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A B S T R A C T

The Improved Choppy Wave Model (ICWM) was established to achieve a second-order Lagrangian expansion of
surface waves. The second-order Lagrangian nonlinear interaction terms were found to be negligible and were
therefore discarded. However, these interactions in directional wave fields remained unexplored. ICWM was
successfully used, especially for floating offshore wind turbines, but it was noted that its accuracy in predicting
directional sea states needed improvement. Hence, we formulated the Complementary ICWM (CICWM) with the
nonlinear terms for free surface elevation in directional waves. Detailed formulations for data assimilation and
wave propagation were provided, enabling real-time wave forecasting for directional seas using a simplified
assimilation method. Comparing the model performances against tank-scale experiments showed that CICWM
enhances the surface elevation description in directional seas. Ultimately, it was confirmed that the second-
order Lagrangian model can reduce the prediction error of the linear wave model by 90% in directional seas
for the experimental setups and sea states investigated in this study.
1. Introduction

The real-time prediction of deterministic ocean wave surfaces is of
great importance in marine science and ocean engineering. The safe
and efficient operation of surface vessels involves predicting ocean
waves for future scenarios (Grilli et al. 2011, Nouguier et al. 2013,
Kusters et al. 2016, Dannenberg et al. 2010). Similarly, the availability
of real-time short-term phase-resolved sea wave prediction is a central
challenge for ocean renewable energy harvesting systems (Li et al.
2012, Previsic et al. 2021) and the operational performance of marine
structures, such as floating offshore wind turbines (Raach et al. 2014,
Ma et al. 2018, Al et al. 2020). Recently, Kim et al. (2024b) validated
deterministic predictions of both ocean wave elevations and excitation
forces on the floating body against dedicated tank-scale experiments in
directional sea states.

Optical sensor systems, such as LIDAR (Light Detection and Rang-
ing) cameras (Grilli et al. 2011, Nouguier et al. 2013, Kabel et al. 2019),
and X-band radars (Hilmer and Thornhill 2015, Kusters et al. 2016,
Naaijen et al. 2018, Klein et al. 2020, Zhang et al. 2022), are employed
to collect sea surface elevation data for developing phase-resolved
ocean wave forecasts. While these systems capture extensive domains of
ocean surface wave fields, the spatial density of measurement points de-
creases geometrically with distance from the sensor due to its aperture
angles. Moreover, spatial gaps behind illuminated wavefronts induce

∗ Corresponding author at: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.
E-mail address: inchul.kim@oregonstate.edu (I.-C. Kim).

wave shadowing effects, causing a more uneven distribution of wave
elevation points in space. To overcome this challenge, including the
shadowing effects, spatio-temporal data sets can be used, enabling
the detection of ocean surface points surrounding the camera under
shadows at a later time (e.g., Grilli et al. 2011, Nouguier et al. 2013,
Kabel et al. 2019, Desmars et al. 2020).

Understanding the instantaneous state of nonlinear wave motions
is crucial for an accurate description of ocean surface elevations over
a long forecast horizon in time and/or in significantly nonlinear sea
states. The Lagrangian approach appears particularly attractive in the
study of surface gravity wave simulations at high orders of wave
steepness (Socquet-Juglard et al. 2005, Lindgren 2006, Clamond 2007
among others). The Lagrangian representation excels in describing
steep waves and assessing statistical and geometrical quantities in ran-
dom wave fields at a reduced numerical expense (Lindgren and Åberg,
2009). Consequently, several authors have proposed real-time wave
prediction algorithms through nonlinear phase-resolved wave models
based on Lagrangian descriptions that incorporate essential nonlinear
effects (e.g., Grilli et al. 2011, Nouguier et al. 2013, Desmars et al.
2023).

Gerstner (1809) explicitly developed a first-order solution to a
periodic evolution of Lagrangian wave particles. Pierson (1961) intro-
duced a solution to complete dynamical Lagrangian equations among
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multiple surface gravity waves. Nouguier et al. (2009), extending the
model of Gerstner (1809) to two-dimensional surfaces, developed a
numerically efficient and nonlinearly robust wave model, known as
the Choppy Wave Model (CWM), based on the small displacements
of Lagrangian first-order particles. The subsequent development of a
complete second-order version of CWM, referred to as CWM2, was car-
ried out by Nouguier et al. (2015). Applying a perturbation expansion
approach as described by Stoker (1992), they developed exact solutions
based on the fundamental equation for fluid particle motion (Lamb,
1932). This version ensured the inclusion of additional nonlinear ef-
fects up to the second order in the Lagrangian solution. Nouguier
et al. (2015) demonstrated the consistency of CWM2 with the second-
order classical Eulerian model of Longuet-Higgins (1963). While the
first-order approximation (i.e., CWM) does not align entirely with
the classical Eulerian approach, the second-order version exhibits per-
fect consistency. Additionally, they showed that CWM2 achieves im-
provements in terms of the mean sea level compared to the classical
Lagrangian expansion of Pierson (1961).

Guérin et al. (2019) thereafter demonstrated that retaining selected
nonlinear properties, such as Stokes drift and mean vertical level,
not only improves numerical efficiency but also maintains forecast
accuracy via a simplified model, namely, the Improved Choppy Wave
Model (ICWM). More importantly, the use of a redefinition of reference
particles circumvents problems associated with increasing phase shifts
(or discrepancies with the nonlinear wave dispersion relationship).
Recently, this Lagrangian wave model has proven to be well-suited for
accomplishing real-time phase-resolved ocean wave predictions with
great accuracy and efficiency in unidirectional wave fields (Desmars
et al. 2020, 2023), multidirectional wave fields (Kim et al., 2023a),
and operational scenarios (Kim et al., 2024a).

More specifically, in comparison to the earlier model CWM2, ICWM
omits nonlinear second-order Lagrangian interaction terms, except for
those occurring between identical modes in frequency and direction
(or the mean vertical level terms). Guérin et al. (2019) explored the
effects of these omitted interaction terms by comparing ICWM with
ICWM including the second-order interaction terms (Complementary
ICWM, CICWM), against a synthetic reference dataset for long-crested
waves. They found that these nonlinear terms are significant only
during a short period and become increasingly negligible over time
in the evolution of random nonlinear surface waves in unidirectional
cases.

However, within the context of feed-forward wave-based controllers
for floating offshore wind turbines, a short time horizon of wave
prediction is crucial, as the forecast accuracy of the wave excitation
forces highly depends on short-term deterministic wave prediction (Guo
et al. 2017, Al et al. 2020, Kim et al. 2024b). Additionally, Kim et al.
(2023a) reported that in their short-term wave forecasting, while the
effect of nonlinear phase shift is similarly crucial in both unidirectional
and directional cases, the Stokes drift effect in directional cases is not as
significant as in unidirectional cases. Consequently, the improvement
by ICWM in comparison to the linear model is less pronounced for
directional seas. This difference likely arises because the nonlinear
phase shift and the Stokes drift operate at second order and third
order in wave steepness, respectively. Therefore, aiming to increase
the gap between the nonlinear and linear models over the short-term
forecast, especially in directional scenarios, we extend the method
of Kim et al. (2023a) by incorporating the second-order Lagrangian
interaction terms.

First, we propose an explicit formulation of CICWM for the free
surface elevation, considering all combinations between aligned and
non-aligned wave vector components in three-dimensional random
wave systems. Subsequently, we validate the wave prediction algo-
rithm based on CICWM against dedicated tank-scale experiments. The
inclusion of directional modes complicates and enhances nonlinear
wave-wave interactions, potentially leading to energy redistribution

across a broad range of directions (Janssen et al., 2006). However, these

2 
nonlinear interactions may hinder the complementary model from
achieving real-time capabilities, particularly in multidirectional cases.
Hence, we develop algorithms for real-time ocean wave prediction
using a simplified assimilation method suggested in Kim et al. (2023a).

The paper is organized as follows. Section 2 outlines the derivation
of an explicit formulation of CICWM for the free surface elevation,
followed by the algorithms for real-time phase-resolved ocean wave
forecasting provided in Section 3. In particular, Section 3.1 offers a
comprehensive overview of the wave models employed in this study
in the order of their development. Section 4 explains the experimental
data. The numerical simulations of the wave models are compared with
the experimental observations in Section 5. Lastly, the conclusions of
the present study are detailed in Section 6. Additional details regarding
the derivation of the simplified version of ICWM (SICWM) and data
assimilation, are given respectively in Appendices A and B.

