there is an accepting
run µ of S3 such that !αµ

a = γ.

Proof:
Suppose γ is a FIFO sequence. It follows that process a must send messages to process b in the same
order X = m1 . . .mk as process a sends messages to process c. We will now build an accepting run
µ of S3 such that !αµ

a = γ. For Ab (Ac), we can construct !αµ
b (!αµ

c) by sending messages to a and
c (b and a) in order X . For p ∈ {a, b, c}, ?αµ

p is constructed by receiving messages from the other
two processes in order X . αµ

a , αµ
b , and αµ

c all lead the corresponding automaton to the final state, and
all messages that are sent are also received, so µ is an accepting run of S3. An example is shown in
Example 4.6. ⊓⊔

Example 4.6. Consider a system S3 with an automaton Aa shown in Fig. 5, and automata Ab and Ac

built as described in Section 4 (see Fig.4 for a sketch). Let γ = a!b(m2) a!c(m2) a!b(D) a!c(D) be a
sequence of send actions that take Aa from ℓ0a to ℓ?a (ε-actions not specified). Note that γ is a FIFO
sequence. Following the procedure outlined in the proof of Lemma 4.5, we can build an accepting run
µ of S3 in which !αµ

a = γ and:

• !αµ
b = b!a(m2) b!c(m2) b!a(D) b!c(D)

• !αµ
c = c!b(m2) c!a(m2) c!b(D) c!a(D)

• ?αµ
a = c?a(m2) b?a(m2) c?a(D) b?a(D)

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 15

• ?αµ
b = a?b(m2) c?b(m2) a?b(D) c?b(D)

• ?αµ
b = b?c(m2) a?c(m2) b?c(D) a?c(D)

Note that all three automata land in their final state and there are no unmatched messages

We now present Algorithm 2, which essentially takes an accepting run of S1, and returns an
accepting run for S3. The correctness of the algorithm is proved in a few steps.

Lemma 4.7. Let γ′ be the sequence of actions returned by one execution of Algorithm 2. Then, γ′ is a
sequence of actions that takes Aa of S3 from state ℓ0 to ℓacc.

Proof:
Let σ be the accepting run of S1 that is given as an input to the algorithm. Suppose that both A in S1
and Aa in S3 start in their initial states and, every time we read an action from ασ in the algorithm (line
4), we take that action in the current state of A1; we know that this is always possible since ασ is by
definition a sequence of actions2 that takes A from its initial state ℓ0 to its final state ℓacc. Similarly,
each time that an action is added by the algorithm to the sequence γ′, we take that action in the current
state of Aa in S31, provided that there exists a transition with such an action; we show that there always
is such a transition, and that the sequence of actions γ′ built by the algorithm2 will take Aa from its
initial state ℓ0 to the state ℓacc (note that ℓacc is not the final state of Aa, by definition). We show by
induction that, right before each iteration of the for loop, A and Aa can always be in the same state
(the correspondence between states of A and the states of Aa is given by the definition of Aa); in
particular, we show that before the i-th iteration of the for loop, they can always both be in state ℓi−1,
which is the state from which A will take the action ασ(i). For the base case, we are right before the
first execution of the for loop. A is in a state ℓ that is either the initial state ℓ0 or some state reachable
with only ε-transitions from ℓ0. In both cases, by construction, Aa can also be in the same state ℓ. For
the inductive step, we assume that A and Aa are both in the same state ℓi−1 before executing the i-th
iteration of the for loop (where ℓi−1 is the state in which A is ready to take the ασ(i) action), and we
show that at the end of the i-th iteration both A and Aa end up in state ℓi. There are two possibilities
for the i-th iteration of the for loop:

• ασ(i) =!x, so the if at line 5 is entered. This means that ℓi−1 in A is a state that has an outgoing
transition with the send action !x. By construction, since Aa is also in ℓi−1, it can take an
unlimited number of a!c(D) actions, followed by a a!b(x) action. These are exactly the kind of
actions added to γ′ by the if that starts at line 5.

• ασ(i) =?x, so the if at line 12 is entered. A is then in a state ℓi−1 that has an outgoing transition
with the receive action ?x. By construction, Aa in state ℓi−1 can take the a!c(x) action, followed
by a a!b(D) action; after that, Aa can take the consecutive pair of actions a!c(D) and a!b(D) any
number of times. These are exactly the kind of actions added to γ′ by the if that starts at line 12.

