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Abstract. Biological systems are widely regarded as performing computations. It is much
less clear, however, what exactly is computed and how biological computation fits within
the framework of standard computer science. Here we investigate a possible connection,
focussing on the notion that biological systems may utilize fixed algorithms that imply subsets
of solvable problem instances. In simple simulation experiments we show that differences in
solvable instance sets may have an impact on evolution.
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1. Introduction

Biological systems often are perceived to perform computations [1] that solve complex
problems at low computational cost as a consequence of evolutionary adaptation [2, 3]. In
particular, the central “information metabolism” of a cell, i.e., DNA replication, transcription,
and translation of RNA to proteins is commonly described as a computation. Beyond these
string-like transformations of encoded information, and of course, information processing in
neural systems, it is usually far from obvious, however, what exactly a biological system is
computing. Gene regulation has been described in terms of regulatory circuits akin to the
hardware of a computing machine since the seminal work of Jacob and Monod [4, 5, 6].
Nevertheless, very little seems to be known about the computational problem(s) that this
hardware is used to solve. An attempt to formalize regulatory mechanisms in terms of
“I/O-maps” similar to logic gates was made in [7]. In the area of developmental evolution,
the notion of a developmental program arose as a key concept [8, 9, 10]. Despite the
general agreement that “life computes”, the exact nature of natural computation thus is far
from being well understood [11]. It seems fair to say that biological computation has been
studied predominantly from an information-theoretic and/or dynamical systems perspective
[12, 13, 3].

Connections to theoretical computer science so far primarily concern the computational
power of natural systems, such as chemical reaction networks [14], DNA computing [15, 16]
or the rewriting system arising from chemical modifications of histones [17]. Typically
this line of work considers the biological systems as paradigm for an abstract model of
computation. The main aim is to formally establish Turing universality or to prove limits
on the computational power. Such general statements, however, do not answer the question
how “difficult” the computational problems are that a biological system is solving.

Here we take a different point of view and explore whether there is a meaningful
connection between a biological system’s capabilities to solve a particular task and the
concept used in theoretical computer science to describe and quantify the “complexity” of
computational problem or of an algorithm used to solve it. In a nutshell, a computational
problem is an infinite set of individual instances. An answer or solutions is defined for each of
them, each together with an answer or solution. Problems are solved by algorithms, i.e., finite
sequences of instructions, that produce the appropriate answer from (a representation of) a
given instance. The problem in this setting is given a priori and is the object that is studied. As
a example, consider the graph 3-coloring problem: The set of instances comprises all graphs
G, and the solution is “true” if the vertices of G can be colored with three colors such that
two adjacent vertices receive a different color. The complexity of the problem is then defined
by the most efficient algorithm that can be devised to solve all instances of the problem. It
is quantified as the asymptotic scaling of the algorithm’s resource consumption for the most
difficult, i.e., expensive instances, as a function of the size of the instance (here the number of
vertices and edges of the graph G). The graph 3-coloring belongs to the class of NP-complete
problems [18]. The exponential time hypothesis, which is commonly believed to be true,
postulates that the best possible algorithm for this class of problems has exponential running
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time [19]. Since problem complexity in this sense refers to the worst case, i.e., the most
difficult instance, problems become easier when the set of instances is judiciously restricted.
For example, 3-coloring can be computed in linear time, when only triangle-free planar graphs
are considered [20].

Levinthal’s paradox on protein folding observes that natural proteins fold very fast into
their native conformations even though the conformation space of peptide chains is by far too
large to be searched exhaustively [21]. This has led to the idea of folding funnels and more
general energy landscapes that make it easy for real proteins to find the ground state [22, 23].
However, several computational models of protein folding result in NP-complete problems
[24, 25], see also [26]. Moreover, there are many intrinsically disordered proteins (IDPs) that
cannot attain a single stable three-dimensional structure [27]. It appears, therefore, that nature
does not rely on a solution of protein folding problem for all instances. Instead, the problem
is restricted, by natural selection, to a subset of aminoacid sequences (instances) that have
suitable folding properties.