2. Derivation of equations

2.1. Lagrangian evolution equations

Based on the Lagrangian form in Lamb (1932), Nouguier et al.
(2015) obtained a second-order solution to the motion of fluid particles
using the usual perturbation technique. Similarly, Guérin et al. (2019)
sought a perturbation expansion in the second order of wave steepness
from the Eulerian velocity field described by Longuet-Higgins (1963).
For an inviscid, incompressible, and irrotational fluid, the particle
trajectories at time 𝑡 around the modified reference location (�̄�, �̄�, �̄�) for

discrete short-crested sea state are presented in Guérin et al. (2019)
see the appendix in their published literature):

(𝑡) = �̄� + 𝑥1 (𝑡) + 𝑥2 (𝑡)

𝑦 (𝑡) = �̄� + 𝑦1 (𝑡) + 𝑦2 (𝑡)

𝑧 (𝑡) = �̄� + 𝑧1 (𝑡) + 𝑧2 (𝑡)

(1)

here 𝐫 = (𝑥, 𝑦) represents the horizontal components of particle
osition, with 𝑧 being positive in the vertical upward direction. The
irst-order particle fluctuations are

1 =
𝑁𝜔
∑

𝑖𝜔=1

𝑁𝜃
∑

𝑖𝜃=1
𝐴(𝑖𝜔 ,𝑖𝜃 )𝑒

𝑘𝑖𝜔 �̄� cos 𝜃𝑖𝜃 sin �̄�(𝑖𝜔 ,𝑖𝜃 ) =
𝑁
∑

𝑖=1
𝐴𝑖𝑒

𝑘𝑖 �̄�
𝑘𝑖𝑥
𝑘𝑖

sin �̄�𝑖 (2)

𝑦1 =
𝑁𝜔
∑

𝑖𝜔=1

𝑁𝜃
∑

𝑖𝜃=1
𝐴(𝑖𝜔 ,𝑖𝜃 )𝑒

𝑘𝑖𝜔 �̄� sin 𝜃𝑖𝜃 sin �̄�(𝑖𝜔 ,𝑖𝜃 ) =
𝑁
∑

𝑖=1
𝐴𝑖𝑒

𝑘𝑖 �̄�
𝑘𝑖𝑦
𝑘𝑖

sin �̄�𝑖 (3)

𝑧1 =
𝑁𝜔
∑

𝑖𝜔=1

𝑁𝜃
∑

𝑖𝜃=1
𝐴(𝑖𝜔 ,𝑖𝜃 )𝑒

𝑘𝑖 �̄� cos �̄�(𝑖𝜔 ,𝑖𝜃 ) =
𝑁
∑

𝑖=1
𝐴𝑖𝑒

𝑘𝑖 �̄� cos �̄�𝑖 (4)

where 𝐴𝑖 denotes the amplitude, and the subscript 𝑖 = (𝑖𝜔, 𝑖𝜃) refers to
he 𝑖th wave component, with indices for the frequency component 𝑖𝜔
nd for the direction component 𝑖𝜃 . Henceforth, we opted to use the
ndex vector 𝑖 in formulating the equations rather than the component
ndices 𝑖𝜔 and 𝑖𝜃 , primarily due to the increased complexity arising
rom the inclusion of second-order terms. The total number of wave
omponents is 𝑁 = 𝑁𝜔×𝑁𝜃 , with 𝑁𝜔 and 𝑁𝜃 the total numbers of wave
omponents in frequency and direction, respectively. The wavenumber
ector 𝐤𝑖 = (𝑘𝑖𝑥 , 𝑘𝑖𝑦 ) is given by the wavenumber 𝑘𝑖 and the propagating

direction 𝜃𝑖, i.e. 𝑘𝑖𝑥 = 𝑘𝑖 cos 𝜃𝑖 and 𝑘𝑖𝑦 = 𝑘𝑖 sin 𝜃𝑖. The phase function at
the reference location �̄� = (�̄�, �̄�) is

�̄�𝑖 = 𝐤𝑖 ⋅ �̄� − 𝜔𝑖𝑡 − 𝜑𝑖 = 𝑘𝑖 cos 𝜃𝑖�̄� + 𝑘𝑖 sin 𝜃𝑖�̄� − 𝜔𝑖𝑡 − 𝜑𝑖 (5)

n which the wave frequency 𝜔𝑖 is given by the linear dispersion
elation for gravity waves in deep water, and 𝜑𝑖 is the random phase. A

comparable equation can be readily derived using the fully dispersive
wavenumber for a finite water depth.

Next, for the second-order contributions for three-dimensional ir-
regular waves, only the time derivatives of particle location (or the
Lagrangian velocities) are provided in Guérin et al. (2019); therefore,
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further algebraic processing is necessary to obtain the second-order
fluctuations:

𝑥2 =
1
2
∑

𝑖,𝑗
𝐴𝑖𝐴𝑗

⎡

⎢

⎢

⎣

𝑒|𝐤𝑖−𝐤𝑗 |�̄�−
𝑖𝑗

(

−
𝑘𝑖𝑥−𝑘𝑗𝑥
𝜔𝑖−𝜔𝑗

)

sin
(

�̄�𝑖 − �̄�𝑗
)

+𝑒|𝐤𝑖+𝐤𝑗 |�̄�+
𝑖𝑗

(

−
𝑘𝑖𝑥+𝑘𝑗𝑥
𝜔𝑖+𝜔𝑗

)

sin
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔≠𝑖𝜔

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
⎡

⎢

⎢

⎣

−
( 𝑘𝑖𝑥𝜔𝑖+𝑘𝑗𝑥𝜔𝑗

𝜔𝑖−𝜔𝑗

)( 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

sin
(

�̄�𝑖 − �̄�𝑗
)

−
( 𝑘𝑖𝑥𝜔𝑖+𝑘𝑗𝑥𝜔𝑗

𝜔𝑖+𝜔𝑗

)(

− 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

sin
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔=𝑖𝜔
𝑗𝜃≠𝑖𝜃

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
[

(

𝑘𝑖𝑥𝜔𝑖 + 𝑘𝑗𝑥𝜔𝑗
)

(𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 − �̄�𝑗
)

]

𝑡

+
∑

𝑖
𝐴𝑖

2𝑒2𝑘𝑖 �̄�𝑘𝑖𝑥𝜔𝑖𝑡 + 𝐶𝑥

(6)

2 =
1
2
∑

𝑖,𝑗
𝐴𝑖𝐴𝑗

⎡

⎢

⎢

⎣

𝑒|𝐤𝑖−𝐤𝑗 |�̄�−
𝑖𝑗

(

−
𝑘𝑖𝑦−𝑘𝑗𝑦
𝜔𝑖−𝜔𝑗

)

sin
(

�̄�𝑖 − �̄�𝑗
)

+𝑒|𝐤𝑖+𝐤𝑗 |�̄�+
𝑖𝑗

(

−
𝑘𝑖𝑦+𝑘𝑗𝑦
𝜔𝑖+𝜔𝑗

)

sin
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔≠𝑖𝜔

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
⎡

⎢

⎢

⎣

−
( 𝑘𝑖𝑦𝜔𝑖+𝑘𝑗𝑦𝜔𝑗

𝜔𝑖−𝜔𝑗

)( 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

sin
(

�̄�𝑖 − �̄�𝑗
)

−
( 𝑘𝑖𝑦𝜔𝑖+𝑘𝑗𝑦𝜔𝑗

𝜔𝑖+𝜔𝑗

)(

− 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

sin
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔=𝑖𝜔
𝑗𝜃≠𝑖𝜃

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
[

(

𝑘𝑖𝑦𝜔𝑖 + 𝑘𝑗𝑦𝜔𝑗
)

(𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 − �̄�𝑗
)

]

𝑡

+
∑

𝑖
𝐴𝑖

2𝑒2𝑘𝑖 �̄�𝑘𝑖𝑦𝜔𝑖𝑡 + 𝐶𝑦

(7)

𝑧2 =
1
2
∑

𝑖,𝑗
𝐴𝑖𝐴𝑗

⎡

⎢

⎢

⎣

𝑒|𝐤𝑖−𝐤𝑗 |�̄�−
𝑖𝑗
|
𝐤𝑖−𝐤𝑗 |
𝜔𝑖−𝜔𝑗

cos
(

�̄�𝑖 − �̄�𝑗
)

+𝑒|𝐤𝑖+𝐤𝑗 |�̄�+
𝑖𝑗
|
𝐤𝑖+𝐤𝑗 |
𝜔𝑖+𝜔𝑗

cos
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔≠𝑖𝜔

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
⎡

⎢

⎢

⎣

(

𝑘𝑖𝜔𝑖−𝑘𝑗𝜔𝑗
𝜔𝑖−𝜔𝑗

)(

𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 − �̄�𝑗
)

+
(

𝑘𝑖𝜔𝑖+𝑘𝑗𝜔𝑗
𝜔𝑖+𝜔𝑗

)(

− 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+ 1
2

∑

𝑗𝜔=𝑖𝜔
𝑗𝜃≠𝑖𝜃

𝐴𝑖𝐴𝑗𝑒(𝑘𝑖+𝑘𝑗 )�̄�
[( 𝑘𝑖𝜔𝑖 + 𝑘𝑗𝜔𝑗

𝜔𝑖 + 𝜔𝑗

)(

−
𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 + �̄�𝑗
)

]

+ 𝐶𝑧

(8)

where 𝑖 = (𝑖𝜔, 𝑖𝜃) and 𝑗 = (𝑗𝜔, 𝑗𝜃) are two arbitrary modes, 𝐶𝑥, 𝐶𝑦, and
𝐶𝑧 are the constants of time integration, and the interaction coefficients
∓
𝑖𝑗 are

−
𝑖𝑗 =

𝜔𝑖𝜔𝑗
𝑘𝑖𝑘𝑗

(

𝜔𝑖 − 𝜔𝑗
) (

𝐤𝑖 ⋅ 𝐤𝑗 + 𝑘𝑖𝑘𝑗
)

(

𝜔𝑖 − 𝜔𝑗
)2 − 𝑔 ||

|

𝐤𝑖 − 𝐤𝑗
|

|

|

+
𝑖𝑗 =

𝜔𝑖𝜔𝑗
𝑘𝑖𝑘𝑗

(

𝜔𝑖 + 𝜔𝑗
) (

𝐤𝑖 ⋅ 𝐤𝑗 − 𝑘𝑖𝑘𝑗
)

(

𝜔𝑖 + 𝜔𝑗
)2 − 𝑔 ||

|

𝐤𝑖 + 𝐤𝑗
|

|

|

(9)

with −
𝑖𝑗 = 0 for 𝑖𝜔 = 𝑗𝜔 and +

𝑖𝑗 = 0 for 𝑖𝜃 = 𝑗𝜃 . Following Guérin et al.
(2019), the horizontal constants are selected as

𝐶𝑥 = −1
2
∑

𝑖
𝐴𝑖

2𝑒2𝑘𝑖 �̄�𝜔𝑖𝑘𝑖𝑥 𝑡

𝐶𝑦 = −1
2
∑

𝑖
𝐴𝑖

2𝑒2𝑘𝑖 �̄�𝜔𝑖𝑘𝑖𝑦 𝑡
(10)

with 𝐶𝑧 = 0 and �̄� = 1
2
∑

𝑖 𝐴𝑖
2𝑘𝑖 leads to the zero mean vertical position.