In both cases, after taking action ασ(i), A gets to state ℓi (possibly using some additional ε-actions),
ready for the next execution of the for loop; after taking the actions added by the algorithm to γ′, Aa

1Or from a state of A that is reachable from the current one using only ε-transitions.
2Possibly interleaved by some ε actions.

16 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

can also get to state ℓi, by construction. After the last iteration of the for loop, A and Aa will both be
in state ℓn = ℓacc. By construction, Aa can take an unlimited number of a!c(D) actions in this state,
which are the only kind of actions that can be added by the algorithm during the final while loop (line
27). ⊓⊔

Lemma 4.8. Let γ′ be the sequence of actions returned by one execution of Algorithm 2. γ′ is a valid
FIFO sequence.

Proof:
Each time that a a!b(m) action gets added to γ′ by the algorithm, m is enqueued, and each time a
a!c(m) action is added to γ′, m is dequeued. Our claim directly follows (the behavior of a queue is
naturally FIFO). ⊓⊔

Lemma 4.9. Algorithm 2 always terminates.

Proof:
The only ways in which the algorithm does not terminate are either (i) if it blocks when trying to
dequeue a message m that is not the first in Queue, or (ii) if a while loop runs forever. We show that
neither ever happens.

Let us first focus on the specific case of line 14, when a message x is dequeued. Each time the
algorithm encounters a send action !x in ασ, message x is enqueued; each time it encounters a receive
action ?x, message x is dequeued. There are no other occasions in which a normal message (i.e., not
a dummy message D) is enqueued or dequeued. By definition, ασ is a valid FIFO sequence for a
single queue, so each time that the algorithm reads a receive action ?x and gets to line 14, message x
must be the first in the queue, unless there are some dummy messages D before. We show that this is
impossible. Suppose, by contradiction, that during the i-th iteration of the for loop, ασ(i) =?x and
the algorithm blocks at line 14, because there are some D messages before x in the queue; these D
messages must have been enqueued during previous iterations of the for loop. Note that i > 1, since
the first action in ασ cannot be a receive action, and the algorithm gets to line 14 only when it reads
a receive action. Consider the previous (i− 1)-th iteration of the algorithm, where ασ(i− 1) could
either be a send or receive action:

• In the first case, we would have entered the while loop at line 6, which would have dequeued all
the D messages on the top of the queue, leaving x as the first one when entering the i-th iteration
of the for loop, therefore leading to a contradiction.

• In the second case, ασ(i− 1) is a receive action, so we would have entered the if at line 17 (since
x is in the queue by hypothesis), and the while loop right after at line 18; this loop also dequeues
all D messages and puts them back in the queue, leaving x as the first one when entering the i-th
iteration of the for loop, leading again to a contradiction.

We showed that the dequeue operation at line 14 never blocks.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 17

Now, we consider the cases in which a D message is dequeued (line 8, 20, and 29). In all of these
cases, we are in a while loop that is entered only if the message at the top of the queue is D, therefore
the algorithm will not block.

The last thing to show is that no while loop will run forever. To do this, we first show that, at any
point of the algorithm, the number of D messages in the queue is at most n. Note that a D message
can only be added to the queue at lines 16 and 22. In the case of line 22, a D message is enqueued
only after another D message was dequeued (line 20), so the total number of D messages in the queue
does not change each time that an iteration of the while loop at line 18 is executed. Line 16 is therefore
the only one that can effectively increase the number of D messages in the queue, and can only be
executed at most once per iteration of the for loop. The number of D messages in the queue at any time
can then be at most n (in particular, it is finite). It follows directly that the while loops at line 6 and
27 will never run forever. We get to the while loop at line 18 only if there is at least one non-dummy
message x in the queue; since the number of D in the queue is finite, the loop will run a finite number
of time before encountering message x at the top of the queue. ⊓⊔

Lemma 4.10. If there is an accepting run σ of S1, then there is an accepting run µ of S3.