This simple observation leads to the hypothesis that biological evolution can – at least
in some cases – avoid difficult instances. The scope of computational problems in biology,
therefore is itself delineated by evolution. Given a developmental program, for example,
evolution will lead to the avoidance of those genotypes (instances) that are “too difficult”
in the sense that the machinery of development cannot unfold the DNA sequences correctly
and in a timely fashion into the encoded phenotype. Such genotypes are unviable and hence
will be selected against. This can be seen as excluding the corresponding instance from the
specification of the computational problem.

In this contribution, we start to explore to what extent a connection between natural
selection on problem complexity can be drawn. In Section 2, we cast the notions put
forward in the introduction into the more formal framework computational complexity theory.
Using the metaphor of developmental programs as an example, we then illustrate a possible
connection between computation and selection. For this purpose, we build on seminal work
on the properties of genotype-phenotype relationships from the 1990s [28, 29, 30, 31] and
RNA folding as a computationally convenient toy model.

2. Problem Complexity

A problem P in the sense of computational complexity theory is an infinite set of concrete
realizations, called instances, together with a (possibly empty) set of solutions S(J) for every
instance J ∈P. A particular instance J thus can be seen as the input for P. The size of instance,
|J|, measures the amount of information necessary to specify it. The idea is that computing
S(J) from J will require more effort for larger instances.

An algorithm A that solves P takes any J as input and computes S(J) using a certain
amount computational resources, which we denote by cost(A ,J). We denote by A[P] the set
of algorithms that solve P, i.e., computes S(J) for all J ∈ P. Algorithms, in turn, are specified
with respect to some model of computation, such as the Turing machines conceptually
underlying our digital computers. A plethora of different models of computation have been
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studied, some of which, such as DNA computing [15, 16], are derived from biological
processes. Many of these are computationally universal, in the sense that they can simulate
Turing machines and thus compute everything that can be computed by a Turing machine
[32, 33]. For the purpose of this contribution, the concrete choice of an underlying model of
computation is not relevant, although the specification and comparison of algorithms requires
that we use a fixed model.

The task most commonly encountered is to determine the complexity of a given problem
P. There are two ways of approaching this question: The most direct approach is to explicitly
describe a specific algorithm A , prove that it correctly solves P, and to analyse A to
determine the computational effort cost(A ,J) required run A for any instance J of size
|J| = n. Alternatively, one may proceed by showing that a problem P is at least as complex
(or at most as complex) as another problem P∗ for which complexity results are known. This
route is taken in particular to establish that a problem is NP-complete [18].

In order to abstract from concrete computational devices, programming languages,
compilers, and the concrete encoding of instance J, one usually is interested in the scaling
of an upper bound of the worst case computational cost as a function of the size |J| of the
input, i.e., a function cA (n) that satisfies

cA (n)≥ k max
J:|J|=n

cost(A ,J) (1)

for all n ≥ n0, where k > 0 and n0 > 0 are arbitrary constants. One says that A requires
O(c(n)) effort, or simply that A is in complexity class O(c(n)). The complexity of a problem
is then given by the minimal worst-case complexity of any algorithm that solves P, i.e.,

cP(n) = inf
A ∈A[P]

cA (n) (2)

Restriction of a problem makes a problem easier in general, since P′ ⊆ P implies
cP ′(n) ≤ cP(n). As mentioned in the introduction, it is an active field of research to
determine subclasses of difficult problems that admit efficient solutions, in particular in the
area of combinatorial optimization problems on graphs.

Information processing in biological systems can be expected, at least in many cases, to
be result of a given algorithm A that is “hardcoded” e.g. in a gene-regulatory network [34].
The natural question then is, which instances are solvable by the given algorithm A . This
questions has been addressed at least for some (classes of) algorithms in the past. Probably
the best-understood case is the canonical greedy algorithm G , which operates on constrained
linear optimization problems. More precisely, the set P instances of the form J = (X ,w,F)
where X is a finite set, F ⊆ 2X is a set of “allowed” subsets, and w : X → R+ is a weight
function. The greedy algorithm G sorts the set X in decreasing order w.r.t. w and initialized
an empty solution set B. Then it tests, for all x ∈ X in this order, whether B∪{x} ∈ F. If so, x
is added to B, otherwise x is discarded. G thus attempts to find a subset B ∈ F that maximizes
the score ∑x∈B w(x). Naturally, one asks under what conditions on J = (X ,w,F) we can
be sure that G correctly solves the problem of maximizing w. A famous result states that
this is case for an arbitrary choice of weights if and only if the set systems (X ,F) is a certain
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generalization of a matroid [35]. On the other hand, if X is the vertex set of a graph G= (X ,E)
and F are the independent sets of the graph G (that its, the subsets of G that contain no pair
of adjacent vertices), then the correct solutions are that of the weighted independent vertex
set problem. This optimization problem is well-known to be NP-hard [36] and in general is
not solved correctly by G . Moreover, restricting the instance set e.g. to P5-free graphs, it is
possible to find polynomial-time algorithms [37], which are, however, entirely unrelated to G .