The interaction coefficients ∓
𝑖𝑗 are denoted as 𝐴∓

𝑖𝑗 in Guérin et al.
2019) (see equation (A4) in their paper). We have made corrections
o the interaction coefficients (Eq. (9)) and the second-order solution
Eqs. (6), (7), and (8); see the appendix of their work) to ensure
onsistency with formulations in a unidirectional case. For example,
he factor of 1∕2 will be canceled out when splitting double summations
ith a condition of 𝑗𝜔 > 𝑖𝜔 or 𝑗𝜃 > 𝑖𝜃 . Additionally, the signs in Eq. (9)
re opposite to those in the publication, resulting in terms that account
or the sum interactions of two wave components (i.e., proportional to
+
𝑖𝑗) disappearing in a unidirectional case. These discrepancies are thus
egarded as misprints in their work.

3 
.2. Free surface elevation

Ocean surface measurements, typically obtained through optical
ystems, are collected at irregularly distributed locations within a
redefined reference coordinate system, namely, a Eulerian system.
onsequently, the direct application of the Lagrangian form in the
revious section is not feasible. As in previous studies such as Nouguier
t al. (2009) and Desmars et al. (2020), we derive an approximate
odel within a formalism of free surface elevation in this section.

After substituting Eqs. (2) through (4) and (6) through (8) into
q. (1) and utilizing the aforementioned constants, vertical reference
ocation, and implementing some algebraic simplifications, the com-
lete particle location up to second order is obtained in directional sea
tates:

= �̄� −
𝑁
∑

𝑖=1
𝐴𝑖

𝐤𝑖
𝑘𝑖

sin �̄�𝑖

+
∑

𝑗𝜔>𝑖𝜔

𝐴𝑖𝐴𝑗
⎡

⎢

⎢

⎣

{

−
𝑖𝑗

(

− 𝐤𝑖−𝐤𝑗
𝜔𝑖−𝜔𝑗

)

−
(

𝐤𝑖𝜔𝑖+𝐤𝑗𝜔𝑗
𝜔𝑖−𝜔𝑗

)(

𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)}

sin
(

�̄�𝑖 − �̄�𝑗
)

+
{

+
𝑖𝑗

(

− 𝐤𝑖+𝐤𝑗
𝜔𝑖+𝜔𝑗

)

−
(

𝐤𝑖𝜔𝑖+𝐤𝑗𝜔𝑗
𝜔𝑖+𝜔𝑗

)(

− 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)}

sin
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+
∑

𝑗𝜔=𝑖𝜔
𝑗𝜃 >𝑖𝜃

𝐴𝑖𝐴𝑗

{

+
𝑖𝑗

(

−
𝐤𝑖 + 𝐤𝑗
𝜔𝑖 + 𝜔𝑗

)

−
( 𝐤𝑖𝜔𝑖 + 𝐤𝑗𝜔𝑗

𝜔𝑖 + 𝜔𝑗

)(

−
𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)}

sin
(

�̄�𝑖 + �̄�𝑗
)

+
∑

𝑗𝜔=𝑖𝜔
𝑗𝜃 >𝑖𝜃

𝐴𝑖𝐴𝑗

[

(

𝐤𝑖𝜔𝑖 + 𝐤𝑗𝜔𝑗
)

( 𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

cos
(

�̄�𝑖 − �̄�𝑗
)

]

𝑡 + 1
2
∑

𝑖=𝑗
𝐴𝑖

2𝐤𝑖𝜔𝑖𝑡

(11)

𝑧 = 1
2

𝑁
∑

𝑖=1
𝐴𝑖

2𝑘𝑖 +
𝑁
∑

𝑖=1
𝐴𝑖 cos �̄�𝑖

+
∑

𝑗𝜔>𝑖𝜔

𝐴𝑖𝐴𝑗
⎡

⎢

⎢

⎣

{

−
𝑖𝑗
|
𝐤𝑖−𝐤𝑗 |
𝜔𝑖−𝜔𝑗

+
(

𝑘𝑖𝜔𝑖−𝑘𝑗𝜔𝑗
𝜔𝑖−𝜔𝑗

)( 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)}

cos
(

�̄�𝑖 − �̄�𝑗
)

+
{

+
𝑖𝑗
|
𝐤𝑖+𝐤𝑗 |
𝜔𝑖+𝜔𝑗

+
(

𝑘𝑖𝜔𝑖+𝑘𝑗𝜔𝑗
𝜔𝑖+𝜔𝑗

)(

− 𝐤𝑖 ⋅𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)}

cos
(

�̄�𝑖 + �̄�𝑗
)

⎤

⎥

⎥

⎦

+
∑

𝑗𝜔=𝑖𝜔
𝑗𝜃>𝑖𝜃

𝐴𝑖𝐴𝑗

⎧

⎪

⎨

⎪

⎩

+
𝑖𝑗

|

|

|

𝐤𝑖 + 𝐤𝑗
|

|

|

𝜔𝑖 + 𝜔𝑗
+
(𝑘𝑖𝜔𝑖 + 𝑘𝑗𝜔𝑗

𝜔𝑖 + 𝜔𝑗

)(

−
𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

⎫

⎪

⎬

⎪

⎭

cos
(

�̄�𝑖 + �̄�𝑗
)

(12)

We then manipulate Eq. (11) by implicitly inverting it to the ex-
pression of the reference location �̄�. The assumption pertaining to the
successive Eulerian orders of expansion introduces errors at the order of
the mean square slope (∫ 𝑆(𝑘)𝑑𝑘, with the wave spectrum 𝑆(𝑘)), which
is found to be less significant than other factors in ocean surface predic-
tion work (Grilli et al. 2011, Nouguier et al. 2013, Desmars et al. 2020).
Additionally, the interaction terms in 𝐫 are not necessarily required to
be fully consistent with the second-order Eulerian description, as they
are numerically unstable and associated with the higher-order Eulerian
solution. In contrast, the second-order contributions in 𝑧 are essential
to account for the second-order nonlinear properties (Nouguier et al.
2015, Guérin et al. 2019). We thus discard the double summations
except for the last term related to the Stokes drift 𝐔𝑠0:

�̄� ≈ 𝐫 +
𝑁
∑

𝑖=1
𝐴𝑖

𝐤𝑖
𝑘𝑖

sin �̃�𝑖 −
1
2
𝐔𝑠0𝑡 (13)

where a tilde denotes any quantity modified with the effect of Stokes
drift, i.e. �̃�𝑖 = 𝐤𝑖 ⋅ 𝐫 − �̃�𝑖𝑡 − 𝜑𝑖 and �̃�𝑖 = 𝜔𝑖 +

1
2𝐤𝑛 ⋅ 𝐔𝑠0. The Stokes drift

refers to a net movement (or velocity) of a Lagrangian particle in its
propagating direction:

𝐔𝑠0 =
𝑁
∑

𝑖=1
𝐴𝑖

2𝐤𝑖𝜔𝑖 (14)

The nonlinear sea surface is provided by combining Eqs. (12) and
(13). Further splitting the double summation with 𝑗𝜔 > 𝑖𝜔 into one
between non-aligned wave vectors (𝑗 > 𝑖 ) and the other between
𝜃 𝜃
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aligned wave vectors (𝑗𝜃 = 𝑖𝜃), the free surface elevation provided by
ICWM reads

(𝐫, 𝑡) = 1
2

𝑁
∑

𝑖=1
𝐴𝑖

2𝑘𝑖 +
𝑁
∑

𝑖=1
𝐴𝑖 cos𝛹𝑖

+ 2
∑

𝑗𝜔>𝑖𝜔
𝑗𝜃>𝑖𝜃

𝐴𝑖𝐴𝑗
[(

1
𝑖𝑗 + 2

𝑖𝑗

)

cos
(

𝛹𝑖 − 𝛹𝑗
)

+
(

3
𝑖𝑗 + 4

𝑖𝑗

)

cos
(

𝛹𝑖 + 𝛹𝑗
)

]

+
∑

𝑗𝜔>𝑖𝜔
𝑗𝜃=𝑖𝜃

𝐴𝑖𝐴𝑗
(

1
𝑖𝑗 + 2

𝑖𝑗

)

cos
(

𝛹𝑖 − 𝛹𝑗
)

+
∑

𝑗𝜔=𝑖𝜔
𝑗𝜃>𝑖𝜃

𝐴𝑖𝐴𝑗
(

3
𝑖𝑗 + 4

𝑖𝑗

)

cos
(

𝛹𝑖 + 𝛹𝑗
)

(15)

here the new interaction coefficients are

1
𝑖𝑗 = −

𝑖𝑗

|

|

|

𝐤𝑖 − 𝐤𝑗
|

|

|

𝜔𝑖 − 𝜔𝑗
=
𝜔𝑖𝜔𝑗
𝑘𝑖𝑘𝑗

|

|

|

𝐤𝑖 − 𝐤𝑗
|

|

|

(

𝐤𝑖 ⋅ 𝐤𝑗 + 𝑘𝑖𝑘𝑗
)