Proof:
By Lemma 4.9, Algorithm 2 always terminates and returns γ′. By Lemma 4.7, γ′ is a sequence of
actions that takes Aa from ℓ0a to ℓ?a. Lemma 4.8 shows that γ′ is a FIFO sequence, so we can finally use
Lemma 4.5 to claim that there is an accepting run µ of S3 in which !αµ

a = γ′. ⊓⊔

We now show that in any accepting run of S3 process a sends messages to b and c in the same
number and order.

Lemma 4.11. Let µ be an accepting run of S3. In !αµ
a , there is an equal number of messages sent to

b and to c. Moreover, in !αµ
a , if x is the i-th message sent to b, and y the i-th message sent to c, then

x = y.

Proof:
By construction, in an accepting run of S3, Ab must send messages in the same order and in the same
number to the other two processes, in order not to block and to reach the state ℓ?b , in which it is ready to
start receiving messages. The same goes for Ac (but not for Aa). Also, once Ab gets to state ℓ?b , it must
receive messages from the other two processes in the same number (let it be n) and in the same order,
so not to block and to reach the final state; this means that a and c must send exactly n messages to b3.
The same kind of reasoning holds for Aa and Ac, i.e., each process receives messages in the same order
and in the same number from the other two processes in an accepting run of S3.

We now show that the number of messages sent by a to b (let it be n1) and by a to c (let it be n2) is
the same. Based on the above, n1 is also the number of messages sent by c to b, and by c to a; similarly,
n2 is the number of messages sent by b to c, and by b to a. We then have that a receives n1 messages
from c, and n2 messages from b, hence we must have n1 = n2 in an accepting run of S3.
3By the definition of accepting run, Ab has to receive all messages that were sent by the other two processes before moving to
the final state, since we cannot have some messages sent to b that are not received.

18 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

The second part of the lemma essentially says that, for every accepting run of S3, the order in
which a sends messages to b is the same as the order in which a sends messages to c. Suppose a sends
messages to b following the order X = m1 . . .mk, and messages to c following order Y . We saw that
X must also be the order in which messages are sent by c to b, and by c to a; similarly, Y is the order
in which messages are sent by b to c, and by b to a. We then have that a receives messages in order X
from c, and in order Y from b. We saw that we must have X = Y in an accepting run of S3, so a sends
messages to b and c in the same order. ⊓⊔

In order to make the following proofs more readable, we introduce some simplified terminology. Let
µ be an accepting run of S3. In !αµ

a , we will often refer to send actions addressed to b as “sends”, and to
send actions addressed to c as “receipts” (it follows from the way S3 was built from S1). Additionally,
in !αµ

a , we will refer to the i-th send action to c as the matching receipt for the i-th send action to b
(which, in turn, will be referred to as the matching send for the i-th send action to c). For example, let
!αµ

a = a!b(x) a!c(x) a!b(y) a!b(y) a!b(z) a!c(y) a!c(y) a!c(z) (note that it respects Lemma 4.11): we
will refer to the first a!c(x) action as the matching receipt of the first a!b(x) action, and similarly to
a!c(z) as the matching receipt of the only a!b(z) action in !αµ

a (note that a!c(z) is the 4th send action
to c, and a!b(z) is the 4th send action to b).

We now essentially show that, in any accepting run of S3 and for any message m, process a always
sends m to b first, and later to c.

Lemma 4.12. Let µ be an accepting run of S3. For every non-dummy message x, we cannot have
more a!c(x) actions than a!b(x) actions in any prefix of !αµ

a .

Proof:
Using the above-mentioned simplified terminology, we could rephrase the lemma as: given an accepting
run µ of S3, in !αµ

a there cannot be a receipt of a non-dummy message that appears before its matching
send. By contradiction, suppose there is an accepting run µ of S3 in which a receipt appears before its
matching send in !αµ

a . Let us uniquely identify as lastRx the first such receipt in !αµ
a , and as lastSx

its matching send (we have lastRx 99K+ lastSx in !αµ
a). According to our reduction rules, we must

send a dummy message right after lastRx in !αµ
a . We will uniquely identify this action as lastSD,

see Fig.7a for a representation of !αµ
a with the above-mentioned labels on the respective events. Let

lastRD be the matching receipt of lastSD, there are two possibilities:

(i) lastSD 99K+ lastRD (i.e., lastSD comes before lastRD in !αµ
a). This case leads to a contra-

diction, because we would have lastSD 99K+ lastSx and lastRx 99K+ lastRD, which violates
Lemma 4.11 (message D is sent to b before message x, but D is sent to c after x).

