Non-sticky Superhydrophobicity on Polypropylene Surfaces Achieved via Single-Step Femtosecond Laser-Induced Processing in n-Hexadecane Liquid

Haoyu Dong¹, Xi Huang¹, Zhipeng Wu¹, Aofei Mao¹, Peizi Li¹, Bai Cui², Jean-François Silvain^{1,3}, Yusong Li⁴, Yongfeng Lu^{1,*}

¹Department of Electrical and Computer Engineering, University of Nebraska Lincoln, Nebraska, USA.

²Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Nebraska, USA.

³CNRS, University of Bordeaux; Bordeaux I.N.P., ICMCB, UMR 5026, F-33608 Pessac, France.

⁴Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Nebraska, USA.

*Corresponding authors:

Yongfeng Lu, E-mail address: <u>ylu2@unl.edu</u>

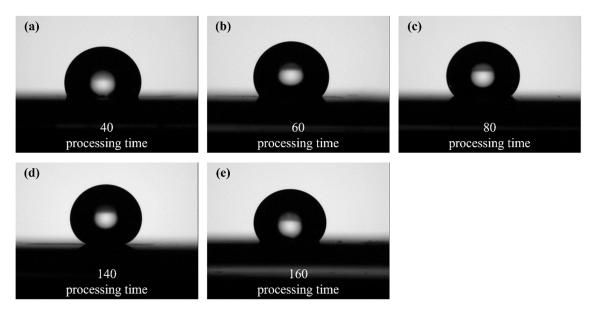


Fig. S1 Wetting behaviors on PP surfaces processed with 40, 60, 80, 140, and 160 processing times, respectively, with a scanning speed of 1 m/s.

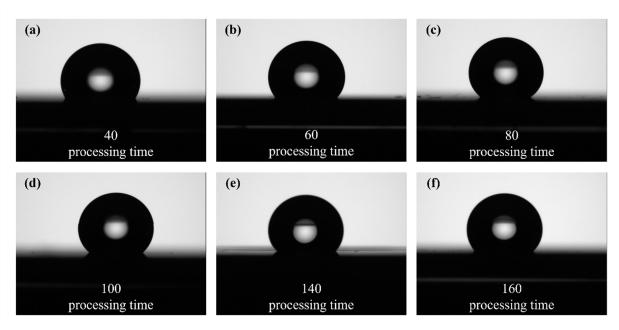


Fig. S2 Wetting behaviors on PP surfaces processed with 40, 60, 80, 100, 140, and 160 processing times, respectively, with a scanning speed of 2 m/s.