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Abstract

Stochastic weather generators are probabilistic tools used to simulate synthetic
weather time series whose statistics resemble those observed. These tools face dif-
ficulties when it comes to accurately simulating multiple meteorological variables
in space and time, because they necessitate models that can capture the com-
plex inter-variable and space-time dependencies. We propose a new multivariate
space-time weather generator, called MSTWeatherGen, which takes advantage of
the recent development of multivariate space-time covariance functions to model
and simulate different weather variables, including temperature, precipitation,
wind speed, humidity, and solar radiation, across space and time. Specifically, we
employ an approach that involves a non-linear and non-stationary marginal trans-
formation of a multivariate Gaussian random field, characterized by a stationary
and non-separable spatio-temporal multivariate cross-covariance function. To fur-
ther address the time-varying nature of the weather variables, we split the time
domain into states called weather types. The method is assessed on the Provence-
Alpes-Côte-d’Azur region in France, which is characterized by heterogeneous
topography and meteorological conditions. Evaluation results demonstrate the
effectiveness of this new stochastic weather generator in reproducing a wide range
of weather statistics, including highly non linear indicators such as heat wave or
fire weather index.

Keywords: Weather types, Gaussian random field, Multivariate covariance function,
space-time covariance function, heat waves, Fire Weather Index
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1 Introduction

In environmental sciences, long-term time series of meteorological variables are essen-

tial inputs for a wide range of deterministic models aiming to explore the impact of

weather on environmental processes such as hydrology (Milly et al, 2005), agronomy

(Lobell and Field, 2007), or wildfires (Westerling et al, 2006). However, observational

or reanalysis data may be insufficient for a thorough uncertainty analysis of the envi-

ronmental response to weather forcing, in particular because they provide only a

single scenario of meteorological conditions (Semenov et al, 1998). For impact stud-

ies focusing on uncertainty assessment, large ensembles of weather data can therefore

be beneficial, especially when focusing on rare weather events with low probability

of occurrence but high impact (Leutbecher, 2019). While numerical weather mod-

els (NWMs) can simulate realistic ensembles of weather data by varying the initial

conditions, these simulations are computationally intensive and require considerable

expertise to set-up and run (Mearns et al, 2001). As an alternative, a class of statisti-

cal models known as stochastic weather generators (SWGs) (Wilks and Wilby, 1999)

has been developed to produce realistic ensembles of meteorological time series that

match the statistical properties of the observed data. SWGs are less computationally

expensive than NWMs and have been successfully applied to the generation of various

variables such as precipitation, temperature, or wind (Richardson, 1981; Ailliot et al,

2020; Peleg et al, 2017).

The seminal work of Richardson (1981) proposed to first model precipitation as a

Markov chain-exponential model, and to subsequently model the three other variables

(minimum temperature, maximum temperature and solar radiation) conditionally on

the wet or dry status determined by the precipitation model. This binary classification

of days into wet and dry was the precursor of rain typing, that is, the clustering

of the timeline into periods with homogeneous precipitation properties (Ailliot et al,

2015). The idea of clustering days with a similar statistical signature has later been

extended to the full set of meteorological variables of interest, leading to the concept

of weather types (Ailliot et al, 2015). Several methods for constructing weather types

are documented in the literature, including empirical orthogonal functions (Wanner

et al, 2001), hidden Markov models (Varin et al, 2011), and clustering algorithms (Boé

et al, 2006).

Past efforts in improving the realism of environmental modeling led to the emer-

gence of distributed impact models, which enable the simulation of the process of

interest at many geographical locations, often distributed on a regular grid (see e.g.,

Fatichi et al (2016) for application in hydrology, and Han et al (2019) for application
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in agronomy). This in turn requires the simulation of spatially explicit meteorological

variables in order to provide inputs for the distributed environmental models. Gaussian

random fields (GRFs) are a common keystone for the statistical modeling of spa-

tially explicit variables, in particular in the framework of Geostatistics (Cressie, 2015;

Chilès and Delfiner, 2012) and Gaussian Processes (Williams and Rasmussen, 2006).

In the context of meteorological variables, SWGs based of GRFs have for instance been

applied to the simulation of wind (Baxevani and Lenzi, 2018) or precipitation (All-

croft and Glasbey, 2003). GRFs are primarily restricted to the modeling of normally

distributed variables, but the application of parametric transform functions to latent

GRFs has proved to be an efficient way to model non-Gaussian meteorological vari-

ables, in particular precipitation (Allard and Bourotte, 2015; Benoit and Mariethoz,

2017; Paschalis et al, 2013). Latent GRFs also enable the modeling of zero inflated

data using truncated Gaussian processes, which is often leveraged for the joint model-

ing of precipitation occurrence and intensity (Ailliot et al, 2009; Paschalis et al, 2013;

Benoit et al, 2018). A wide range of transform functions have been proposed to link

latent GRFs to the actual meteorological variable to model, for instance the power

(Ailliot et al, 2009) or power-exponential (Allard and Bourotte, 2015) transforma-

tion for precipitation, or more flexible Box-Cox transformation (Box and Cox, 1964)

or semiparametric Ordered Quantile Normalization (OQN) (Bartlett, 1947; Peterson

and Cavanaugh, 2019) in cases where few prior information is available about the

distribution of the target meteorological variable (Sparks et al, 2018).