3. RNA folding as a computational model of evolution

Our discussion so far suggests asking whether algorithms that correctly solve different sets
of instances can have an impact on evolution. We use here the setting of developmental
programs, i.e., algorithms A that take a genotype J as an input and produce a phenotype
as an output. For simplicity, we assume that only correctly constructed phenotypes S(J) are
viable. It might be more natural to ask whether an algorithm A computes a sufficiently close
approximation to S(J) instead of just distinguishing between correct and incorrect answers.
Many hard optimization problems with corresponding NP-complete decision problems also
do not admit efficient accurate approximations [38]. At least for an initial study into the
interplay of problem complexity, algorithm capabilities, and their evolutionary consequences,
we therefore restrict ourselves to the simplest case and ignore details such as the quality of
an approximation. In more realistic models, we expect of course that fitness will depend on
some measure of approximation quality instead of just being a yes/no answer.

Development is itself a complex problem, and there is at present no complete model of
even the simplest developmental process that would link a genotype directly to a phenotype.
Structure formation of biopolymers, however, has been used extensively as a convenient,
computationally tractable toy model of genotype-phenotype (GP) maps. This is in particular
the case for RNA secondary structure, for which the GP maps J 7→ S(J) for fixed n = |J| have
been studied extensively in the 1990s [28, 29]. We therefore (re)use the paradigm here as
well.

For every RNA sequence J of length |J| over the alphabet {A,C,G,U} of nucleotides we
define the solution S(J) as the minimum free energy secondary structure, i.e., the contact map,
as predicted by RNAfold [39]. The evolutionary dynamics of an evolving RNA population is
essentially determined by the underlying GP map.

More precisely, one observes qualitatively the same evolutionary dynamics dominated
by diffusion on neutral networks and rapid adaptation on the transitions between neutral
networks, independent of particular choice of a fitness function that evaluates phenotypes
only [40]: The GP map of RNA secondary structures exhibits a high degree of neutrality,
admitting extensive, essentially connected, neutral networks of sequences the fold into a
common structure. On the other hand, the neutral networks of any two abundant structures
almost touch somewhere in sequence space, i.e., for any two structures φ1 and φ2 there are
very similar sequences I1 and I2 with S(I1) = φ1 and S(I2) = φ2. As a consequence populations
show a diffusive motion on the neutral network, while off-network mutants explore previously
unseen structures at a constant rate [41, 42]. This gives rise to evolutionary trajectories in
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Table 1: Summary of characteristics of folding algorithm characteristics and shape prediction
from 100 000 uniformly and randomly sampled sequences of length 100nts. Different
algorithms access vastly different number of distinct RNA structures, quantified here as
coarse-grained structure. The columns show, in the order, the number of different predicted
shapes, the number of different predicted shapes covered by RNAfold prediction, and the
number of correctly predicted shape of each input sequence.

Algorithm characteristics Coarse-grained structure prediction
Folding algorithm Co-transcription Full length Energy model # diff. predicted shapes # diff. shapes in RNAfold prediction # correct shape predictions
RNAfold X X 15 288 15 288 100 000
Look behind fold X 6 3 7
Basic co-fold X 693 679 333
Best helix co-fold X X 10 987 8 169 14 921
Folding rule X X 6 172 5 238 11 507
Beam search X X 14 557 9 941 31 180

phenotype space that show punctuated equilibria, i.e., long periods of stagnation with rapid
intermittent innovations [41, 31].

