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Abstract—Automatic anomaly detection on engineering struc-
tures is often carried out using supervised models, raising the
issue of anomalous images acquisition and annotation. Unsuper-
vised methods like normalizing flows achieve excellent results
while trained with defect-free images only. However, normaliz-
ing flows methods, such as MSFlow, are generally applied on
features extracted by an encoder pre-trained on datasets that
may not be related to engineering structures images. Therefore,
we investigate the possibility to derive more discriminative
features with an additional fine-tuning of the feature extractor
on images with synthetic anomalies. We consider two types of
such anomalies and demonstrate their efficiency with MSFlow on
the MVTec (Wood/Tile) and Crack500 datasets, with significantly
improved predictions. Interestingly, both tasks produce similar
results suggesting that pre-training is mainly improved by the
healthy part of images and not very sensitive to anomaly realism.
Additionally, when comparing our fine-tuned MSFlow with a
reference supervised model, CT-CrackSeg, on the Crack500
dataset, we observe similar qualitative behaviours. This open
a promising direction towards annotation-free, more scalable
alternatives, in particular for anomaly detection in engineering
structure applications.

Index Terms—Anomaly detection, unsupervised learning, nor-
malizing flows

I. INTRODUCTION

Structure monitoring is a crucial topic in civil engineering to
prevent damages emerging and to guarantee safety and long-
term durability. Examining roads, bridges or tunnels to locate
disorders is a tedious task. Therefore, developing automatic
anomaly detection methods is an active research field. Many
works propose models to inspect structure images [1], [2].
However, most of them are based on supervised learning,
requiring segmented images with anomalies. In addition to the
cost of producing such annotations, defects on structures can
take various forms. They are present only in a small proportion
and can differ a lot from a structure to an other. Developing
a supervised model for a specific structure is thus arduous.

In contrast, normal images, i.e. images without anomalies,
can be acquired in larger number on any structures and do
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not necessitate annotations. Unsupervised anomaly detection
(UAD) methods may then offer interesting alternatives to deal
with the difficulty to gather annotated anomalies.

Unsupervised anomaly detection gathers methods which
only need anomaly-free images for training. As proposed
in [3], UAD approaches can be grouped into four families:
methods based on Reconstruction, Data augmentation, Repre-
sentation, and Normalizing Flows (NF).

Reconstruction-based methods use generative models to
project an image into a latent space and reconstruct this pro-
jection [4], [5]. UAD is performed by analysing the residuals
between an input image and its reconstruction. As the models
are trained only with normal images, it is expected that they
fail to reconstruct anomalies. However, these models have
often enough generalisation power to also correctly reconstruct
anomalous patterns preventing then their detection.

Data augmentation-based methods are built on supervised
models trained to detect synthetic anomalies placed on normal
images. Synthetic anomalies can be generated with various
methods [6], [7], [8]. While these methods show encouraging
results on anomalies which are similar to the synthetic ones,
simulating realistic anomalies is difficult in general and models
struggle in detecting real world defects.

Representation-based methods train feature extractors to
generate compact representations of normal images [9], [10].
During inference, a distance between the image extracted
embedded vectors and the class center determined during
training is computed to estimate the anomaly score.

NF models aim to transform a complex probability distri-
bution into a simpler one [I1]. NF approaches, integrated as
modules in deep learning architectures, have recently given
excellent results in UAD with only few drawbacks. NF meth-
ods can also be considered as a subfamily of representation
based methods. A previous study reported in [12] showed that
NF outperform other unsupervised methods on tunnel images.
Therefore, in this paper, we focus on this family of approaches.

Most recent NF models designed for UAD like [13] or
[14] perform data projection from features extracted by a pre-
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trained encoder. However, while these encoders succeed in
extracting common features, they may not be perfectly suited
to disparate datasets, such as industrial objects or engineering
structures images. The work in [15] implements a NF model
named CL-Flow. It also compares several pre-training feature
extraction tasks and shows that a fine-tuned extractor improves
overall model performances. Building on this idea, we propose
two tasks using two types of synthetic anomalies to enhance
MSFlow feature extraction.
To summarize, our main contributions are:

o To generate synthetic anomalies for the feature extractor
fine-tuning tasks, we apply CutPaste [6] method and
propose our realistic anomaly generation method based
on Poisson interpolation [16].

e« We propose a U-Net [17] like structure, incorporating
MSFlow [14] feature extractor, to perform pre-training
tasks and refine feature extraction, with a view to improve
model overall performances.

o We demonstrate the positive impact of both pre-training
tasks on MSFlow performances on MVTec benchmark
[18] and on Crack500 [19] dataset.

e We compare our MSFlow pipeline and CT-CrackSeg
[20] detection performances on Crack500 to show that
NF unsupervised methods are a promising alternative to
supervised methods on engineering structure images.