(

𝜔𝑖 − 𝜔𝑗
)2 − 𝑔 ||

|

𝐤𝑖 − 𝐤𝑗
|

|

|

2
𝑖𝑗 =

(𝑘𝑖𝜔𝑖 − 𝑘𝑗𝜔𝑗
𝜔𝑖 − 𝜔𝑗

)(𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

3
𝑖𝑗 = +

𝑖𝑗

|

|

|

𝐤𝑖 + 𝐤𝑗
|

|

|

𝜔𝑖 + 𝜔𝑗
=
𝜔𝑖𝜔𝑗
𝑘𝑖𝑘𝑗

|

|

|

𝐤𝑖 + 𝐤𝑗
|

|

|

(

𝐤𝑖 ⋅ 𝐤𝑗 − 𝑘𝑖𝑘𝑗
)

(

𝜔𝑖 + 𝜔𝑗
)2 − 𝑔 ||

|

𝐤𝑖 + 𝐤𝑗
|

|

|

4
𝑖𝑗 =

(𝑘𝑖𝜔𝑖 + 𝑘𝑗𝜔𝑗
𝜔𝑖 + 𝜔𝑗

)(

−
𝐤𝑖 ⋅ 𝐤𝑗
2𝑘𝑖𝑘𝑗

+ 1
2

)

(16)

and the nonlinear phase function 𝛹𝑖 includes both the effects of the
nonlinear phase shift and Stokes drift:

𝛹𝑖 = 𝐤𝑖 ⋅
[

𝐫 +
𝑁
∑

𝑗=1
𝐴𝑗

𝐤𝑗
𝑘𝑗

sin �̃�𝑗

]

− �̃�𝑖𝑡 − 𝜑𝑖 (17)

Using the Eulerian description, all the nonlinear models in this
paper incorporate third-order effects solely as corrections to the disper-
sion relation in wave steepness. On the other hand, Eq. (15) shows that
CICWM includes non-resonant nonlinear interactions at second-order,
generating new wave components. In other words, the selection rules
for resonant three-wave interactions are not generally satisfied. Tanaka
(2001) demonstrated non-resonant interactions, including these three-
wave interactions, do not significantly contribute to the short-term
evolution of deep-water ocean spectra. We discovered that includ-
ing the additional second-order components enhances the accuracy
of ocean surface descriptions in directional sea states, which will be
detailed in Section 5.2.

Introducing the wave parameters represented by a combination of
𝐴𝑖 and 𝜑𝑖:

(𝑎𝑛, 𝑏𝑛) = (𝐴𝑛 cos𝜑𝑛, 𝐴𝑛 sin𝜑𝑛) (18)

and redefining the nonlinear phase function with the unit wave vector
𝐤𝑖 =

𝐤𝑖
𝑘𝑖

:

𝑛 = 𝐤𝑛 ⋅ [𝐫 −
𝑁
∑

𝑖=1
�̂�𝑖(−𝑎𝑖 sin �̃�𝑖 + 𝑏𝑖 cos �̃�𝑖)] − �̃�𝑛𝑡 (19)

nd �̃�𝑖 = 𝐤𝑖 ⋅ 𝐫 − �̃�𝑖𝑡 with 𝐔𝑠0 =
∑𝑁
𝑖=1 (𝑎𝑖

2 + 𝑏𝑖2)𝜔𝑖𝐤𝑖.
With further manipulations, the final free surface elevation form of

ICWM in the case of multidirectional waves (or short-crested waves)
ecomes

(𝐫, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖 +

1
2
(𝑎𝑖2 + 𝑏𝑖2)𝑘𝑖]

+
∑

𝑗𝜔≥𝑖𝜔

[

1
𝑖𝑗
(

𝑎𝑗 cos𝛹𝑗 + 𝑏𝑗 sin𝛹𝑗
) (

𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖
)

+2
𝑖𝑗
(

𝑎𝑗 sin𝛹𝑗 − 𝑏𝑗 cos𝛹𝑗
) (

𝑎𝑖 sin𝛹𝑖 − 𝑏𝑖 cos𝛹𝑖
)

] (20)
𝑗𝜃≥𝑖𝜃

4 
where the combinations of interaction coefficients are

1
𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

21
𝑖𝑗 + 22

𝑖𝑗 + 23
𝑖𝑗 + 24

𝑖𝑗 , if 𝑗𝜔 > 𝑖𝜔 and 𝑗𝜃 > 𝑖𝜃
1

𝑖𝑗 + 2
𝑖𝑗 , if 𝑗𝜔 > 𝑖𝜔 and 𝑗𝜃 = 𝑖𝜃

3
𝑖𝑗 + 4

𝑖𝑗 , if 𝑗𝜔 = 𝑖𝜔 and 𝑗𝜃 > 𝑖𝜃
0, if 𝑗𝜔 = 𝑖𝜔 and 𝑗𝜃 = 𝑖𝜃

(21)

2
𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

21
𝑖𝑗 + 22

𝑖𝑗 − 23
𝑖𝑗 − 24

𝑖𝑗 , if 𝑗𝜔 > 𝑖𝜔 and 𝑗𝜃 > 𝑖𝜃
1

𝑖𝑗 + 2
𝑖𝑗 , if 𝑗𝜔 > 𝑖𝜔 and 𝑗𝜃 = 𝑖𝜃

−3
𝑖𝑗 − 4

𝑖𝑗 , if 𝑗𝜔 = 𝑖𝜔 and 𝑗𝜃 > 𝑖𝜃
0, if 𝑗𝜔 = 𝑖𝜔 and 𝑗𝜃 = 𝑖𝜃

(22)

3. Methods

The algorithms for real-time phase-resolved ocean wave forecast-
ing vary depending on the wave model, as the development of data
assimilation methods for reconstructing waves from wave observations
is model-based. Wave propagation is achieved by forward propagating
in space and time, relying on initial wave conditions optimized during
the wave reconstruction step.

3.1. Wave models

To investigate the impacts of newly added nonlinear summations in
CICWM, it is imperative to compare CICWM and ICWM using exper-
imental data in both multidirectional and unidirectional wave fields.
Previous studies on real-time wave prediction (Desmars et al. 2020,
Kim et al. 2023a, Desmars et al. 2023) considered ICWM as the most
mature model, alongside two additional wave models: the linear wave
theory model (LWT) and the linear wave theory model modified with
a corrected dispersion relationship (LWT-CDR). There exists potential
for the development of an intermediate model between LWT-CDR and
ICWM. Further exploration into the nonlinear phase shift might lead to
the simplification of ICWM, similar to the manner in which nonlinear
terms are discarded in the derivation of ICWM. This simplified version
of ICWM, termed Simplified ICWM (SICWM), retains more nonlinear
terms than LWT-CDR, while maintaining the same phase function in
both models. This section provides a comprehensive overview of the
five wave models used in this study, ordered in terms of development
regarding nonlinear aspects, from LWT to CICWM.

3.1.1. LWT
The traditional method based on linear wave theory (LWT) provides

the most basic formulation of free surface elevation:

𝜂LWT(𝑥, 𝑦, 𝑡) =
𝑁𝜃
∑

𝑖𝜃=1

𝑁𝜔
∑

𝑖𝜔=1
[𝑎(𝑖𝜔 ,𝑖𝜃 ) cos𝜓(𝑖𝜔 ,𝑖𝜃 ) + 𝑏(𝑖𝜔 ,𝑖𝜃 ) sin𝜓(𝑖𝜔 ,𝑖𝜃 )]

=
𝑁
∑

𝑖=1
[𝑎𝑖 cos𝜓𝑖 + 𝑏𝑖 sin𝜓𝑖]

(23)

where the linear phase function 𝜓𝑖 = 𝐤𝑖 ⋅ 𝐫 − 𝜔𝑖𝑡 is redefined without
the random phase.

3.1.2. LWT-CDR
In the development sequence, the second model is based on linear

wave theory with a corrected dispersion relationship (LWT-CDR). By
comparing LWT and LWT-CDR, one can quantify the effect of Stokes
drift on the resulting ocean wave surfaces. The free surface elevation
by LWT-CDR is given by

𝜂LWT-CDR(𝑥, 𝑦, 𝑡) =
𝑁𝜃
∑

𝑖𝜃=1

𝑁𝜔
∑

𝑖𝜔=1
[𝑎(𝑖𝜔 ,𝑖𝜃 ) cos �̃�(𝑖𝜔 ,𝑖𝜃 ) + 𝑏(𝑖𝜔 ,𝑖𝜃 ) sin �̃�(𝑖𝜔 ,𝑖𝜃 )]

=
𝑁
∑

𝑖=1
[𝑎𝑖 cos �̃�𝑖 + 𝑏𝑖 sin �̃�𝑖]

(24)

where the modified phase function is also redefined as �̃� = 𝐤 ⋅ 𝐫 − �̃� 𝑡.
𝑖 𝑖 𝑖
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3.1.3. SICWM
In comparison to the modified phase function �̃�𝑖, the nonlinear

hase function 𝛹𝑖 in Eq. (19) involves the nonlinear phase shift,
.e. summation in Eq. (19). Performing a Taylor expansion of 𝜂ICWM

round �̃�𝑖, the influence of a nonlinear property in the nonlinear
hase (i.e., bound waves) can be formulated as nonlinear wave-wave
nteraction terms. We can then discard the nonlinear terms pertaining
o different wave components. Consequently, the simplified ICWM
SICWM) is derived by incorporating additional trigonometric functions
eaturing a double phase 2�̃�𝑖 into LWT-CDR:

SICWM(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos �̃�𝑖 + 𝑏𝑖 sin �̃�𝑖]

+ 1
2

𝑁
∑

𝑖=1
[(𝑎𝑖2 − 𝑏𝑖2)𝑘𝑖 cos 2�̃� 𝑖 + 2𝑎𝑖𝑏𝑖𝑘𝑖 sin 2�̃� 𝑖]

(25)

The full derivation of SICWM is provided in Appendix A. As a reminder,
we here use the index vector 𝑖 with single summations to avoid the
complexity of second-order terms in double summations with 𝑖𝜔 and
𝑖𝜃 .