In the framework of (possibly truncated and transformed) Gaussian processes, the

spatial dependence structure of the meteorological variables is modeled by the covari-

ance function of the latent Gaussian field. A natural extension of this framework is

to use a space-time GRF to build a SWG able to not only capture and reproduce

the spatial distribution of meteorological variables, but also their dynamics. This has

been made possible by the development of non-separable space-time covariance func-

tions which are sufficiently flexible to model the space-time dependence structure of

most meteorological variables (Gneiting, 2002; Gneiting et al, 2006; Chen et al, 2021;

Porcu et al, 2021). This approach has been applied in particular to the modeling of

precipitation fields at high resolution (Baxevani and Lennartsson, 2015; Benoit et al,

2018; Boutigny et al, 2023).

Going one step further, it is appealing to model some dependencies between

variables in addition to the space-time dependencies within a single meteorological

variable. This allows SWGs to simulate meteorological variables that are consistent
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with each other, which is crucial when investigating the impact of weather on pro-

cesses that are simultaneously impacted by several meteorological variables (e.g.,

evapo-transpiration (Kimball et al, 2023) or wildfires (Van Wagner, 1987)) and also

when examining compounds extreme events (Bevacqua et al, 2023; Dabhi et al, 2021).

Despite the considerable interest of designing multivariate space-time SWGs, few stud-

ies have yet explored this approach. These include the SWG of Verdin et al (2015, 2019)

that considers precipitation occurrence as well as minimum and maximum temperature

with spatial correlations modeled by Gaussian processes. However, as in Richardson’s

model (Richardson, 1981), the intensity of precipitation is modeled separately from

its occurrence, and the minimum and maximum temperatures are modeled condi-

tionally on precipitation occurrence and not jointly with precipitation. In a slightly

different approach, Sparks et al (2018) proposed the IMAGE model which is based

on latent Gaussian variables with temporal correlations modeled by an autoregres-

sive model (AR) and spatial correlations modeled by empirical orthogonal functions

(EOFs) applied to the AR parameters. In general, SWGs based on latent Gaussian pro-

cesses require valid covariance functions to model the structure of dependence in space,

in time, and between variables. However, fully multivariate and space-time covariance

models are complex to design. To simplify the problem the aforementioned SWGs

chose to disregard some parts of the dependence structure at the cost of over-simplistic

dependencies within or between the simulated meteorological variables.

To overcome this limitation, we build on recent progress in the field of multivariate

space-time covariance models (De Iaco et al, 2019; Apanasovich and Genton, 2010;

Bourotte et al, 2016; Genton and Kleiber, 2015; Allard et al, 2022) to design a fully

multivariate space-time SWG. We start from the work of Bourotte (2016) and replace

the original covariance of the latent Gaussian fields (Bourotte et al, 2016) by the more

flexible class of multivariate space-time covariance proposed by Allard et al (2022).

The resulting space-time stochastic weather generator, called MSTWeatherGen, is

therefore especially designed to simulate jointly several meteorological variables, for

instance precipitation, humidity, wind, solar radiation, and maximum and minimum

temperature, over space and time. In addition, we allow the marginal distribution

of the meteorological variables to be flexible thanks to an extension of the Ordered

Quantile Normalization (Peterson and Cavanaugh, 2019) to truncated distributions.

The remaining of the paper is organized as follows. The proposed model with

all its components is first presented in Section 2. Next, Section 3 details how all

parameters can be estimated. The simulation algorithm is subsequently presented in

Section 4. Then, Section 5 shows how seasonal effects are taken into account. Section 6
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evaluates the performance of the SWG on a case study focusing on the Provence-Alpes-

Côte d’Azur region in southern France. Finally, Section 7 provides some elements of

discussion and summarizes the study.

2 Multivariate and space-time stochastic weather

generator

2.1 General framework

For the sake of simplicity, we first present a framework for weather variables that do

not exhibit a seasonal cycle. Then in Section 5, we will show how seasonality can be

taken into account.

The p meteorological variables studied over a space-time domain D×T ⊂ R2 ×R
are represented by a p-dimensional stochastic process Y(s, t) = [Yi(s, t)]

p
i=1, with

(s, t) ∈ D × T . We assume that the time domain can be split into K sub-domains,

referred to hereafter as weather types, in which all p meteorological variables have

homogeneous statistics (i.e., are stationary in time). The weather type at any time

t ∈ T is represented by a discrete one-dimensional stochastic process X(t) taking

values in S = {1, . . . ,K}. We also assume the existence of K p-dimensional latent

Gaussian random fields Zk(s, t) = [Zk,i(s, t)]
p
i=1, for k = 1, . . . ,K , such as within

each weather state k each component of the stochastic vector Y(s, t) is related to

the corresponding component of Zk(s, t) through non-linear transformation functions

Ψk,i,s, i = 1, . . . , p:

Yi(s, t) = Ψk,i,s(Zk,i(s, t)), with k = X(t). (1)

We also suppose without loss of generality that every component of each latent

random field Zk(s, t) has zero mean and unit variance, i.e., E(Zk,i(s, t)) = 0 and

E(Z2
k,i(s, t)) = 1, ∀(s, t) ∈ R2 × R, ∀i = 1, . . . , p and k ∈ S. In addition, we assume

that each random field Zk(s, t) is second-order stationary in space and time, i.e., its

covariance function depends only on the space-time lag (h, u):

Cov(Zk,i(s, t), Zk,j(s+ h, t+ u)) = Ck,ij(h, u), (2)

∀i, j = 1, . . . , p, ∀(s, t) ∈ R2 × R and ∀(h, u) ∈ R2 × R.
The model (1) requires the parameterization of three elements: the distribution

of the weather type process X(t), all non-linear transformation functions Ψk,i,s, and

the multivariate covariance of each p-dimensional Gaussian random field Zk(s, t). The

5



subsequent subsections will detail the proposed parameterization for each of these

elements.