(ii) lastRD 99K+ lastSD, a situation depicted in Fig.7b.4 Note that, since According to the
implementation of S3 (see reduction rules), a receipt of a dummy message, such as lastRD, can
only happen either before a send, or somewhere after a receipt (in any case, before the next non
dummy-related action)5. We analyze the two cases separately:

4Note that this also implies lastRD 99K+ lastRx, since lastSD is immediately after lastRx.
5When not specified, actions do not refer to dummy messages. For example, “can only happen before a send” refers to the
sending of a non-dummy message.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 19

(a) lastRD happens before sending a message y, a scenario shown in Fig.7c. This case leads
to a contradiction. Let Sy be the above-mentioned send action and Ry its receipt; we
must have Sy 99K+ Ry, since lastRx was chosen as the first receipt that appears in !αµ

a

before its send, but this violates again Lemma 4.11 (we would have Sy 99K+ lastSD and
lastRD 99K+ Ry).

(b) lastRD happens somewhere after a receipt of a message y, which we uniquely identify
as Ry. Let Sy be the matching send of Ry. For the same reason as the previous, we must
have Sy 99K+ Ry, as shown in Fig.7d. According to our reduction rules, between Ry and
lastRD there could be an arbitrary large sequence of alternating a!b(D) and a!c(D) actions,
where the last a!c(D) is exactly lastRD. In any case, if there are k + 1 dummy messages
sent between Ry and lastRD, there must be k dummy messages received (excluding the
end points); in the example of Fig.7d, k = 1. Let SD be any send of these dummy messages
(the first one is chosen as an example in Fig.7d).
We now show that the matching receipt of SD (let it be RD) must be between Ry ad
lastRD. In particular, RD cannot be neither after lastRD, nor before Ry, since both
would again violate Lemma 4.11. In the first case, we would have SD 99K+ lastSD and
lastRD 99K+ RD, whereas in the second case Sy 99K+ SD (since Sy 99K+ Ry 99K+ SD)
and RD 99K+ Ry.
This means that any of the k sends of dummy messages between Ry and lastRD must have
its matching receipt also between Ry and lastRD

6; this is impossible, since between Ry

and lastRD there are only k dummy messages received and k + 1 dummy messages sent,
so at least one send will not have its matching receipt, which would violate Lemma 4.11
(there must be an equal number of messages sent from a to b, and from a to c).

All possible cases lead to a contradiction, so there cannot be a receipt of a non-dummy message
that appears before its matching send in !αµ

a (given an accepting run µ of S3). ⊓⊔

Lemma 4.13. If there is an accepting run µ of S3, then there is an accepting run σ of S1.

Proof:
Given an accepting run µ of S3, Algorithm 1 always returns a sequence of actions ασ for an accepting
run σ of S1. The proof is very similar to that of Lemma 4.10, but much easier; therefore, we only
describe the main intuition without dealing with most of the formalism. First, the algorithm removes
all actions related to dummy messages from !αµ

p , and creates the sequence seq; then, it returns the
sequence γ, which is identical to seq, except that a!b(x) and a!c(x) actions are rewritten as !x and ?x,
respectively. Let l0 . . . l? be the sequence of states traversed by Aa while taking the actions in !αµ

a ,
ignoring states in which the only outgoing transitions have a a!b(D) or a!c(D) action; more specifically,
these are the intermediate states introduced by the first reduction rule, which do not have a one-to-one
correspondence with states of A. Note that, by Lemmas 4.11 and 4.12, seq and, therefore, γ, are FIFO

6Not that lastRD itself cannot be the matching receipt for any of these dummy messages, since it is the matching receipt of
lastSD .

20 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

Figure 7: Examples of sequences of send actions executed by process a used in the proof of Lemma 4.12.
Three dots between two actions indicate that there may be other actions in between.

sequences. By construction, it is now not difficult to see that the sequence of actions γ takes A from
l0 to l? where l? is its final state. After all, just by looking at how Aa is constructed, it is clear that
a sequence of send actions in Aa, when removing dummy messages actions and interpreting a!b(x)
and a!c(x) as !x and ?x, also represents a valid sequence for A, as long as it is a valid FIFO sequence
(otherwise some receive actions in A might block trying to read a message that is not at the top of the
queue). ⊓⊔

The following result immediately follows from Lemma 2.7 and Theorem 4.4.