3.1.4. ICWM
The numerically efficient model proposed in Guérin et al. (2019),

ICWM, fully incorporates the effect of the nonlinear phase shift via the
nonlinear phase function 𝛹𝑖, as opposed to SICWM. The explicit form
of surface elevation is provided by ICWM:

𝜂ICWM(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖 +

1
2
(𝑎𝑖2 + 𝑏𝑖2)𝑘𝑖] (26)

where 𝛹𝑖 is the redefined nonlinear phase function in Eq. (19).

3.1.5. CICWM
The last and the most mature tool, with more nonlinear effects in-

cluding second-order Lagrangian interaction terms, is CICWM. Eq. (20)
can be rewritten as a more detailed form with consideration of Eqs. (21)
and (22):

𝜂CICWM(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖 +

1
2
(𝑎𝑖2 + 𝑏𝑖2)𝑘𝑖]

+
∑

𝑗𝜔>𝑖𝜔
𝑗𝜃>𝑖𝜃

[

1
𝑖𝑗

(

𝑎𝑗 cos𝛹𝑗 + 𝑏𝑗 sin𝛹𝑗
) (

𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖
)

+2
𝑖𝑗

(

𝑎𝑗 sin𝛹𝑗 − 𝑏𝑗 cos𝛹𝑗
) (

𝑎𝑖 sin𝛹𝑖 − 𝑏𝑖 cos𝛹𝑖
)

]

+
∑

𝑗𝜔>𝑖𝜔
𝑗𝜃=𝑖𝜃

[

1
𝑖𝑗

(

𝑎𝑗 cos𝛹𝑗 + 𝑏𝑗 sin𝛹𝑗
) (

𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖
)

+2
𝑖𝑗

(

𝑎𝑗 sin𝛹𝑗 − 𝑏𝑗 cos𝛹𝑗
) (

𝑎𝑖 sin𝛹𝑖 − 𝑏𝑖 cos𝛹𝑖
)

]

+
∑

𝑗𝜔=𝑖𝜔
𝑗𝜃>𝑖𝜃

[

1
𝑖𝑗

(

𝑎𝑗 cos𝛹𝑗 + 𝑏𝑗 sin𝛹𝑗
) (

𝑎𝑖 cos𝛹𝑖 + 𝑏𝑖 sin𝛹𝑖
)

+2
𝑖𝑗

(

𝑎𝑗 sin𝛹𝑗 − 𝑏𝑗 cos𝛹𝑗
) (

𝑎𝑖 sin𝛹𝑖 − 𝑏𝑖 cos𝛹𝑖
)

]

(27)

here the first summation corresponds to the surface elevation of
CWM. Hence, terms involving 𝐶𝐼𝐶1

𝑖𝑗 and 𝐶𝐼𝐶2
𝑖𝑗 account for amplitude

nd phase modulations to ICWM, respectively. It is noteworthy that
he second double summation with 𝑗𝜃 = 𝑖𝜃 represents the second-
rder interaction terms that are valid for both long-crested waves and
hort-crested waves, and Guérin et al. (2019) examined these terms via
synthetic reference dataset. On the other hand, the first and third

ouble summations are additional terms for short-crested waves only.

.2. Data assimilation

Given that the wave parameters, represented by 𝑎𝑛 and 𝑏𝑛, across
he wave fields of interest remain constant in both time and space,
e can use model-based inversion approaches to deduce the optimal
arameters from ocean surface measurements �̄�. By means of varia-

ional assimilation (Blondel et al., 2010), spatio-temporal observations h

5 
re leveraged to minimize a quadratic cost function that evaluates
he disparity between observed (�̄�𝑙) and computed (𝜂𝑙) wave surface
levations:

(𝐩) = 1
2

𝐿
∑

𝑙=1
[𝜂𝑙(𝐩) − �̄�𝑙]2 =

1
2

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
[𝜂(𝑗,𝑘)(𝐩) − �̄�(𝑗,𝑘)]2 (28)

where 𝐩 = [𝑎1,… , 𝑎𝑁 , 𝑏1,… , 𝑏𝑁 ]𝑇 is the vector of amplitude parameters
o be optimized. The subscript 𝑙 denotes each spatio-temporal measure-
ent point, defined as 𝑙 = (𝑗, 𝑘) representing both spatial and temporal
imensions. The total number of spatio-temporal data points 𝐿 is a
ultiplication of the numbers of spatial data (𝐽 ) and temporal data
𝐾), namely, 𝐿 = 𝐽 ×𝐾.

In order to optimize the amplitude parameters, taking the deriva-
ives of the cost function with respect to 𝑎𝑛 and 𝑏𝑛 leads to the system
f equations with matrix operation 𝐀𝐩 = 𝐁. The coefficient matrix 𝐀 is a
𝑁 ×2𝑁 matrix composed of 𝐴(𝑚,𝑛), 𝐴(𝑚,𝑁+𝑛), 𝐴(𝑁+𝑚,𝑛), and 𝐴(𝑁+𝑚,𝑁+𝑛),
ith (𝑛, 𝑚) ∈ {1,… , 𝑁}2. On the other hand, the observation vector
contains 2𝑁 components (i.e., 𝐵𝑚 and 𝐵𝑁+𝑚). To tackle the ill-

osed assimilation challenge arising from practical constraints, such as
neven sampling by optical sensors, Tikhonov regularization is utilized,
ut not explained for brevity.

First, the linear assimilation method is obtained by using

𝐴𝐿𝑊 𝑇
(𝑚,𝑛) =

𝐿
∑

𝑙=1
cos𝜓𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin𝜓𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
cos𝜓𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐿𝑊 𝑇
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin𝜓𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

(29)

nd

𝐵𝐿𝑊 𝑇
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐿𝑊 𝑇
𝑚𝑙

𝐿𝑊 𝑇
𝑁+𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐿𝑊 𝑇
𝑚𝑙

(30)

ith

𝐿𝑊 𝑇
𝑚𝑙 = cos𝜓𝑚𝑙
𝑄𝐿𝑊 𝑇
𝑚𝑙 = sin𝜓𝑚𝑙

(31)

here (𝑛, 𝑚) ∈ {1,… , 𝑁}2, 𝑙 = 1 to 𝐿, and 𝜓𝑚𝑙 = 𝐤𝑚𝑙 ⋅ 𝐫𝑙 − 𝜔𝑚𝑡𝑙.

All the wave models in this study, except for LWT, require iter-
tive processing in the data assimilation phase, as both matrices 𝐀
nd 𝐁 contain solutions of matrix operations (i.e., 𝑎𝑛 and 𝑏𝑛). Given
he considerably challenging computational complexity for real-time
redictions, particularly in directional sea states, Kim et al. (2023a)
roposed a simplified nonlinear assimilation method by modifying
atrices 𝐀 and 𝐁 for nonlinear wave models. In their study, it was

bserved that for their particular application, even the most basic non-
inear model (i.e., LWT-CDR) cannot achieve real-time wave forecasting
n directional wave cases without employing this simplification. Hence,
he data assimilation methods for all the nonlinear models in this study

ave been developed based on this simplification. For example, the
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Table 1
Directional information of experimental data and numerical simulations.

Case 𝑠 𝐽𝜃 𝜃lim (◦) 𝑁𝜃

A 15 11 35 5
B 25 9 35 5
C 60 7 25 3
D ∞ 1 0 1

formulations for LWT-CDR are given by:

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

(32)

where �̃�𝑖𝑙 = 𝐤𝑖 ⋅𝐫𝑙−�̃�𝑖𝑡𝑙. For a comprehensive yet compact presentation,
the formulations (i.e., 𝐀 and 𝐁) for the remaining models and details
in the iterative process are provided in Appendix B.

4. Experimental data

The present work received support from the European H2020
FLOATECH project. During one of the FLOATECH project campaigns,
experimental observations were collected at École Centrale de Nantes
(ECN) (Bonnefoy et al., 2023). The ocean engineering tank is 30 m
wide, 50 m long, and 5 m deep, featuring a wavemaker at one end,
composed of 48 individual hinged flaps, and a 7-m long passive
stainless steel beach at the opposite end. The experiments in the wave
tank were carried out under irregular sea states, employing a Pierson–
Moskowitz spectrum (Pierson and Moskowitz, 1964) with a peak period
𝑇𝑝 = 12 s at full scale and scaled geometrically to 1:40 (also scaled to
1:

√

40 in time based on the Froude scaling law).
The main purpose of the wave tests is to verify numerical wave

odels for ocean wave prediction at our designated location. We
onsidered directional sea states with several directional spreads, along
ith a unidirectional case D (see Fig. 1 and Table 1). The angular

preading function used to define directional spreads in the wave field
or this study was outlined in Mitsuyasu et al. (1975):

(𝜃) = 22𝑠−1
180

(𝑠!)2

(2𝑠)!
cos2𝑠

( 𝜃
2

)

for 𝜃 ∈ [−180◦, 180◦] (33)

here 𝜃 denotes the propagating direction with 0◦ the average direc-
ion of propagation, and 𝑠 refers to the directional spreading factor.