2.2 Weather types

Following Flecher et al (2010) and Ailliot et al (2015), we suppose that the temporal

domain is discretized into weather types prior to the statistical modeling of Y. To

simplify the modeling we also assume that the weather types are common for the

whole spatial domain. This assumption, which may not be realistic at large scales, is

reasonable at the regional scale as shown in the case study presented in Section 6.

Weather types are estimated using a clustering algorithm based on the character-

istics of the multivariate weather process over the whole region. This task requires

the time t to be discrete. From now on, we shall thus assume t ∈ N. For estimating

the weather types, we first reduce the dimensionality of the data using Principal Ten-

sor Analysis (PTA) (Leibovici and Sabatier, 1998). Once the data is compressed, we

employ a Gaussian mixture model estimated by the expectation maximization (EM)

algorithm to identify the weather types. The optimal number of weather types is deter-

mined by Bayesian Information Criterion (BIC) minimization. For this task, we use

the R package mclust (Scrucca et al, 2023). After estimating the weather types, the

process X(t) is modeled as a first-order Markov chain, so that:

P(X(t) | X(t− 1), . . . , X(0)) = P(X(t) | X(t− 1)), t ∈ N∗. (3)

A higher order Markov chain could also be used, but for the simplicity of the exposi-

tion we stick to a first order Markov chain. To account for non-stationary transitions

between weather types that can vary along time, the Markov chain is supposed to

be non-homogeneous. Hence, X(t) is characterized by transition probabilities that are

functions of time:

πkl(t) = P(X(t) = l | X(t− 1) = k), k, l ∈ S. (4)

2.3 Transformation functions

Given a weather stateX(t) = k ∈ S, each transformation function Ψk,i,s is a non-linear

function mapping from the latent Gaussian random field Zk,i(s, t) to the meteorologi-

cal variable Yi(s, t). When the mapping is monotonic, the inverse of the transformation

function can be seen as the normalization transformation function that transforms

each meteorological variable at each spatial location into a standard Gaussian distri-

bution. In this study, we consider the Ordered Quantile Normalization (OQN) method
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developed in Peterson and Cavanaugh (2019) to parameterize our transform functions

because it allows modeling beyond the observed range of meteorological variables. In

addition, we extend this framework to truncated Gaussian variables. Given a meteo-

rological variable Yi(s, t) at space-time coordinates (s, t) with X(t) in state k ∈ S, the
inverse OQN transformation takes the form:

Yi(s, t) = Ψk,i,s (Zk,i(s, t)) =

{
F−1
k,i,s

(
ΦTk,i,s

(Zk,i(s, t))
)
if Zk,i(s, t) > Tk,i,s

0 if Zk,i(s, t) ≤ Tk,i,s,
(5)

where Fk,i,s is the Cumulative Distribution Function (CDF) of the meteorological

variable Yi(s, t) and ΦTk,i,s
is the left truncated Gaussian CDF (Burkardt, 2014):

ΦTk,i,s
(Zk,i(s, t)) =

{
(Φ (Zk,i(s, t))− Φ(Tk,i,s)) / (1− Φ(Tk,i,s)) if Zk,i(s, t) > Tk,i,s

0 if Zk,i(s, t) ≤ Tk,i,s,

where Φ is the (0, 1) Gaussian CDF.

2.4 Covariance function

Given a weather state X(t) = k ∈ S, the multivariate random field Zk(s, t) controls

the intra- and inter-variable space-time correlations of Y(s, t). Since Z(s, t) is assumed

to be Gaussian, it is fully characterized by its space-time cross-covariance function

Ck,ij(h, u). To take into account the temporal variations of the meteorological variables

that affect the whole region, we follow Bourotte et al (2016) and decompose the cross-

covariance function into:

Ck,ij(h, u) = C
(1)
k,ij(u) + C

(2)
k,ij(h, u), (6)

where C
(1)
k,ij(u) is a fully temporal cross-covariance function modeling the temporal

fluctuations of the meteorological variables at the regional scale and C
(2)
k,ij(h, u) is

a space-time cross-covariance function modeling the fluctuations of the meteorologi-

cal variables within the area of interest. For the temporal cross-covariance function

C
(1)
k,ij(u), we consider a multivariate exponential covariance (Gneiting et al, 2010;

Genton and Kleiber, 2015):

C
(1)
k,ij(u) = β

(1)
k,ij exp

(
−r

(1)
k,ij |u|

)
(7)

with 2
(
r
(1)
k,ij

)2
=
(
r
(1)
k,ii

)2
+
(
r
(1)
k,jj

)2
, β

(1)
k,ij = ρ

(1)
k,ij

(
r
(1)
k,iir

(1)
k,jj

)1/2 (
r
(1)
k,ij

)−1

, and[
ρ
(1)
k,ij

]p
i,j=1

is a correlation matrix.
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To model C
(2)
k,ij we use the class of Gneiting space-time non-separable cross-

covariance functions proposed in Allard et al (2022). Specifically, we consider the

multivariate Gneiting-Matérn model defined as:

C
(2)
k,ij(h, u) = β

(2)
k,ij

exp
(
−r

(2)
k,ij |u|

)
(ηk,ij(u) + 1)d/2

CM

h;

√
a2k,ij

(ηk,ij(u) + 1)
, νk,ij

 , (8)

with i, j = 1, . . . , p and where CM(h; r, ν) is the Matérn covariance function with scale

parameter r > 0 and smoothness parameter ν:

CM(h; r, ν) =
σ2

2ν−1Γ(ν)
(r||h||)νKν(r||h||), (9)

whereKν is the Bessel function of second kind with parameter ν > 0. In (8), the follow-

ing conditions must hold: 2
(
r
(2)
k,ij

)2
=
(
r
(2)
k,ii

)2
+
(
r
(2)
k,jj

)2
, and η(u) = [ηk,ij(u)]

p
i,j=1

is a p× p unbounded pseudo-variogram on R. Pseudo-variograms on R are defined in

the following way. Let Wi(·)i=1,...,p be p stochastic processes. Then,

ηk,ij(u) = 0.5Var
(
Wi(t)−Wj(t+ u)

)
provided it exists for all t, u ∈ R and for all i, j = 1, . . . , p. The pseudo-variogram

has nonnegative entries and is not necessarily an even function. For any i = 1, . . . , p,

the function ηii, is a usual variogram, i.e., a conditionally negative semidefinite func-

tion (Chilès and Delfiner, 2012). The pseudo-variogram must be unbounded for the

direct and cross-covariances Cij(h, u) to vanish as |u| → ∞. Necessary and sufficient

conditions for a matrix-valued function to be a pseudo-variogram have been provided

in Dörr and Schlather (2023). Despite these recent results, building valid unbounded

matrix-valued pseudo-variograms with different diagonal entries (direct variograms) is

still an open question. As a simple model for this, we will follow Allard et al (2022)

and set:

ηk,ij(u) =
(
(ak|u|)2bk + 1

)ck −Ak,iAk,j

(
(dk|u|)2ek + 1

)−ck
, (10)

where ak > 0, 0 < bk ≤ 1, 0 ≤ ck ≤ 1, 0 ≤ Ak,i < 1, for all i, j = 1, . . . , p, dk > 0,

and 0 < ek ≤ 1. The sufficient conditions for the positive definiteness of C
(2)
k,ij(h, u)

are that, for all i, j = 1, . . . , p, 2a2k,ij = a2k,ii + a2k,jj , 2νk,ij = νk,ii + νk,jj and

β
(2)
k,ij = ρ

(2)
k,ij

a
vk,ii

k,ii a
vk,jj

k,jj

a
vk,ij

k,ij

Γ(νk,ij)

Γ(νk,ii)1/2Γ(νk,jj)1/2

(
r
(2)
k,iir

(2)
k,jj

)1/2
r
(2)
k,ij

√
(2−Ak,i

2)(2−Ak,j
2),
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where
[
ρ
(2)
k,ij

]p
i,j=1

is a correlation matrix.

Finally, for a weather state k ∈ S, the parameters of the random field Zk(s, t) are:

θk =
{
ak, bk, ck, dk, ek, Ak,i, r

(1)
k,ii, r

(2)
k,ii, ρ

(1)
k,ij , ρ

(2)
k,ij , ak,ii, νk,ii, i, j = 1, . . . , p

}
, (11)

which makes 5 + 5p+ p(p− 1) parameters per weather state.

3 Estimation of the parameters

3.1 Estimation of weather type transitions

Let X = {X(t1), . . . , X(tnt)} be the observed weather type process. The non-

homogeneous transition probabilities of the first order Markov chain are estimated by

their empirical frequencies in a sliding window of length 2L+ 1 with:

π̂kl(tγ) =

∑
δ∈V (tγ ,L) I(X(tδ − 1) = k,X(tδ) = l)∑

r

∑
δ∈V (tγ ,L) I(X(tδ − 1) = k,X(tδ) = r)

, (12)

where V (tγ , L) = {tδ, |tδ − tγ | ≤ L} is a time window of length 2L+ 1 centered at tγ ,

and I(A) is the indicator function equal to 1 when A holds and equal to 0 otherwise.

The parameter L is a hyperparameter that influences the temporal smoothness of

the transition probabilities. If L is too small it may lead to overfitting, making the

simulated weather types closely resemble the observed ones, while if L is too large

it can cause the simulated weather types to be overly homogeneous over time. The

appropriate choice of L depends on the specific application and on the size of the time

domain being considered.

3.2 Estimation of transformation functions

We now present the method for estimating the transformation function applied to

each variable, weather type, and spatial location. To simplify the notation in this

subsection, indices for spatial locations, weather types, and variables will not be used.

Instead, we only use the index t, which represents a time-specific observation of a

variable at a particular spatial location.

The OQN transformation in equation (5) necessitates the extrapolation of the

function Ψ−1
k,i,s (hereafter noted Ψ−1) beyond the observed data range. We utilize

the method developed by Peterson and Cavanaugh (2019), which employs a logit

approximation for data outside the observation range. Consider a data vector y =

9



(y1, . . . , yn). For a given value yt ∈ y, we define the function g as follows:

g(yt) = Φ−1
T (F (yt))

= Φ−1
T

{
rt − 1/2

n
+Φ(T )

(
1− rt − 1/2

n

)}
,

(13)

where rt is the rank of yt and T represents the truncation threshold as in (5). The

functions F , ΦT , and Φ denote the CDF of y, the standard truncated Gaussian CDF

(T being the truncation threshold), and the standard Gaussian CDF, respectively.