In this setting we can explore the effect of restricting folding to a subset of sequences that
produce the correct structure S(I) with simpler heuristic folding algorithms A (I) that works
correctly only on a (small) subset PA of P. To this end we introduce several simple heuristics
that emphasize different aspects of RNA folding. We then ask how the evolution is influenced
by the different scopes of an algorithm A and by costs associated with the choice of A .

In the next section we describe several variants of simple RNA folding algorithms A .
Each is designed to accept an arbitrary sequence as input. We define the minimum free energy
structures computed by the ViennaRNA [39] as the ground truth, i.e., as the correct solution
S(I) for each input sequence. The problem solved by an alternative folding algorithm is
therefore

PA := {I|A (I) = S(I)} (3)

That is, the subset of RNA sequences for which A produces the same structure as ViennaRNA.
Sequences I with A (I) 6= S(I) are treated as failure and consider such an instance (sequence)
as not viable. We then proceed to investigate to what extent this affects the structure of the
genotype-phenotype map and eventually evolutionary processes

4. Alternative RNA Folding Algorithms

All algorithms described in this section use the energy model, if applicable, for evaluating
secondary structures and enforce the constraint that hairpin loops contain at least three
unpaired bases. All energy computations were performed using the ViennaRNA package [39]
with the Turner2004 parameters [43] to ensure consistency. We investigate five simple folding
algorithms that can belong to two broad classes. All of them are inspired by the dynamical
process of RNA secondary structure formation rather than exact solution by means of dynamic
programming [44], which in contrast is quite far removed from the physics of the folding
process. Tab. 1 summarizes the characteristics of each folding algorithm.
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(A) (B)

Figure 1: Greedy-like approached to RNA folding either simulate co-transcriptional folding
(A) or operate on the complete sequence (B). In the first case, structures are formed while the
sequence grows from the 5’ to the 3’ end and subsequently kept in place. Look Behind Folding
(A) closes a helix as soon as a see comprising three base pairs become available. The RNA
Folding Rule (B) stepwisely inserts the most stable helix that does not conflict with previously
inserted ones.

The first group of algorithms is intended to approximate co-transcriptional folding. Base
pairs are formed already as the RNA sequence grows from the 5’-end towards the 3’-end,
Fig. 1A. The folding process is achieved in two stages. In the first stage, the model tries to
pair newly transcribed base(s) to form seed helices, which are then served as reference in the
next stage to complete the folding. We consider three variants of this approach:

• Look behind folding introduces one transcribed base at each step and pairs with the
closest complementary base if a size three seed helix can be formed. Look behind folding
thus is a greedy-like approach that tends to form short helices as soon as possible. Once
seed helices are identified, the algorithm attempts to extend the helix outwards by adding
additional base pairs on each side. The sequence is also zipped inwards by identifying
base pair-stacks in between the seeds.

• Basic co-transcriptional folding moves along the sequence from 5’ to 3’ and, for each
position, searches for a complementary base by again moving over all bases transcribed
at this point. The first base pair found by this procedure which can be extended to a helix
of length at least six is chosen and the detected helix is formed. Such a locally stable
helix is then frozen in placed and cannot be replaced by an energetically more beneficial
structure later on. Following this, the folding is completed by forming shorter helices
(at least four base pairs long) using the same procedure as above. In this second stage,
special care is taken to avoid the formation of pseudoknots.

• Best helix co-transcriptional folding is a variation of the previous algorithm. However,
this algorithm reveals three bases in a single step. In addition, instead of forming the first
detected helix that fulfills the length requirement, all viable helices are first enumerated.
The helix which has the most beneficial effect on the energy of the complete structure
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GGGGUCUUCUACAGAUUAUACGCCUGCAACCUUGUGGGCCGUUCCUCGAACACCU
.((((.(((....((....(((((((((....)))))).)))...))))).))))   RNAfold

(((...)))..(((.........)))...(((...)))..((((...))))....   Look behind fold
((((...(((((((.................))))))).....))))........   Basic co-fold
.((((.(((....((....(((((((((....))))))).))...))))).))))   Best helix co-fold

((((.................(((((((....)))))))....))))........   Folding rule
.((((.(((....((......(((((((....)))))))......))))).)))) Beam search