II. PROPOSED METHOD
A. MSFlow anomaly detection model

MSFlow [14], one of the latest state-of-the-art normalizing
flow model, is employed to perform unsupervised anomaly
detection. Figure 1 depicts its architecture. In a nutshell, MS-
Flow first extracts features using WideResnet50 encoder [21]
at three different stages. Each stage of features is then sepa-
rately transformed by asymmetrical parallel flows, using Affine
Coupling Layers (ACL) [22] integrating 2D convolutions. The
three flow outputs are finally aggregated by a fusion module to
provide the resulting distribution while benefiting from multi-
scale information. ACL are reversible structures with efficient
forward and reverse computation process allowing to apply
any complex functions. After the image feature encoding step,
the flow modules learn a bijective transformation from the
complex feature distribution to a simple Gaussian distribution.
The model is trained with only anomaly-free images to learn
their feature distribution. During the inference step, pixels with
low likelihood are considered as anomalies. It may be noticed
that the extractor is frozen and is not updated during training.

B. Self-supervised tasks for feature extraction fine-tuning

We propose two methods that both involve a supervised
synthetic anomaly segmentation task to fine-tune the MSFlow
WideResNet50 feature extractor, before actual training. As
depicted in figure 2, the extractor is integrated in a three
stage U-Net [17] structure as the encoder part. The decoder
part is composed of 2D transposed convolutions (indicated as
convtranspose layers in the figure). Connections between the
encoder and the decoder are formed from the three stages
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Fig. 1: Synoptic MSFlow architecture used for unsupervised
anomaly detection (for more details, see [14]). The WideRes-

Net50 [21] pre-trained feature extractor is frozen while the
flow modules are updated during training.

Input image

feature maps extracted. The model is trained by minimizing
the binary cross entropy loss between U-Net predictions and
binary masks indicating anomalies.

Two types of synthetic anomalies are generated to perform
the two pre-training tasks.

1) CutPaste-generated anomalies: To develop a self-
supervised model, CutPaste algorithm [6] propose to generate
local irregular patterns and train the network identifying these
local anomalies. The model is then expected to generalize the
detection process to real anomalies during real test inference.
To synthesise an abnormal pattern on an image, a small
rectangle selected at random from this normal image is copied
and pasted at a random position on the same image.

The process is applied to the training images to generate
synthetic anomalies. The pre-training task consists in having
the U-Net architecture to detect the rectangular patches that
have been pasted into the images.

2) Poisson Interpolated anomalies: While CutPaste anoma-
lies introduce irregularities in the normal images patterns,
which might be satisfactory for a pre-training task, their
appearance and shape are still distant from real world anoma-
lies. Moreover, the boundaries of the patches might cause
the network to learn shortcuts. Some other self-supervised
models like DRAEM [7] developed more realistic anomaly
synthesis processes to improve defect detection. To assess the
potential enhancements of using realistic synthetic anomalies
in extractor fine-tuning, we propose a method to generate real-
looking defects.

Realistic anomalies are synthesised with defects from an-
other dataset using seamless cloning Poisson interpolation
[16]. Seamless cloning is an interpolation method allowing to
interpolate a part of a source image into a target image without
any boundary discontinuity. Considering a source image and
a target image given by fx, seamless cloning involves finding
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Fig. 2: Structure used to pre-train the feature extractor with synthetic anomalies. The yellow part is the WideResNet50 [21]

feature extractor first stages and the blue part is the U-Net [

an interpolant f on a defined region (). The interpolant is the
unique solution of the problem formulated by both equations
(1) and (2).

f= arg;’”"//g IVf —l? with flog = f*loa (1)

Af =divv over 2)
where v, the guidance field, can be chosen among the source
image gradient or a mix between the source and target gradi-
ents. As the first option is better for opaque source regions,
it will be the option retained to synthesise anomalies. To find
the interpolant, a discrete algorithm is described in [16].
Poisson interpolation has already been employed by UAD
models to synthesise anomalies [8], [23]. However, these
models take training images as the source image, generating
anomalies with the superposition of another normal region on
the target image, which can still be far from real anomalies.
To synthesise realistic anomalies on a training image, a
randomly chosen test image from another dataset fulfill the
role of the source image and the regions interpolated are
its anomalous regions. Code from https://github.com/bchaol/
fast-poisson-image-editing is used to fulfill seamless cloning.