Note that the first part of the equation is simply the inverse of equation (5). For an

arbitrary point y∗, if y∗ /∈ y, let yl and yr be the closest points to y∗ in the original

data, with yl < y∗ and yr > y∗, and define ay∗ = 1/(yr − yl). Following Peterson and

Cavanaugh (2019), the truncated OQN Ψ−1(y∗) is defined as follows:

Ψ−1(y∗) =



g(y∗) if y∗ ∈ {y},

ay∗
(
g(yr)− g(yl)

)
if y∗ /∈ {y} and min(y) < y∗ < max(y),

ℓ(y∗) + mini
(
g(yi)

)
−mini

(
ℓ(yi)

)
if y∗ < min(y),

ℓ(y∗) + maxi
(
g(yi)

)
−maxi

(
ℓ(yi)

)
if y∗ > max(y),

(14)

where

ℓ(y) = Φ−1
T

(
exp(β̂0 + β̂1y)

1 + exp(β̂0 + β̂1y)

)
, (15)

and β̂0 and β̂1 are the estimated parameters of the following generalized linear model,

determined by likelihood maximization:

logit
(
ΦT (Ψ

−1(yi))
)
= β0 + β1yi, i = 1, . . . , n. (16)

The threshold value T varies depending on the meteorological variable. For continuous

variables like temperature, the threshold is negative infinity. For zero-inflated variables

such as precipitation, the threshold equals Φ−1(f0), where f0 is the frequency of zero

values.

3.3 Estimation of the covariance function parameters

The parameters of the covariance function are estimated independently for

each weather type successively. For ease of notations, we drop the reference

to the weather type k for the rest of this section. Let us denote Z =

(Z1(s1, t1), . . . , Zp(s1, t1), . . . , Zp(snS
, tnT

))
T

the vector of transformed observations
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corresponding to the p meteorological variables measured at nS spatial locations and

nT time steps. Because of the preliminary OQN transformation, the values in Z are

supposed to follow a Gaussian or truncated Gaussian distribution.

When dealing with multivariate space-time Gaussian random fields, the maximum

likelihood approach requires computing the determinant and the inverse of large matri-

ces, which is impractical for domains of even moderate size. As an example, a moderate

spatio-temporal domain with nS = 100, nT = 30 and three variables would lead to

matrices of size 9000× 9000. To overcome this limitation, approximations of the like-

lihood can be considered. Here we use the pairwise likelihood (PL), a special case of

composite likelihood (Varin et al, 2011). PL is the product of marginal likelihoods

computed on a well-chosen selection of pairs. It has been successfully considered in

spatio-temporal contexts in Bourotte et al (2016) and Allard et al (2022) where it was

shown that PL provides estimates of the covariance function parameters with only a

small loss in efficiency compared to a full likelihood approach (when it is possible),

with a significant gain in terms of computation.

The computational cost induced by PL is of the order of O
(
(nSnT p)

2
)
if all pairs

are considered. It can nevertheless be significantly reduced if most pairs of observations

whose distance is beyond the correlation range are discarded, although some distant

pairs should be included in the PL to improve parameter estimation (Allard et al,

2021). Hence, we first select the set A of nA optimal locations (centroids) that partition

the spatial domain D into nA subgroups of minimal area. Then, for each α ∈ A, we

build the sets Bα containing nB locations that have been randomly selected among all

possible locations with probabilities inversely proportional to their distance from sα:

Bα =

{
sβ ∈ D | I

(
Uβ ≤ bα

∥sα − sβ∥2 + 1

)}
, (17)

where Uβ are independent copies of a uniform random variable on [0, 1] and where bα

has been adjusted so that E[|Bα|] = nB .

The set of pairs Λ to be used in PL is then defined as

Λ = {(α, β, γ, δ) : α ∈ A; β ∈ Bα; |tγ − tδ| ≤ tmax, } (18)

where tmax denotes the maximum time lag. Compared to the original PL, the number

of pairs has been reduced by a factor approximately equal to n2
S/(nAnB)× nT /tmax,

which potentially reach several orders of magnitude and has significant impact on the

optimization efficiency. The hyper-parameters tmax, nA and nB depend on the size of
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the space-time domain under consideration, and should therefore be defined by the

user.

For the set of pairs Λ, the pairwise log-likelihood is

pl(θ) =

p∑
i,j=1

∑
(α,β,γ,δ)∈Λ

ℓ(i, j, α, β, γ, δ; θ), (19)

where θ represents the parameters of the covariance function and ℓ(i, j, α, β, γ, δ; θ) is

the bivariate log-likelihood for a pair (Zi(sα, tγ), Zj(sβ , tδ)). Depending on the values

of Zi(sα, tγ) and Zj(sβ , tδ), three cases must be considered:

• If Zi(sα, tγ) > Ti,sα and Zj(sβ , tδ) > Tj,sβ ,

ℓ(i, j, α, β, γ, δ; θ) = −1

2

(
log
(
1− Cij(h, u)

2
)

+
Zi(sα, tγ)

2 − 2Cij(h, u)Zi(sα, tγ)Zj(sβ , tδ) + Zj(sβ , tδ)
2

1− Cij(h, u)2

)
.

• If Zi(sα, tγ) ≤ Ti,sα and Zj(sβ , tδ) > Tj,sβ ;

ℓ(i, j, α, β, γ, δ; θ) = log Φ

(
Ti,sα − Cij(h, u)Zj(sβ , tδ)√

1− Cij(h, u)2

)
.

• If Zi(sα, tγ) ≤ Ti,sα and Zj(sβ , tδ) ≤ Tj,sβ ,

ℓ(i, j, α, β, γ, δ; θ) = logΦ2

(
Ti,sα , Tj,sβ ;Cij(h, u)

)
,

where h = ||sα − sβ ||, u = |tγ − tδ|, and Φ2 is the bivariate Gaussian CDF.