(a) RNAfold (b) Beam Search (c) Folding Rule

(d) Best Helix Co-Fold (e) Basic Co-Fold (f) Look Behind Fold

Figure 2: Predictions of the different algorithms for a randomly selected input sequence I.
Top. Structures are displayed in dot-bracket (Vienna) notations: each base pair is shown as
a matching pair of parentheses, unpaired nucleotides are shown as dots. In this case, none of
the simplified algorithms correctly computes the solution S(I) defined by RNAfold. Below.
Conventional secondary structure drawings.

is then chosen and formed. The energy is calculated using the ViennaRNA package with
default parameters. In contrast to Basic co-transcriptional fold, Best helix co-fold uses
RNAfold in the second phase. Here, the helices inserted in the first pass are used as hard
constraints and thus persist in final structure [45]. The main difference to the previous
algorithm is that we reveal several new bases at the same time and then finds the most
stable helix using the new bases. This avoids traps formed by long helices that are
globally unfavorable.

The second groups of model folds the entire input sequence and aims to efficiently
identify a near-optimal secondary structure by heuristically exploring a subset of potential
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conformations, Fig. 1B. Starting from an open chain as the initial structure state, the folding
progresses by moving to the next conformation that provides the greatest improvement in the
free energy, based on simple rules such as adding a base pair or a helix. At each step, the
algorithm selects the most energetically favorable addition without allowing the introduction
of crossing base pairs (pseudoknots). Here, we consider two variants:

• The RNA folding rule was proposed in [46] as a greedy approximation to kinetic folding.
At each step, the algorithm adds the next most favorable helix to the structure. Once
a helix is added, the algorithm does not reconsider previous choices or allow for
backtracking, and the process terminates when no further helix can be added without
increasing the total folding energy.

• Beam search folding is similar to RNA folding rule but only one base pair is added at each
step. In addition, it employs a beam search strategy to track suboptimal intermediate
states. At each step, the k-best candidate structures are stored among all possible
candidates generated from the previously stored k-best states. If k = 1, the method
reduces to a greedy algorithm based on individual base pairs, similar to the RNA folding
rule. Since a greedy approach is unlikely to yield globally optimal structures, retaining
k suboptimal intermediates significantly increases the probability of identifying the most
energetically favorable structure. However, increasing k improves solution quality at
the cost of higher computational complexity, so selecting k involves a trade-off between
accuracy and running time.

A closer inspection of the structures produced by the different algorithms quickly reveals
a few general trends indicating that they focus on different parts of shape space. Fig. 2 shows
the predicted structures of a randomly chosen instance I. The baseline structure given by
RNAfold combines both long and short range interactions with a plethora of complex features
such as bulges and interior loops. Contrasting that, the simpler alternative algorithms tend to
lack such complex structures and are marked by longer and locally more stable helices. This
is not surprising, since all except Beam Search utilize the paradigm of greedy algorithms and
may easily get trapped in local minima when finding new helices. A particular example here
is that Folding rule forms the helix at (1,47) instead of (2,55) because of the greedy choice
and results a different structure. Despite the similarities of Basic co-transcriptional folding
and Best helix co-transcriptional fold, the predicted structures at times differ drastically, and
in the example in Fig. 2.

5. Simulation results

Genotype-Phenotype Maps. In order to get a first impression of the effect to the algorithm
we considers the “structure density surface”, which measure the effect of mutation randomly
placed in the sequence (Hamming distance) on the differences in the predicted structures,
quantified as the number of base pairs by which the predicted secondary structures differ
(base pair distance). Fig. 3 shows that there are substantial quantitative differences, even
though the overall shape of the distributions remain qualitatively the same: With very few
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Figure 3: Structure density surfaces of different folding algorithms (orange) compared with
the one of RNAfold (blue), obtained from 1000 reference sequences with 10 mutants for each
Hamming distance class. Structural distance is quantified as the symmetric difference of the
sets of base pairs.
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Figure 4: Frequency distribution of the shapes as a function of the frequency rank of shapes
obtained from ViennaRNA computations. While folding algorithms that use the full folding
model as a component to “fill in” structures qualitative follow the blue ViennaRNA curve,
albeit with appreciable scatter, the shapes distributions are drastically different for basic co-
fold and best helix co-fold.

mutations, a large fraction of the structures is retained perfectly. At the same time, a very
small distance in sequence may already drastically change the structure. Moreover, already
at moderate sequence distance, i.e., Hamming distances of about 20% of the sequence length,
there is little resemblance between the structures of the original and the mutated sequences.