Herein, we restrict our attention to moderate nonlinear waves char-
cterized by a wave steepness 𝐻𝑠∕𝐿𝑝 = 3.1% in deep water, with a
ignificant wave height 𝐻𝑠 = 7 m and a peak wavelength 𝐿𝑝 = 225 m
t full scale. The relative water depth is 𝑘𝑝𝑑 ≈ 5.6, where 𝑘𝑝 is the peak
avenumber and 𝑑 is the water depth. Additional results and analysis

nvolving varying values of wave steepness can be found in Desmars
t al. (2020) and Kim et al. (2024b), using an equivalent experimental
etup. The differences between the results simulated by the models
ere not relatively pronounced, mainly due to experimental noise
nd the presence of wave-breaking in cases with weaker nonlinearity
e.g., 𝐻𝑠∕𝐿𝑝 = 2.2%) and stronger nonlinearity (e.g., 𝐻𝑠∕𝐿𝑝 = 4.1%),
espectively. Comparison with CICWM exhibited a similar tendency;
ence, the results are not presented here.

To simulate a scenario involving a structure-mounted optical sys-
em, a matrix of 𝐽𝑟 × 𝐽𝜃 rays in the 𝑥𝑦-plane was created by leveraging
straight rotating structure with 20 wave gauges, denoted as 𝐽𝑟 = 20

see Fig. 2). Here, 𝐽 denotes the number of directional arrays used
𝜃

6 
or the measurement. Cases with greater directional spreading involved
onsidering a wider range of angular positions for the wave gauges,
ith increased values of 𝐽𝜃 . Table 1 summarizes directional information
f experimental data and numerical simulations. The process of opti-
izing the directional limit 𝜃lim, along with the number of directional

omponents 𝑁𝜃 , will be described later in this paper.
Here, the spatial distribution mimics the typical uneven sampling

ased on LIDAR cameras, but it could also be reconstructed for cases
sing X-band radars. The wave surface was observed at four additional
ownstream wave gauges: WG21, WG22, WG23, and WG24, located at
istances of approximately 0.15𝐿𝑝, 0.21𝐿𝑝, 0.24𝐿𝑝, and 0.28𝐿𝑝 from
he observation zone, respectively, with WG21 corresponding to our
arget point. We presumed that all wave components from the wave-
aker had propagated throughout the entire experimental domain by

𝑎∕𝑇𝑝 ≈ 158. Furthermore, we used the time series until the completion
f the experimental measurements, where 𝑡𝑏∕𝑇𝑝 ≈ 664 and 𝑡𝑏 − 𝑡𝑎 ≈
06𝑇𝑝, as the wave surface elevation was collected until the wavemaker
as turned off. Due to this long experimental duration, reflections at

he absorbing beach were confirmed in the wave basin. The reflection
ate ranged between 5% and 10% for the cases considered in this study.
dditionally, the experimental noise resulting from wave reflections,
long with other uncertainties such as wave gauge calibration and small
aps between each wave paddle, was quantified to be a maximum of 7%
f the target significant wave height (Bonnefoy et al., 2023). Further
etailed information about the experimental setup, including a sketch
f the optical system, can be found in Kim et al. (2023a) and Bonnefoy
t al. (2023).

Lastly, most phase-resolved reconstruction attempts consider wave
hadowing as a dominant source of error in actual sea-going applica-
ions. Wave shadowing occurs when areas behind a gravity wave are
ot directly measured by the LIDAR camera or X-band radar, leading
o gaps in the spatial sampling of the free surface elevation. For X-band
adars, shadowing effects can be mitigated by using a shadowing mask
uring the inversion process. In addition to the highly non-uniform
patial gaps, the relatively sparse and aperiodic temporal observations
equire post-processing techniques, such as the remapping method (Bel-
ont et al., 2007). Furthermore, a new technique called conflation
as recently been introduced, which combines multiple RADAR scan
atasets to create a multi-segment dataset along with a corresponding
heoretical model (Belmont, 2023). In this experiment, however, wave-
hadowing effects were not reproduced; the actual variations in probe
ocation, which would result from the intersection of an optical ray
ith an irregular, evolving free surface, were not considered. Future
ork will focus on incorporating noise and shadowing into wave data

o develop more realistic algorithms, even if this introduces additional
umerical complexity (Simpson et al., 2020).

. Numerical simulations

This section evaluates the performance of wave models and analyzes
iscrepancies among them, with a particular emphasis on short-term
ave prediction relevant to feed-forward wave-based control systems

or floating offshore wind turbines (Guo et al. 2017, Al et al. 2020, Kim
t al. 2024b). Following prior literature (Naaijen et al. 2014, Desmars
t al. 2020, Kim et al. 2023a among others), our assessment primarily
elies on the normalized misfit indicator over partially overlapping
urface samples:

(𝑥, 𝑦, 𝑡) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

|

|

|

𝜂𝑝𝑟𝑒𝑑,𝑖 (𝑥, 𝑦, 𝑡) − 𝜂𝑟𝑒𝑓 ,𝑖 (𝑥, 𝑦, 𝑡)
|

|

|

𝐻𝑠
(34)

where 𝜂𝑝𝑟𝑒𝑑,𝑖 and 𝜂𝑟𝑒𝑓 ,𝑖 represent the prediction and reference surface
elevation of the 𝑖th sample, respectively. Here, 𝑁𝑠 is the number of
surface samples required for prediction error convergence, and 𝐻𝑠 is
the significant wave height of the reference surface elevation. Analyz-
ing the averaged prediction error of CICWM with increasing 𝑁 , we
𝑠
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Fig. 1. Directional spreading for multidirectional cases ( : Case A; : Case B; : Case C).
Fig. 2. (a) Location of wave gauges; (b, c) wave gauges mounted on rotating structure (∙: wave observations; ▴: location of turbine, WG21; ■ : three additional downstream
WG22, WG23, and WG24).
justified using the same condition as in Kim et al. (2023a) (i.e., 𝑁𝑠 =
400). Additionally, we chose the time step in wave observation data
𝛥𝑡∕𝑇𝑝 = 0.053 as the shifting time between the consecutive samples, as
it was found to be effective.

When working with limited spatio-temporal wave data, accurate
phase-resolved wave prediction is confined to the spatio-temporal pre-
diction zone. Following the methodology outlined in Kim et al. (2024a),
the prediction zone in time is bounded by 𝑡min and 𝑡max. The normalized
misfit error is then temporally averaged over the prediction zone 𝑡 ∈
[𝑡min, 𝑡max] to quantify the synoptic accuracy of the wave forecast:

𝜀𝑝 (𝑥, 𝑦) = 1
𝑡max − 𝑡min ∫

𝑡max

𝑡min

𝜀 (𝑥, 𝑦, 𝑡) 𝑑𝑡 (35)

In both unidirectional and directional sea states, wave fields were
generated with a single phase set for each case. However, we ensured
the generalizability of results by synthesizing surface samples from each
sea state over a sufficiently long time. Due to the variability between
realizations (i.e., surface samples), it is necessary to determine the
optimal value of 𝑁𝑠 (or 𝑇𝑐) that results in the convergence of the misfit
indicator between the surface predicted by CICWM and the reference
surface. Fig. 3 shows the averaged prediction error of CICWM with
7 
increasing 𝑇𝑐∕𝑇𝑝. It is justified to use the same condition as in Kim et al.
(2023a) for ICWM (i.e., 𝑇𝑐∕𝑇𝑝 ≈ 25 or 𝑁𝑠 = 400). In this optimizing
task, the wave parameters, including the numbers of wave parameters
𝑁𝜔 and 𝑁𝜃 , as well as the assimilation time 𝑇𝑎, need to be prespecified.
The process of finding these values will be explained in the following
section.

5.1. Model parameters

To provide accurate and expedited wave forecasting from spatio-
temporal data acquired by an optical sensor, it is important to deter-
mine the relevant assimilation time 𝑇𝑎, or the number of measurement
points in time 𝐾. Fig. 4 shows that the assimilation time resulting in
convergence error for CICWM is 𝑇𝑎∕𝑇𝑝 ≈ 5.2 (or 𝐾 = 100).

Kim et al. (2024a) achieved real-time wave prediction by using
a direction range of [𝜃min, 𝜃max] = [−𝜃lim, 𝜃lim], with the directional
limit 𝜃lim and the number of directional components 𝑁𝜃 suitable for
each directional case. Panels (a), (b), and (c) of Fig. 5 illustrate the
optimizing process of numerical setups in the directional domain, as
summarized in Table 1. Considering the actual spatial range of wave
observations (Desmars et al., 2020) and the relationship for the last
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Fig. 3. Prediction error of CICWM at WG21 against 𝑇𝑐∕𝑇𝑝 ( : Case A; : Case B; : Case C; : Case D).
Fig. 4. Prediction error of CICWM at WG21 against 𝑇𝑎∕𝑇𝑝 ( : Case A; : Case B; : Case C; : Case D).
frequency component 𝑘𝑁𝜔 (𝑘𝑁𝜔 = 2𝑁𝜔
5 𝑘𝑝; Kim et al. 2023b), the first

frequency component 𝑘1 can be obtained. Fig. 5(d) shows that 𝑁𝜔 = 30,
where 𝑘𝑁𝜔 = 12𝑘𝑝, is the optimal choice (where 𝑁𝜔 is the number of
frequency components). Note that the optimal numerical wave fields
were found to be the same as those for ICWM in Kim et al. (2024a).