4 Simulation of space-time and multivariate

synthetic weather data

The meteorological variables are simulated using a simulation algorithm sequential in

time. Consider Z(t) = vec
(
[[Zi(sα, t)]

p
i=1]

ns

α=1

)
, where vec(·) is the operator that stacks

the columns of a matrix into a single column vector. In principle, at a given time t,

the simulation of Z(t) should be conditional on the whole sequence (X(1), . . . , X(t−
1),Z(1), . . . ,Z(t− 1)). This would require inverting matrices of size up to nS × (nT −
1)× p, which is in most cases not possible. To keep the conditioning computationally

12



efficient, we make the following Markov-type assumption:

p(Z(t) | X(0), . . . , X(t),Z(0), . . . ,Z(t− 1)) = p(Z(t) | X(t),Z(t−M), . . . ,Z(t− 1))

(20)

for a given M , where p is the probability distribution function.

The pseudo-code of the simulation algorithm is shown in Algorithm 1. Step 2 con-

sists of simulating Z(t) conditionally on X(t) = k and on (Z(t− 1), . . . ,Z(t−M)).

Since the vectors (Z(t), . . . ,Z(t−M)) are jointly Gaussian, the conditional distribu-

tion of Z(t) given X(t) and (Z(t), . . . ,Z(t−M)) is

Z(t) = Bk,1Z(t− 1) + · · ·+Bk,MZ(t−M) + Lk,0ϵ(t), (21)

where ϵ(t) is a vector of appropriate size of i.i.d standard Gaussian random variables.

The matrices Bk,m with m = 1, . . . ,M are solution of the linear system


Bk,1

Bk,2

...

Bk,M

 =


Ck(0) Ck(1) · · · Ck(M − 1)

Ck(1) Ck(0) · · · Ck(M − 2)
...

...
. . .

...

Ck(M − 1) Ck(M − 2) · · · Ck(0)


−1

Ck(1)

Ck(2)
...

Ck(M)

 (22)

and

LT
k,0Lk,0 = Ck(0)−Bk,1Ck(0)− · · · −Bk,MCk(M).

with

Ck(m) = cov (Z(t),Z(t−m) | X(t) = k) , m = 0, . . . ,M.

Each matrix Ck(m) is the Gram matrix computed using the spatio-temporal covari-

ance defined in equation (6) at the temporal lag u = m and the parameters estimated

in weather type k. The simulation algorithm requires inverting and storing the matrix

of size nS×M×p in equation (22) which might be computationally expensive depend-

ing on the space-time domain size. The choice of an appropriate M permits to reduce

the computational burden.

5 Dealing with seasonality

In most cases, some seasonality is present in the meteorological data. Seasonality

impacts the mean value and the variance of each variable, but also the correlation

between variables. A well known example is the correlation between solar radiation

and temperature, which in temperate climates is positive in the summer and negative

13



Algorithm 1 Multivariate Space-Time Stochastic Weather Generator

1: Input: Initial values X(0) and Z(0), . . . ,Z(M)

2: Output: Simulated weather variables

3: for t > M do

4: Sample a weather state X(t) conditionally on X(t − 1) using the transition

probabilities in (12)

5: Sample the latent random field Z(t) conditionally on X(t) and

(Z(t− 1), . . . ,Z(t−M)) as per (21).

6: Transform the random field Z(t) into meteorological variables using the

transform function ΨX(t),i,s.

7: end for

in the winter. In our framework, seasonality is accounted for in two ways: first, any

seasonal cycle in each variable is removed; then, seasons during which the dependencies

between the weather variables are considered constant are defined. Seasons must be

provided by the users as input parameters because their definition depend on the

precise location of the studied area. Except for precipitation, the central tendency

and standard deviation are calculated for each variable and each day of the year. The

moving average method is then used to smooth the mean and standard deviation.

The observed variables are then standardised by subtracting the calculated central

tendency and dividing the residuals by the smoothed standard deviation. Finally, all

parameters are estimated separately for each season, including transition probabilities

between weather types, transformation functions, and covariance function parameters.

For the simulation, the weather variables are generated for an entire season using

the Algorithm 1 and the corresponding estimated parameters. When changing from

one season to the next, a weather state is required for the first day of the new season.

Since the probability transitions between the states of two different seasons have not

been estimated (due to insufficient data), we need a special procedure. Let us denote

Z(tlast) the variables simulated for the last day of the season. The likelihood of Z(tlast)

is then computed using the parameters of the new season, and the most likely state,

denoted X̂last, is selected. Then, weather states within the new season are simulated

according to the new transition probabilities with initial stateX(0) = X̂last. At the end

of the year, all simulated variables are multiplied by the smoothed standard deviation.

Finally, the smoothed central tendency is added.
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Fig. 1: Elevation of the study area (PACA region) along with the four key locations

analyzed in this study: Marseille, Les Maures, Mercantour, and Sainte-Victoire

6 Application to weather generation over

South-East France

6.1 Study area and data

The performance of MSTWeatherGen is assessed for the period 2012-2021 using a daily

gridded dataset encompassing six meteorological variables: absolute humidity, precip-

itation, radiation, minimum temperature, maximum temperature, and wind speed.