C. Supervised detection model

To compare the performance of MSFlow in detecting
anomalies in engineering structure images with supervised
models, CT-CrackSeg [20] is trained and tested. CT-CrackSeg
is a convolutional-transformer crack detection model based on
an encoder-decoder structure which is similar to U-Net model
[17]. The model is composed of three novel components.
Dilated Residual Blocks with hybrid dilated convolutions re-
place usual convolutional layers to improve receptive field and
thin object detection. Boundary Awareness Module employs
deformable convolutions to locate accurately crack boundaries.
Mobile ViT Block, a lightweight transformer encoder, encodes
global information and generates additional feature maps to
improve model’s global awareness.

] decoder.

III. EXPERIMENTS
A. Datasets

1) MVTec: MVTec [18] is a benchmark dataset built for
unsupervised anomaly detection on industrial images. Training
subsets are exclusively composed of normal images without
anomalies. Testing subsets contain both normal images and
labelled images with anomalies. The images are split into 15
categories depending on the object or the texture represented.
5 categories correspond to texture images, which can be
considered as similar to engineering structure images. Among
these textures, the model is only used on the wood and tile
categories, which are the closest to our field of application,
due to their irregular patterns.

To synthesise Poisson anomalies for the pre-training task,
defects from the hazelnut category are interpolated on wood
training images and anomalous regions from the wood cate-
gory are used to generate anomalies on tile images.

2) Crack500: To measure the efficiency of the model on
real images from our application field, experiments are carried
out on Crack500 [19], a dataset gathering 500 labelled images
of pavement cracks. In our experiments, only the 250 images
from Crack500 training subset are used. Note that the dataset
only contains images with anomalies, as it was designed
for supervised detection. Therefore, subsets of anomaly-free
images need to be generated in order to implement our
unsupervised approach. To do this, every image is divided into
9 sub-images that contain cracks or not. From the 250 images
in the training subset, the first 150 are divided into 613 nor-
mal sub-images and 744 crack sub-images. The unsupervised
model is trained with the normal images while the supervised
model is trained with all these images. To synthesise Poisson
anomalies for the pre-training task, anomalies from Deepcrack
[24], another road crack dataset, are interpolated. The 100
remaining images are divided into 321 normal images and
527 crack images to generate our test set.

Examples of both synthetic anomalies for MVTec and
Crack500 datasets are shown in figure 3.

B. Experimental settings

1) Implementation details: In the unsupervised process, all
images are resized to 512 x 512 pixels at network input.
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Fig. 3: Examples of anomalies used for pre-training tasks with
MVTec (textures Wood and Tile) and Crack500 datasets.

Following MSFlow original implementation [14], the flow
module is trained with Adam optimizer and an initial learning
rate of e~ (resp. 1e~%) on MVTec (resp. Crack500) dataset.
The learning rate is reduced by a factor of 3 at 70% and 90%
of the training process. The model is trained during 100 epochs
with a batch size of 8. The same implementation incorporating
the U-Net like structure is used during 400 epochs for the
feature extractor pre-training tasks. The full model is then
regularly trained with the pre-trained extractor. The learning
rate is initially 1e~% and then reduced in the same way as for
the implementation without the pre-training task.

The crack detection supervised model CT-CrackSeg [20]
is trained using the official code while changing only the
datasets. The network is trained for 100 epochs using Adam
optimizer with a batch size of 2 and an initial learning rate of
le~*. Images are resized to 256 x 256 pixels.

The experiments are run on a Tesla V100 GPU card.

2) Evaluation metrics: For every model, the pixel-wise
anomaly detection performance is measured on each dataset
using the area under the receiver operator curve (AUROC) and
the area under the per-region-overlap curve (AUPRO). AUPRO
gives the same importance to every connected component of
an anomaly, whereas the AUROC metric is more impacted by
wide anomalies.