For further analysis we used a coarse grained definition of the structures since the fraction
of secondary structures for which the simple heuristic algorithms exactly reproduces the
ViennaRNA prediction very rapidly declined with sequence length. We therefore consider
the shape of the RNA as defined in [47]. We chose this form of course graining because
it is provided by ViennaRNA package [48]. As an example, the shape of Best Helix co-
transcriptional folding’s prediction in Fig. 2 is the same as the one of RNAfold. The space of
coarse grained structures produced by the different algorithms differs quite drastically, Tab. 1.
For instance, look behind folding produces only six distinct shapes, some of which were not
encountered at all in the ViennaRNA baseline.
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Figure 5: Neutral paths as a function of the algorithm A . Shown is the distribution of the
residual Hamming distances of a walk for a given pair of initial and target sequence. The
distribution is obtained for 100 random target for each of 50 random initial sequences.

A more detailed view of the frequency distribution of shapes can be found in in Fig. 4.
We observe that distributions are quite similar to RNAfold for algorithms that use RNAfold

to complete structures subject to a set of base pairs computed by another method. In contrast,
co-transcriptional folding rules and the simple Folding Rule show much more scatter. It is
also worth noting that despite these differences, we observe similar distributions of structure
frequencies with a power-law tail. Individual shapes, however, may differ drastically in their
frequency, and thus affect their evolutionary accessibility [29, 31, 49].
Neutral Networks. As a more direct measure of the evolutionary impact of A we considered
the length distribution of neutral paths towards a target, see also [29]. Here, we compute
these paths as follows: Given a start sequence I0 and a target sequence I∗, the unpaired base
and base pair in the structure S(I0) are determined and of each unpaired base or base pair the
mutation(s) distinguishing I0 and I∗ are listed. A walk in sequence space is generated from
a random permutation of this list by accepting an exchange of a base or pair of bases if this
preserves the initial secondary structure S(I0). Otherwise, the step is rejected and appended
to the list. Mutation towards the target is enforced after certain equal distance (to target)
mutations are made. The walk terminates with a sequence I′ if no further structure-preserving
mutation from the list can be found. To extent to which the walk approached the target I∗

is quantified as the Hamming distance between I′ and I∗. We then record the distribution of
the final distance to the target. The longer the resulting path, the closer one can approach an
arbitrary target sequence and hence the more extensive is the neutral network for the initial
sequence. Since the target sequence I∗ will in general not be compatible with the query
structure S(I0), in general a sizable residual distance remains.

This walk measure used in Fig. 5 can be seen as compromise between the definition of
neutral walks in [29] (which did not prescribe a target sequence I∗ but aimed maximizing the
distance from the initial sequence I∗) and the notion of covering radii in [29], where instead
of single target sequence I∗ a minimum is taken over sequences I∗ folding into the same target
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structure S∗ = S(I∗).
Simulation of Evolutionary Trajectories. Taken together, we observe that different
algorithms result in significant quantitative differences in key features of the accessible GP-
map for RNA, affecting neutrality, the extent of neutral networks, and the relative frequencies
of correctly predicted RNA shapes. In order to see the impact of the folding algorithms on an
evolutionary process more directly we simulated a population of RNAs that replicates with
rates proportional to a fitness function

f (I) =
1

0.01+d(I, tRNA)/n
, (4)

that quantifies the structural distance to a prescribed target structure. Here the target is tRNA-
Val(TAC) from Escherichia coli K-12 with a length of n = 76. Such simulations were used
in [31] to investigate the nature of structural innovations and to understand the interplay of
diffusive behaviour on neutral networks in relation of adaptation to structural innovations with
superior fitness. Here we are primarily interested in the differences of time that alternative
folding rules need to reach the target. The structure distance d is again computed as the
symmetric difference of the sets of base pairs. Simulations were stopped when a fixed fraction
of the population conformed to the target structure. As a stopping criterion for the simulation
we use that 50% of the population conforms to the target structure.
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Figure 6: Evolution towards a target tRNA structure. Initial populations of 1000 sequences,
with replication accuracy p = 0.999 per nucleotide. The simulation stops once more than
half of the population folds into the predefined tRNA target, and for Look behind fold, the
simulation was stopped at 1.5× 106 time units. Curves represent the average structural
distance of the population to the target structure.