This dataset derives from the SAFRAN reanalysis (Quintana-Segui et al, 2008), which

covers mainland France at a 8 km × 8 km resolution. Our analysis focuses on the

Provence-Alpes-Côte d’Azur (PACA) region, covering a total of 498 pixels. This region

is chosen due to its diverse climate patterns: the southern part is characterized by

a Mediterranean climate while the North-East of the region experiences a mountain

climate (see Figure 1).
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Fig. 2: Frequency of wet days for each weather type at each grid point during the

winter season (DJF). The percentage in brackets corresponds to the percentage of

each weather type

6.2 Parameter estimation

Since the weather variables exhibit seasonality in PACA, we adopt the method pre-

sented in Section 5 and remove the annual cycle before estimating the parameters of

MSTWeatherGen for each season separately. We follow the common practice of defin-

ing four seasons for a mid-latitude climate: winter (DJF), spring (MAM), summer

(JJA) and autumn (SON). After removing the seasonal signal, we estimate the weather

types using the method described in Section 3.1. Figure 2 illustrates the frequency of

wet days for each weather type of the winter season, and shows that WT 2 and 6 pre-

dominantly experience wet conditions across the entire region while WT 3 and 5 are

characterized by mostly dry conditions, and WT 1 exhibits intermediate conditions
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with strong spatial gradients. After weather typing, the transitions between weather

types are modeled using a first-order non-homogeneous Markov chain (cf. Section 3.1)

whose parameters are estimated using a sliding window of length L = 30 days.

All detrended variables are subsequently transformed into Gaussian scores using

the ordered normalization method (cf. Section 3.2), and the parameters of the covari-

ance function are estimated for each weather type separately (cf. Subsection 2.4) with

the hyperparameters nA, nB , and tmax set to respectively 15, 15, and 3. Figure 3 dis-

plays the empirical and modeled covariances for winter WT 1, and shows that the

model effectively captures the intra-variable space-time covariances as well as most of

inter-variable covariances. The most complex relationships (e.g., between maximum

temperature and minimum temperature for which the one-day-lag spatial correlation

is higher than the zero-day correlation) are nevertheless only imperfectly captured

because the model of covariance lacks flexibility to accommodate the intricate behavior

of the empirical covariance.

6.3 Stochastic weather generation

Stochastic weather generation is performed using Algorithm 1 in which we opt for

a third-order autoregressive model to maintain computational efficiency (we were

therefore able to perform all computations on a usual laptop computer). We set

M = 3 in Equation (21), which results in M × K = 18 matrices Bk,m of size

nSp× nSp = 2988× 2988.

Simulation of marginal distributions

We assess the marginal distributions simulated by MSTWeatherGen for all target vari-

ables at one location, namely the grid-point encompassing the city of Marseille which

is the main city of PACA. Figure 4 compares the observed and simulated empirical

probability density functions for all meteorological variables, apart from precipitation

whose simulation is assessed in Figure 5. Figure 4 shows that MSTWeatherGen effec-

tively reproduces the marginal distributions of all target variables, and in particular

their multimodality (see e.g., radiation or minimum temperature in Fig. 4) thanks to

the use of the ordered normalization method to transform the data (see Section 3.2).

Regarding precipitation, the quantile-quantile plots in Figure 5 show that the simu-

lated intensities closely match the observed ones, the observed values being well within

the simulation envelopes.
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Fig. 4: Empirical probability density function of observations (red curve) and 20 sim-

ulated realizations (gray curves) in the city of Marseille for the period 2012-2021. From

top to bottom: wind speed (m/s), minimum temperature (°C), maximum temperature

(°C), radiation (W/m²), and absolute humidity (g/m³)
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Fig. 5: Simulated precipitation quantiles vs. observed precipitation quantiles for 20

simulated 10 year long realizations. The red dashed line indicates perfect agreement.

City of Marseille, period 2012-2021

Simulation of bivariate statistics

The stochastic generation of multiple variables over a spatial domain requires the

accurate reproduction of the bivariate statistics between pairs of variables and loca-

tions. To assess the simulation of such bivariate statistics by MSTWeatherGen, a total

of 10 locations were randomly selected within the PACA region, and the correlations

between pairs of locations and variables were calculated for each season. The results

are displayed in Figure 6, which shows that overall the model successfully reproduces

both inter-variable and cross-variable correlations. However, MSTWeatherGen tends

to overestimate the correlation between some pairs of variables, for instance in summer

between precipitation and radiation as well as between precipitation and maximum

temperature. This overestimation may be due to the decreased rainfall observed in

the summer months. In addition, the inter-sites correlation of precipitation is imper-

fectly simulated for some pairs of locations in winter, which may be due to the

non-stationarity of the spatial covariance of this variable at that time of the year. On

a side note, one can notice that the correlations reported in Figure 6 vary significantly

between seasons, which supports the choice of fitting distinct models for each season.

Simulation of temporal persistence

The simulation of realistic temporal persistence patterns within the weather system

is crucial for impact studies because many environmental processes integrate weather

variables through time, and are therefore sensitive to the duration spent in a given

weather condition. For instance, dry and wet spells (defined as sequences of consec-

utive dry and wet days) are critical in hydrology because they significantly affect
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Fig. 6: Bivariate correlations of observed and simulated variables evaluated for all

possible pairs derived from a set of 10 randomly selected locations. From top to bot-

tom: winter, spring, summer, and autumn. The red dashed line indicates a perfect

correlation

the occurrence of droughts (long dry spells) and floods (long wet spells) (Mathlouthi

and Lebdi, 2021). Figure 7 compares the observed and simulated wet spells duration

in winter and dry spells duration in summer. Results show that MSTWeatherGen

effectively reproduces the duration of dry and wet spells, except for an overestima-

tion of short winter wet spells in mountain areas (North of the target area). One can

also notice that the simulation is less regular than the observations, which is due to

the artificial patchiness of precipitation in the original SAFRAN reanalysis dataset

(Quintana-Segui et al, 2008). To complement this evaluation of precipitation persis-

tence, Figure 8 compares the persistence of observed and simulated cold winter and
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Fig. 7: Observed and simulated average wet and dry spells for the period 2012-2021.

Upper panel: Number of consecutive wet winter days (NCWW). Bottom panel: Num-

ber of consecutive dry summer days (NCDS)

hot summer spells, and the results show that the model performs well also with regard

to the persistence of temperature threshold passing.