C. Influence of our proposed pre-training tasks

Quantitative performance results of the different pre-training
tasks are gathered in table I. Different performance gains, with
and without a pre-training task, can be observed on the three
test datasets. For the MVtech wood database, the increase in
the AUROC score is fairly small (from 97.08 to 97.40% at
best). Performance are even slightly worse with a pre-training
task if the AUPRO score is considered. This means that small
anomalies are better detected without the pre-training task.
In contrast, for the experiments on the MVTech Tile dataset,
the use of a pre-training task has a significant impact on

Dataset Without CutPaste anomaly | Poisson anomaly
any task task (Ours) task (Ours)
Wood 97.08 / 98.40 97.29 / 98.12 97.40 / 98.34
Tile 96.25 / 95.36 98.75 / 98.81 98.72 /1 98.77
Crack500 75.68 / 60.39 88.22 / 70.81 88.17 / 70.49

TABLE I: MSFlow [14] pixel-wise anomaly detection perfor-
mance (AUROC / AUPRO in %) of with and without pre-
training tasks, on MVTec Wood, Tile and Crack500 datasets.
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Fig. 4: Visualization of the impact of our MSFlow pre-training
tasks on MVTec Wood, Tile and Crack500 images.

performance for both the AUROC (up from 96.25 to 98.75%
at best) and AUPRO scores (up from 95.36 to 98.81% at best).
Very significant performance enhancements can be observed
using pre-training tasks on Crack500 datasets with gains of
more than 10 points for the AUROC and AUPRO scores.
This quantitative analysis can be supported by the examples
of predicted anomalies depicted in figure 4. Using pre-training
tasks allow the model to detect anomalous areas that were
not detected without pre-training task. It appears clearer in
the tile image example (fig. 4, 2"l row) where the s-shaped
anomaly is very poorly detected without pre-training task (3"
column) whereas detection is better by using models with pre-
training tasks (4" and 5% columns). The same effects of pre-
training can be observed on the road crack image (fig. 4, 3
row), with a rather blurred detection of the crack using the
model without pre-training (3" column), compared with the
noticeably more distinct detections in the images of the last
two columns (i.e. with pre-training tasks). The model performs
better on MVTec than on Crack500, as illustrated by a ten
points gap between AUROC scores. This difference might be
linked with the image acquisition settings disparity.
Qualitative and quantitative results obtained with the two
pre-training tasks are very similar on all datasets. Therefore,
the type of anomaly used during the task seem not to be
relevant and only the presence of normal regions matters.

D. Comparison between supervised and unsupervised models

Quantitative performance comparison between CT-
CrackSeg supervised model and MSFlow pre-trained with



MSFlow with
Metrics Poisson anomaly CT-CrackSeg
pre-training (Ours)
AUROC 88.17 96.36
AUPRO 70.49 83.84

TABLE II: Comparison of pixel wise anomaly detection
performance (AUROC / AUPRO in %) between supervised
CT-CrackSeg [20] and unsupervised MSFlow [14] model with
our Poisson pre-training task on Crack500 [19] dataset.

Input

Ground-truth  Unsupervised

Supervised

Fig. 5: Visualization of the comparison between supervised
CT-CrackSeg [20] and unsupervised MSFlow [14] model with
our Poisson pre-training task on Crack500 [19] dataset.

Poisson anomalies are presented in table II. Examples of
predicted anomaly maps are depicted in figure 5.

As expected, the supervised model performs better than the
unsupervised model. The anomaly detection maps computed
by CT-CrackSeg are close to binary predictions and capture
every parts of the cracks. The unsupervised model detects most
of the large cracks but fails to identify thin cracks, as shown by
the considerable difference between its AUROC and AUPRO
scores. It also suffers from false positive element predictions,
like the large gravels which can be observed in the examples.

IV. CONCLUSION

In this study, we proposed two feature extractor fine-tuning
tasks and showed their positive impact on the performance
of the unsupervised MSFlow model, on both MVTec and
Crack500 datasets. Two types of anomalies were used to
perform pre-training: CutPaste-generated anomalies and more
realistic Poisson interpolated anomalies. Both tasks lead to
similar results, raising questions about the necessity of the use
of anomalies for these tasks. The feature distribution variations
induced by the tasks could be studied to better understand
their impact. The tasks should also be deployed on other NF
methods to confirm their benefits.

Moreover, we compared MSFlow with CT-CrackSeg, a su-
pervised crack detection model, on Crack500 dataset. Despite
failing to detect thin cracks and being less precise than CT-
CrackSeg, the unsupervised model succeeded in detecting
most of the large cracks and provided encouraging results.
Many tricky non-defect elements of the images are classified
as anomalies by MSFlow model. Therefore, as these unusual

features are often present in engineering structures, it is worth
investigating methods to reduce false positive detections in
order to improve model performance.

As Crack500 only represents road images, a further work
would be to apply the model on tunnel or bridge lining images.
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