Fig. 6 shows the population averages of the distance to the target structure for different
algorithms. We observe that the trajectories differ in length, although all of them show a
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step-wise behavior. The latter indicates that intermediate structures are found that persist
in the population until a superior structure is accessed and selected. Surprisingly, several
of the simpler algorithms find the tRNA target much faster than RNAfold, suggesting that a
more capable algorithm may not always translate to an evolutionary advantage. In detail,
we identified algorithms that take less than 0.6× the time of RNAfold: Best Helix co-
transcriptional folding and Folding rule. Similar times to RNAfold were achieved by Beam
search (0.9×) and Basic co-fold (1.5×), while slow adaptation folding was found in Look
behind fold, which required an additional time-dependent stopping rule (simulation time
reached 1.5× 106 units) due to innovation events never conforming to the target structure
for at least 50% of the population.

6. Discussion

Taken together, our simple simulation results show that the choice of the folding algorithm
has an impact on quantitative properties of the genotype-phenotype map. We may conclude
therefore, that the scope of A in systems such as development can be expected to have a
substantial impact on the topology of the genotype-phenotype map. This in turn translates
into possibly drastic effects on evolutionary trajectories [29, 31, 50].

Many aspects remain to explore. In particular, it will be interesting to investigate models
in which the algorithm A is subject to variation and selection. Does better, in the sense
of more accurate, or more general computation, already provide a selective advantage? If
so, what exactly are the trade-offs between generality of the problem sets and the cost of
execution? After all, we expect that in general an algorithm A ′ that solves a proper superset
of P[A ] will also require more resources.

Irrespective of the resource consumption of the computation itself, our simulation results
suggest that the most powerful algorithm does not guarantee the most efficient adaptation.
In the case of development, which we use as an example here, early failure may not incur
dramatic fitness cost, while a restricted space of possible results may lead to faster exploration
on neutral networks. In this context we expect that development, where constraints are largely
internal, and signal processing where problem instances are posed by an external environment,
may behave very differently. The trade-offs involved certainly deserve a much more detailed
investigation in future work.

From a biological point of view, we will eventually have to return to the question how
one can determine the pertinent algorithms in detail, and how their resource consumption and
input dependence could be quantified. It would appear that simplified computational models,
including but not limited to the RNA folding models used here, can provide valuable insights,
even though they probably fall short of being particularly realistic models of computation in
biological systems.
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Data Availability

The implementation of folding approaches and simulations can be found at https://

github.com/ViennaRNA/VIECPLX.
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[39] Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm,

Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA Package 2.0. Alg. Mol. Biol., 6:26, 2011.
[40] Peter F. Stadler. Fitness landscapes arising from the sequence-structure maps of biopolymers. J. Mol.

Struct. (THEOCHEM), 463:7–19, 1999.
[41] Martijn A. Huynen, Peter F. Stadler, and Walter Fontana. Smoothness within ruggedness. The role of

neutrality in adaptation. Proc. Natl. Acad. Sci. USA, 93(1):397–401, 1996.
[42] Martijn A. Huynen. Exploring phenotype space through neutral eolution. J. Mol. Evol., 43(3):165–169,

1996.
[43] David H Mathews, Matthew D Disney, Jessica L Childs, Susan J Schroeder, Michael Zuker, and Douglas H

Turner. Incorporating chemical modification constraints into a dynamic programming algorithm for
prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA, 101(19):7287–7292, 2004.

[44] Michael Zuker and Patrick Stiegler. Optimal computer folding of larger RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

[45] Ronny Lorenz, Ivo L. Hofacker, and Peter F. Stadler. RNA folding with hard and soft constraints. Alg.
Mol. Biol., 11:8, 2016.

[46] Hugo M Martinez. An rna folding rule. Nucleic Acids Res, 12:323–334, 1984.
[47] B. A. Shapiro. An algorithm for comparing multiple RNA secondary structures. Computer Applications

in the Biosciences, 4(3):387–393, 1988.
[48] Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred Tacker, and Peter

Schuster. Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125:167–188,
1994.
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