5.2. Comparison between wave models and experimental data

Before discussing the models’ ability to simulate the propagation of
wave fields, it is imperative to ensure that the real-time constraint is
met by each model. Table 2 provides a summary of the resulting nu-
merical efficiency (total calculation time 𝑇𝑡𝑜𝑡𝑎𝑙) and stability (iteration
number and convergence probability) for the most challenging case A
among the cases in this study, which involves the greatest numbers
of wave data and components. The computations were performed on
an Intel(R) Core(TM) i7-8700 CPU 3.20 GHz. The practical prediction
zone can be obtained as T = 21.6 s for Case A (Kim et al., 2024a),
and it was confirmed that the computation time 𝑇𝑡𝑜𝑡𝑎𝑙 is sufficiently
small for all the models. More details on real-time constraints under
various scenarios can be found in Kim et al. (2024a). Despite its simpler
nature compared to ICWM, SICWM exhibits slightly lower numerical
efficiency, indicating that the presence of nonlinear terms with a double
phase would be enough to offset any beneficial effects of the reduced
complexity of the nonlinear phase.

According to previous studies (Desmars et al. 2020, Kim et al.
2023a), although there is an excellent overall agreement between the
observed ocean surfaces and those predicted by all the models at the
8 
Table 2
Comparison of numerical cost and stability for Case A where T = 21.6 s at full scale.

Case A CICWM ICWM SICWM LWT-CDR LWT

𝑇𝑡𝑜𝑡𝑎𝑙 (s) 3.0 1.0 1.7 0.7 0.4
Iteration number 3.3 3.1 2.9 2.9 –
Convergence probability 93.8% 97.3% 99.5% 99.8% –

point of interest (WG21), the differences between the numerical wave
models, including those between LWT and ICWM, do not seem visually
significant. Similarly, Fig. 6 demonstrates that the additional nonlinear
aspects of CICWM compared to ICWM are not visually apparent either.
However, a thorough investigation of the nonlinear effects during wave
propagation will be presented next, utilizing various metrics, which
include not only the prediction error ratio but also the estimation of
surface shape and cross-correlation.

Fig. 7 presents the prediction misfit errors 𝜀𝑝 of CICWM and the
error ratios of CICWM compared to the other wave models for all cases
at the target point. As indicated by the solid lines, CICWM demonstrates
slightly better predictive accuracy for directional waves compared
to that of ICWM as well as its own performance for unidirectional
waves. Somewhat surprisingly, the dashed and dotted lines coincide
exactly, suggesting that, for the sea states examined in this study, the
differences in the nonlinear aspects between SICWM and LWT-CDR do
not affect phase-resolved ocean wave forecasting. While the impact of
Stokes drift, absent only in LWT, is significant only in unidirectional
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Fig. 5. (a, b, c) Prediction error of CICWM at WG21 against 𝑁𝜃 and 𝜃lim: (a) Case A; (b) Case B; (c) Case C ( : 𝜃lim = 15◦; : 𝜃lim = 25◦; : 𝜃lim = 35◦; : 𝜃lim = 45◦);
(d) Prediction error of CICWM at WG21 against 𝑁𝜔 ( : Case A; : Case B; : Case C).

Fig. 6. Time series of surface elevation at WG21: (a) Case A; (b) Case B; (c) Case C; (d) Case D ( : Data; : CICWM; : ICWM).
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Fig. 7. Prediction error ratio (∙) and prediction error of CICWM (■) at WG21 ( : CICWM to ICWM; : CICWM to SICWM; : CICWM to LWT-CDR; : CICWM to
LWT).
Fig. 8. Spatio-temporal evolution of prediction error ratio at all WGs along centerline where 𝑡 = 𝑡𝑟 is the latest time of wave reconstruction: (a) CICWM to ICWM for Case A; (b)
ICWM to LWT-CDR for Case A; (c) CICWM to ICWM for Case D; (d) ICWM to LWT-CDR for Case D ( : boundaries of prediction zone; vertical white lines: 𝑥-location of WGs
along centerline at 𝑦 = 𝑦𝑐 ; black rectangle: assimilated data set).
waves, comparing ICWM and LWT-CDR demonstrates that the effect
of the nonlinear phase shift remains consistently significant in both
directional and unidirectional cases (Kim et al., 2023a).

For a more detailed examination of the nonlinear second-order
interaction terms in CICWM for both short- and long-crested waves,
Fig. 8 provides the spatio-temporal evolution of the prediction error
ratio in the directional case A (panels a and b) and the unidirectional
case D (panels c and d), respectively. The ratio of accuracy between
models appears to vary across different time steps. By calculating the
coefficients of variance (COV) of the error ratio over the prediction
zone in time, we found that the COV value does not exceed approxi-
mately 4% at any of the downstream wave gauges, thanks to the use of
a sufficient number of surface samples 𝑁 . As concluded in Guérin et al.
𝑠

10 
(2019), the nonlinear interactions exhibit relatively minor effects on the
evolution of surface waves in Case D, as shown in Fig. 8(c). Conversely,
in Case A, their impact is relatively significant and comparable to
that of the nonlinear phase shift, which is the discrepancy between
ICWM and LWT-CDR. This outcome is not surprising due to the added
interactions present in multidirectional sea states, such as the first and
third double summations on the right-hand side of Eq. (27).

Fig. 8 shows that the enhancements from incorporating nonlinear
effects become less pronounced as the waves propagate in space at the
downstream wave gauges. This indicates that the improvements from
the additional nonlinear terms in both CICWM and ICWM are primarily
concentrated on the reconstructed part of the wave field, while the
effect of Stokes drift in LWT-CDR remains relatively pronounced with
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𝐶
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Fig. 9. Comparison of prediction error between CICWM and ICWM (∙); ICWM and LWT-CDR (■) at WG20 ( : surface elevation 𝜂; : surface slope 𝑠𝑠).
-

propagating in space from the observation zone (Desmars et al., 2020).
Furthermore, the wave components in frequency and direction, recon-
structed based on the observation zone, become increasingly limited
in their ability to explain the physical representation of the wave field
with increasing distance from the observation zone (Kim et al., 2023a).

Additionally, predicting the free surface slope is essential for remote
sensing applications, particularly in severe sea conditions where wave
behavior becomes nonlinear (Nouguier et al. 2010, 2013). The close
proximity of the last two observation gauges along the centerline
(referred to as WG19 and WG20), with a distance of approximately
0.02𝐿𝑝, ensures the computation of an estimation of the surface slope:

𝑠𝑠(𝑡) =
𝜂(𝑥20, 𝑦𝑐 , 𝑡) − 𝜂(𝑥19, 𝑦𝑐 , 𝑡)

𝑥20 − 𝑥19
(36)

where 𝑥19 and 𝑥20 respectively represent the 𝑥-coordinates of WG19 and
WG20. To further study forecasting of the sea surface shape rather than
the sea surface elevation (Taylor, 2001), we normalize the prediction
and reference surface elevations by their own standard deviations
(i.e., �̂�𝑝𝑟𝑒𝑑 = 𝜂𝑝𝑟𝑒𝑑∕𝜎𝜂𝑝𝑟𝑒𝑑 and �̂�𝑟𝑒𝑓 = 𝜂𝑟𝑒𝑓∕𝜎𝜂𝑟𝑒𝑓 ) and obtain the maximum
cross-correlation max(𝐶) and corresponding time-lag argmax(𝐶):

(𝜏) = 1
𝑡max − 𝑡min ∫

𝑡max

𝑡min

�̂�𝑝𝑟𝑒𝑑 (𝑡)×�̂�𝑟𝑒𝑓 (𝑡 + 𝜏)𝑑𝑡 (37)

where 1 and 0 correspond to the ideal model for max(𝐶) and argmax(𝐶),
respectively.

In Fig. 9, the improvement by CICWM over ICWM in describing the
free surface elevation at the last observation gauge is either greater
or similar to that by ICWM over LWT-CDR for the directional cases.
However, it is evident that the surface slope description is only en-
hanced by the nonlinear phase shift in ICWM regardless of whether the
wave field is directionally spread or not, which is consistent with the
results in Fig. 10. It should be noted that the high-frequency spectra
are also almost identically estimated by both CICWM and ICWM (not
shown here for conciseness). Therefore, one can conclude that while the
nonlinear phase function of ICWM contributes to the description of both
surface elevation and shape, the second-order nonlinear interactions of
CICWM only impact the elevation.

6. Conclusions

Guérin et al. (2019) introduced the Improved Choppy Wave Model
(ICWM), a robust and straightforward model aimed at achieving a
second-order Lagrangian expansion of surface waves. Their study demon
strated that the second-order Lagrangian nonlinear interaction terms
are non-negligible only over a short period, leading to their exclusion
11 
from the development of ICWM. However, these terms in directional
wave fields were left unexplored for future research. Additionally,
while Kim et al. (2023a) successfully implemented ICWM for real-time
ocean wave prediction over a short time horizon within the feed-
forward wave-based control system for floating offshore wind turbines,
the accuracy of wave predictions needs further improvement, especially
in directional sea states.

We thus addressed an explicit formulation of the complementary
ICWM (CICWM) with the nonlinear terms for free surface elevation
in directional wave fields. To the best of the authors’ knowledge, a
Lagrangian model with second-order nonlinear interactions within a
formalism of free surface elevation has not been developed previously.
We also derived simplified ICWM (SICWM) that falls between ICWM
and the linear wave theory model with a corrected dispersion relation-
ship (LWT-CDR). Lastly, we established a hierarchy of wave models
from LWT to CICWM, ordered by their development of nonlinear
aspects.