Theorem 4.14. The emptiness problem for weakly synchronous communicating systems with three
processes is undecidable.

Notice that our results extend to causally ordered (CO) communication, since an MSC is weakly
synchronous if and only if it is weakly synchronous CO (see A).

Corollary 4.15. The emptiness problem for causal order communicating systems with three processes
is undecidable.

5. Conclusion

We showed the undecidability of the reachability of a configuration for weakly synchronous systems
with three processes or more. The main contribution lies in the technique used to achieve this result.
We first show that the treewidth of the class of weakly synchronous MSCs is unbounded, by proving

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 21

Algorithm 1 Let µ be an accepting run of S3, and !αµ
a be the sequence of size send actions taken by

Aa in µ. !αµ
a(i) denotes the i-th action of !αµ

a .

1: seq ←!αµ
a

2: for i from 1 to size do
3: action← !αµ

a(i)
4: if action = a!b(D) or action = a!c(D)

then
5: remove action from seq
6: end if
7: end for
8: n← length(seq)
9: γ ← empty list

10: for i from 1 to n do
11: action← seq(i)
12: if action = a!b(x) then
13: add !x to γ
14: else if action = a!c(x) then
15: add ?x to γ
16: end if
17: end for
18: return γ;

Algorithm 2 Let σ be an accepting run of S1, and ασ be the sequence of n actions taken by A in σ.
We use ασ(i) to denote the i-th action of ασ.

1: γ′← empty list
2: Queue← empty queue
3: for i from 1 to n do
4: action← ασ(i)
5: if action =!x then
6: while first(Queue) = D do
7: add a!c(D) to γ′

8: dequeue D from Queue
9: end while

10: add a!b(x) to γ′

11: enqueue x in Queue
12: else if action =?x then
13: add a!c(x) to γ′

14: dequeue x from Queue
15: add a!b(D) to γ′

16: enqueue D in Queue

17: if Queue does not contain only D then
18: while first(Queue) = D do
19: add a!c(D) to γ′

20: dequeue D from Queue
21: add a!b(D) to γ′

22: enqueue D in Queue
23: end while
24: end if
25: end if
26: end for
27: while first(Queue) = D do
28: add a!c(D) to γ′

29: dequeue D from Queue
30: end while
31: return γ′;

22 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

that it is always possible to build such an MSC with an arbitrarily large grid as minor. Then, a similar
construction is employed to provide an encoding of a FIFO automaton into a weakly synchronous
system with three processes, allowing to show that reachability of a configuration is undecidable.

Beyond reachability, in other works [21] we have also explored the decidability of determining
whether a given system is weakly synchronous. We showed how this problem can be reduced to a
reachability problem. We conjecture that determining whether a system with three machines using
FIFO communication is weakly synchronous is undecidable, but it would require to significantly adapt
the ideas of the paper in order to show this result.

Other open questions, related to systems of three communicating finite state machines only, include
the decidability of the implementability problem for a given choreography. Choreographies specify
the kinds of interactions that the machines of a system are expected to adhere to. Based on this
specification, we can associate a natural candidate system for its implementation. However, the projected
system may allow for unexpected interactions, in which case the choreography is not implementable.
The undecidability of implementability (aka realizability) has been first studied by Alur et al [22].
However, the restriction to three machines poses a significant limitation, as all undecidability results for
implementability involve four machines. Investigating the decidability of the implementability problem
for choreographies with three machines would be an interesting direction for future research.

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 23

References

[1] Di Giusto C, Ferre’ D, Lozes E, Nisse N. Weakly Synchronous Systems with Three Machines Are Turing
Powerful. In: Bournez O, Formenti E, Potapov I (eds.), Reachability Problems. Springer Nature Switzerland,
Cham. ISBN 978-3-031-45286-4, 2023 pp. 28–41.

[2] ITU-T. Recommendation ITU-T Z.120: Message Sequence Chart (MSC). Technical report, International
Telecommunication Union, Geneva, 2011.