Formulations for data assimilation (or reconstruction, referred to as
‘nowcast’) and wave propagation (or prediction, referred to as ‘fore-
cast’) have been detailed for all the models. Previously, the inclusion
of second-order Lagrangian nonlinear interaction terms was deemed
prohibitive for real-time applications. However, we have successfully
provided real-time wave forecasting for multidirectional seas using a
simplified assimilation method suggested in Kim et al. (2023a). In
Table 2, wave prediction for all the models was confirmed to be
completed within a few seconds or less, enabling real-time prediction
for actual sea states with a prediction horizon of approximately 20 s in
the configuration tested here.

Comparing the model performances against dedicated tank-scale
experiments demonstrated that the second-order nonlinear interaction
terms in CICWM enhance the description of surface elevation more
in directional sea states than in unidirectional sea states. Notably,
for the experimental setups and sea states investigated in this study,
it was observed that the second-order Lagrangian wave model can
reduce the prediction error of the linear wave model by 90% even in
directional seas. Future research may explore expanding the model to
address ocean engineering challenges with a larger distance of a point
of interest from the observation zone or for long-term wave predictions.
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Appendix A. Derivation of SICWM

The surface elevation form of SICWM (Eq. (25)) can be obtained
through a simplification of the one formulated with ICWM (Eq. (26)).

The entire derivation is given in this appendix. i

12 
First, the nonlinear phase function 𝛹𝑖 can be expressed with the
odified phase function �̃�𝑖 and the nonlinear phase shift 𝐃:

𝛹𝑖 = �̃�𝑖 − 𝐤𝑖 ⋅ 𝐃 (A.1)

with

𝐃 =
𝑁
∑

𝑖=1
�̂�𝑖(−𝑎𝑖 sin �̃�𝑖 + 𝑏𝑖 cos �̃�𝑖) (A.2)

The surface elevation by ICWM (Eq. (26)) is expanded in a Taylor
expansion around �̃�𝑖:

𝜂(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos �̃�𝑖 + 𝑏𝑖 sin �̃�𝑖]

+
𝑁
∑

𝑖=1
[𝐤𝑖 ⋅ 𝐃(𝑎𝑖 sin �̃�𝑖 − 𝑏𝑖 cos �̃�𝑖) +

1
2
(𝑎𝑖2 + 𝑏𝑖2)𝑘𝑖]

(A.3)

here the effect of the nonlinear phase shift 𝐃 is expressed as the
nteractions between two arbitrary modes. As in the derivation of
CWM, we only include the interaction between identical wave modes:

(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos �̃�𝑖 + 𝑏𝑖 sin �̃�𝑖]

+
𝑁
∑

𝑖=1
[−(𝑎𝑖 sin �̃�𝑖 − 𝑏𝑖 cos �̃�𝑖)2𝑘𝑖 +

1
2
(𝑎𝑖2 + 𝑏𝑖2)𝑘𝑖]

(A.4)

Here, it is confirmed that the second-order mean vertical level
ntroduced to have the zero-mean level (i.e., the last term in Eq. (A.4))
Fig. 10. Cross-correlation between predicted and measured surface elevations at WG21: (a) maximum value; (b) corresponding normalized time-lag ( : CICWM; : ICWM;
: LWT-CDR; : LWT).

https://doi.org/10.5281/zenodo.7689781
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is canceled out, such that we reach the zero mean. Lastly, Eq. (A.4) can
be arranged in the final form of CICWM:

𝜂(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
[𝑎𝑖 cos �̃�𝑖 + 𝑏𝑖 sin �̃�𝑖]

+ 1
2

𝑁
∑

𝑖=1
[(𝑎𝑖2 − 𝑏𝑖2)𝑘𝑖 cos 2�̃� 𝑖 + 2𝑎𝑖𝑏𝑖𝑘𝑖 sin 2�̃� 𝑖]

(A.5)

Appendix B. Formulations in data assimilation

Section 3.2 explained data assimilation for wave reconstruction
based on wave measurement data. Here, we provide the remaining de-
tails. The coefficient matrix 𝐀 is composed of 𝐴(𝑚,𝑛), 𝐴(𝑚,𝑁+𝑛), 𝐴(𝑁+𝑚,𝑛),
and 𝐴(𝑁+𝑚,𝑁+𝑛), while the observation vector 𝐁 is composed of 𝐵𝑚 and
𝐵𝑁+𝑚.

The coefficients of the matrix 𝐀 for SICWM are given by:

𝐴𝑆𝐼𝐶𝑊𝑀
(𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos �̃�𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

cos 2�̃�𝑛𝑙 +
𝑏𝑛𝑘𝑛
2

sin 2�̃�𝑛𝑙)𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝑆𝐼𝐶𝑊𝑀
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin �̃�𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

sin 2�̃�𝑛𝑙 −
𝑏𝑛𝑘𝑛
2

cos 2�̃�𝑛𝑙)𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝑆𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos �̃�𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

cos 2�̃�𝑛𝑙 +
𝑏𝑛𝑘𝑛
2

sin 2�̃�𝑛𝑙)𝑄𝐿𝑊 𝑇
𝑚𝑙

𝐴𝑆𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin �̃�𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

sin 2�̃�𝑛𝑙 −
𝑏𝑛𝑘𝑛
2

cos 2�̃�𝑛𝑙)𝑄𝐿𝑊 𝑇
𝑚𝑙

(B.1)

The coefficients of the matrix 𝐀 for ICWM are given by:

𝐴𝐼𝐶𝑊𝑀
(𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos𝛹𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

)𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝐼𝐶𝑊𝑀
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin𝛹𝑛𝑙 +

𝑏𝑛𝑘𝑛
2

)𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos𝛹𝑛𝑙 +

𝑎𝑛𝑘𝑛
2

)𝑄𝐿𝑊 𝑇
𝑚𝑙

𝐴𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin𝛹𝑛𝑙 +

𝑏𝑛𝑘𝑛
2

)𝑄𝐿𝑊 𝑇
𝑚𝑙

(B.2)

where 𝛹𝑚𝑙 = 𝐤𝑚𝑙 ⋅ [𝐫𝑙 −
∑𝑁
𝑖=1 (−𝑎𝑖 sin �̃�𝑖𝑙 + 𝑏𝑖 cos �̃�𝑖𝑙)] − �̃�𝑚𝑡𝑙.

The coefficients of the matrix 𝐀 for CICWM are given by:

𝐴𝐶𝐼𝐶𝑊𝑀
(𝑚,𝑛) = 𝐴𝐼𝐶𝑊𝑀

(𝑚,𝑛)

+
𝐿
∑

𝑙=1

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝜔≥𝑖𝜔
𝑗𝜃≥𝑖𝜃

[

1
𝑛𝑗
(

𝑎𝑗 cos𝛹𝑗𝑙 + 𝑏𝑗 sin𝛹𝑗𝑙
)

cos𝛹𝑛𝑙
+2

𝑛𝑗
(

𝑎𝑗 sin𝛹𝑗𝑙 − 𝑏𝑗 cos𝛹𝑗𝑙
)

sin𝛹𝑛𝑙

]⎞

⎟

⎟

⎟

⎠

𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝐶𝐼𝐶𝑊𝑀
(𝑚,𝑁+𝑛) = 𝐴𝐼𝐶𝑊𝑀

(𝑚,𝑁+𝑛)

+
𝐿
∑

𝑙=1

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝜔≥𝑖𝜔
𝑗𝜃≥𝑖𝜃

[

1
𝑛𝑗
(

𝑎𝑗 cos𝛹𝑗𝑙 + 𝑏𝑗 sin𝛹𝑗𝑙
)

sin𝛹𝑛𝑙
−2

𝑛𝑗
(

𝑎𝑗 sin𝛹𝑗𝑙 − 𝑏𝑗 cos𝛹𝑗𝑙
)

cos𝛹𝑛𝑙

]⎞

⎟

⎟

⎟

⎠

𝑃𝐿𝑊 𝑇
𝑚𝑙

𝐴𝐶𝐼𝐶𝑊𝑀
(𝑚,𝑁+𝑛) = 𝐴𝐼𝐶𝑊𝑀

(𝑚,𝑁+𝑛)

+
𝐿
∑

𝑙=1

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝜔≥𝑖𝜔
𝑗𝜃≥𝑖𝜃

[

1
𝑛𝑗
(

𝑎𝑗 cos𝛹𝑗𝑙 + 𝑏𝑗 sin𝛹𝑗𝑙
)

cos𝛹𝑛𝑙
+2

𝑛𝑗
(

𝑎𝑗 sin𝛹𝑗𝑙 − 𝑏𝑗 cos𝛹𝑗𝑙
)

sin𝛹𝑛𝑙

]⎞

⎟

⎟

⎟

⎠

𝑄𝐿𝑊 𝑇
𝑚𝑙

𝐶𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑁+𝑛) = 𝐴𝐼𝐶𝑊𝑀

(𝑁+𝑚,𝑁+𝑛)

+
𝐿
∑

𝑙=1

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝜔≥𝑖𝜔
𝑗𝜃≥𝑖𝜃

[

1
𝑛𝑗
(

𝑎𝑗 cos𝛹𝑗𝑙 + 𝑏𝑗 sin𝛹𝑗𝑙
)

sin𝛹𝑛𝑙
−2

𝑛𝑗
(

𝑎𝑗 sin𝛹𝑗𝑙 − 𝑏𝑗 cos𝛹𝑗𝑙
)

cos𝛹𝑛𝑙

]⎞

⎟

⎟

⎟

⎠

𝑄𝐿𝑊 𝑇
𝑚𝑙

(B.3)
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here the combinations of the interaction coefficients 1
𝑛𝑗 and 1

𝑛𝑗
an be obtained by adjusting Eqs. (21) and (22). Following Kim et al.
2024a), the iterative process was conducted with a maximum iteration
umber of 20 and a tolerance of 10−2, with the initial amplitude

parameter guess obtained from the previous surface sample.
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