[3] Basu S, Bultan T. On deciding synchronizability for asynchronously communicating systems. Theor.
Comput. Sci., 2016. 656:60–75. doi:10.1016/j.tcs.2016.09.023. URL https://doi.org/10.1016/j.
tcs.2016.09.023.

[4] Charron-Bost B, Mattern F, Tel G. Synchronous, Asynchronous, and Causally Ordered Communication.
Distributed Comput., 1996. 9(4):173–191. doi:10.1007/s004460050018. URL https://doi.org/10.
1007/s004460050018.

[5] Di Giusto C, Ferré D, Laversa L, Lozes É. A Partial Order View of Message-Passing Communication
Models. Proc. ACM Program. Lang., 2023. 7(POPL):1601–1627. doi:10.1145/3571248. URL https:
//doi.org/10.1145/3571248.

[6] Mayr EW. An algorithm for the general Petri net reachability problem. In: Symposium on the Theory of
Computing. 1981 pp. 238–246.

[7] Brand D, Zafiropulo P. On Communicating Finite-State Machines. J. ACM, 1983. 30(2):323–342.
doi:10.1145/322374.322380. URL http://doi.acm.org/10.1145/322374.322380.

[8] Bollig B, Di Giusto C, Finkel A, Laversa L, Lozes É, Suresh A. A Unifying Framework for De-
ciding Synchronizability (extended version). Technical report, HAL, 2021. Available at https:
//hal.archives-ouvertes.fr/hal-03278370/document.

[9] Lohrey M, Muscholl A. Bounded MSC Communication. In: Nielsen M, Engberg U (eds.), Foundations of
Software Science and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, April 8-12, 2002,
Proceedings, volume 2303 of Lecture Notes in Computer Science. Springer, Grenoble, France, 2002 pp.
295–309. doi:10.1007/3-540-45931-6_21. URL https://doi.org/10.1007/3-540-45931-6_21.

[10] Genest B, Kuske D, Muscholl A. On Communicating Automata with Bounded Channels. Fun-
dam. Informaticae, 2007. 80(1-3):147–167. URL http://content.iospress.com/articles/
fundamenta-informaticae/fi80-1-3-09.

[11] Basu S, Bultan T. Choreography conformance via synchronizability. In: Srinivasan S, Ramamritham K,
Kumar A, Ravindra MP, Bertino E, Kumar R (eds.), Proceedings of the 20th International Conference on
World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011. ACM, 2011 pp. 795–804.

[12] Finkel A, Lozes É. Synchronizability of Communicating Finite State Machines is not Decidable. In:
Chatzigiannakis I, Indyk P, Kuhn F, Muscholl A (eds.), 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017 pp. 122:1–122:14.

[13] Akroun L, Salaün G. Automated verification of automata communicating via FIFO and bag buffers. Formal
Methods Syst. Des., 2018. 52(3):260–276. doi:10.1007/s10703-017-0285-8. URL https://doi.org/10.
1007/s10703-017-0285-8.

https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1007/s004460050018
https://doi.org/10.1007/s004460050018
https://doi.org/10.1145/3571248
https://doi.org/10.1145/3571248
http://doi.acm.org/10.1145/322374.322380
https://hal.archives-ouvertes.fr/hal-03278370/document
https://hal.archives-ouvertes.fr/hal-03278370/document
https://doi.org/10.1007/3-540-45931-6_21
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1007/s10703-017-0285-8

24 C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines

[14] Bouajjani A, Enea C, Ji K, Qadeer S. On the Completeness of Verifying Message Passing Programs
Under Bounded Asynchrony. In: Chockler H, Weissenbacher G (eds.), Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science. Springer,
Oxford, UK, 2018 pp. 372–391. doi:10.1007/978-3-319-96142-2_23. URL https://doi.org/10.
1007/978-3-319-96142-2_23.

[15] Heußner A, Leroux J, Muscholl A, Sutre G. Reachability Analysis of Communicating Pushdown Systems.
In: Ong L (ed.), Foundations of Software Science and Computational Structures. Springer Berlin Heidelberg,
Berlin, Heidelberg. ISBN 978-3-642-12032-9, 2010 pp. 267–281.

[16] Torre SL, Madhusudan P, Parlato G. Context-Bounded Analysis of Concurrent Queue Systems. In: Tools
and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. 2008 pp. 299–314. doi:10.1007/978-3-540-78800-3_21.
URL https://doi.org/10.1007/978-3-540-78800-3_21.

[17] Finkel A, Sangnier A. Reversal-Bounded Counter Machines Revisited. In: Ochmański E, Tyszkiewicz J
(eds.), Mathematical Foundations of Computer Science 2008. Springer Berlin Heidelberg, Berlin, Heidel-
berg. ISBN 978-3-540-85238-4, 2008 pp. 323–334.

[18] Ibarra OH. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM
(JACM), 1978. 25(1):116–133.

[19] Bollig B, Di Giusto C, Finkel A, Laversa L, Lozes É, Suresh A. A Unifying Framework for Deciding
Synchronizability. In: Haddad S, Varacca D (eds.), 32nd International Conference on Concurrency Theory,
CONCUR 2021, August 24-27, 2021, volume 203 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Virtual Conference, 2021 pp. 14:1–14:18. doi:10.4230/LIPIcs.CONCUR.2021.14.

[20] Bodlaender HL. A Partial K-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci.,
1998. 209(1–2):1–45. doi:10.1016/S0304-3975(97)00228-4. URL https://doi.org/10.1016/
S0304-3975(97)00228-4.

[21] Di Giusto C, Ferré D, Laversa L, Lozes E. A partial order view of message-passing communication
models. Research report, Université Nice Côte d’Azur, CNRS, I3S, France, 2022. URL https://hal.
archives-ouvertes.fr/hal-03823473.

[22] Alur R, Etessami K, Yannakakis M. Realizability and verification of MSC graphs. Theor. Comput. Sci.,
2005. 331(1):97–114. doi:10.1016/J.TCS.2004.09.034. URL https://doi.org/10.1016/j.tcs.2004.
09.034.

https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://hal.archives-ouvertes.fr/hal-03823473
https://hal.archives-ouvertes.fr/hal-03823473
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1016/j.tcs.2004.09.034

C. Di Giusto, D. Ferré, E. Lozes, N. Nisse / Weakly synch systems with three machines 25

A. Weakly synchronous causally ordered MSCs

We recall here the definition of causally ordered (CO) MSC, borrowed from [5].

Definition A.1. (CO MSC)
An MSC M = (E ,→,�, λ) is causally ordered if, for any two send events s and s′, such that
λ(s) ∈ Send(, q,), λ(s′) ∈ Send(, q,), and s ≤hb s

′:

• either s, s′ ∈ Matched(M) and r →∗ r′, with r and r′ receive events such that s� r and s′ � r′.

• or s′ ∈ Unm(M).

An MSC is weakly synchronous CO if it is a weakly synchronous MSC and a CO MSC.

Theorem A.2. An MSC is weakly synchronous CO if and only if it is weakly synchronous p2p.

Proof:
(⇐) Let M be a weakly synchronous CO MSC. M is weakly synchronous and is also p2p, since each
CO MSC is a p2p MSC.
(⇒) Let M be a weakly synchronous p2p MSC. By contradiction, suppose it is not causally ordered,
which means that there exist two send events s and s′ addressed to the same process, such that s≤Ms′,
and one of the following holds:

• r′ →+ r, where s� r and s′ � r′. Note that s and s′ cannot be executed by the same process,
otherwise M would not even be p2p. Since s ≤M s′, there is a ’chain’ of events that causally
links s to s′. Note that, in this chain, there must exist a receive event r′′ and a send event s′′ such
that r′′ →+ s′′ (otherwise s and s′ could not be causally related). We now have a send event s′′

that is executed after a receive event r′′ by the same process. Note that r′′ and s′′ cannot be in
two distinct phases of the weakly synchronous MSC M , since s and r (matching events) must be
in the same phase, and we have that s ≤M r′′ →+ s′′ ≤M s′ � r′ →+ r (i.e., all these events
between s and r must be part of the same phase).

• s in unmatched, and s′� r′. As before, note that s and s′ cannot be executed by the same process,
otherwise M would not even be p2p.

⊓⊔

	Introduction
	MSCs and communicating automata
	Treewidth of weakly synchronous p2p MSCs
	Reachability for weakly synchronous p2p systems with 3 machines
	Conclusion
	Weakly synchronous causally ordered MSCs