Simulation of compound events: the example of heatwaves

Heatwaves are significant compound extreme events with substantial impacts on

human health and the economy, and attract a growing interest as their frequency

and intensity have been increasing in recent years due to climate change (Ouzeau
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Fig. 8: Observed and simulated average cold and hot spells for the period 2012-

2021. Upper panel: Number of consecutive cold winter days (NCCW). Bottom panel:

Number of consecutive hot summer days (NCHS). Cold days are defined as days with

a minimum temperature below 0°C and hot summer days as days with a maximum

temperature above 31.8°C, which represents the 90th percentile for the region

et al, 2016). Accurately reproducing these events using stochastic weather genera-

tors is essential for conducting impact studies (Yiou and Jézéquel, 2020). The criteria

used to define heatwaves vary depending on the context and location. For example

the French weather agency Météo-France issues a public warning (Orange Vigilance
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Fig. 9: Observed and simulated frequency of heatwaves during summer from 2012 to

2021. Heatwaves are defined as periods during which both maximum and minimum

temperatures exceed high thresholds for at least three consecutive days. The thresholds

used here are 21.5°C for the minimum temperature and 34.5°C for the maximum

temperature

alert) when both the minimum and maximum temperatures exceed certain thresh-

olds for at least three consecutive days. For illustrative purposes, we choose to assess

the ability of MSTWeatherGen to simulate heatwaves with thresholds defined as the

mean of the Météo-France Orange Vigilance alert thresholds over PACA (i.e., 21.5°C
for the minimum temperature and 34.5°C for the maximum temperature). Figure 9

compares the observed and simulated frequency of heat waves during summer from

2012 to 2021, and shows that MSTWeatherGen effectively reproduces the frequency

of this compound event, including its spatial patterns.

Simulation of multivariate environmental indices: the example of

the Fire Weather Index

MSTWeatherGen has been designed with the objective of simulating weather data

with realistic inter-variable dependencies. We therefore assess the simulation of the

co-fluctuation of many variables by MSTWeatherGen, and illustrate such multivariate

environmental process through the example of the risk of fire evaluated hereafter by

the Canadian Forest Fire Weather Index (FWI, (Wang et al, 2017)).
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Fig. 10: Spatial distribution of key FWI statistics. Left and middle panels: spatial

distribution of observed and simulated mean, 5th, 95th, and 99th percentile of the

Fire Weather Index (FWI) during the summer periods from 2012 to 2021. Right panel:

bias (observed minus simulated) of these statistics
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Fig. 11: Observed (solid line) and simulated (dashed line) daily FWI statistics over 10

years (2012 to 2021) in summer (including 30 days before and after summer) at three

locations: Les Maures, Mercantour, and Sainte-Victoire. The mean is represented in

blue, minimum in green, and maximum in red. Vertical dashed lines determine the

summer period

The FWI is a meteorologically-based metric used to assess fire danger by integrat-

ing the joint influence and dynamics of several key weather variables: precipitation,

temperature, relative humidity, and wind speed. We use the cffdrs R package (Wang

et al, 2017) to calculate the summer FWI from 2012 to 2021 across PACA, for both

observed and simulated data, and with default initialization during spring time. Figure

10 displays the spatial distribution of key FWI statistics computed on each series of

920 values (3 summer months × 10 years) across the studied area and shows that

MSTWeatherGen effectively reproduces the overall spatial patterns of the FWI. The

mean, the lower and upper percentiles of observations and simulations are in very good

agreement. Indeed, the first row of Figure 10 shows an almost perfect simulation of

the 5th percentile, except for a minor underestimation in the south-west of the area.

The bias of the mean is also very small (magnitude less than 3), in particular when

compared to the actual mean FWI whose spatial average is around 34. Finally, the

bias of the high percentiles (95th and 99th) is slightly higher in FWI units, in partic-

ular in the north-east of the region where the underestimation reaches 6 for the 99th

percentile, but once again it is very limited when compared to the high FWI values
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reached in this configuration (for the 99th percentile the FWI ranges from 37 to 79

across PACA).

The dynamics of the Fire Weather Index (FWI) is also crucial for understanding

the risk of fire over time. We examine this dynamics at three locations correspond-

ing to landmark forest landscapes in Provence: the small mountains of Sainte-Victoire

(43.532◦N, 5.6128◦E) and Les Maures (43.28◦N, 6.384◦E), and the Mercantour massif

(44.13◦N, 7.09◦E), both densely vegetated with evergreen forests. The Sainte-Victoire

and Les Maures areas experience hot and dry summers typical of the Mediterranean

climate which lead to a high fire risk during the dry season. In contrast, the Mercan-

tour massif experiences a Southern alpine climate with cooler and wetter summers,

and hence a lower fire risk. For each of the three locations, we calculate the daily FWI

statistics (mean, minimum, and maximum) during summer and over 10 years (2012

to 2021). Note that the difference between this approach and the one displayed in

Figure 10 is that the statistics in Figure 11 are calculated on a daily basis, whereas

those in Figure 10 are calculated for the all summer season. Figure 11 compares the

observed and simulated FWI statistics in these locations during summer (i.e., the peak

fire season), and demonstrates that MSTWeatherGen accurately captures the tempo-

ral dynamics of FWI at these sites. In all three locations, the FWI starts below 20

at the end of the winter, then gradually increases to reach its peak between July and

August, and finally declines at the end of the summer. One can notice that at Les Mau-

res and Sainte-Victoire locations the FWI often exceeds 38 on average (corresponding

to a very high fire risk according to the European Forest Fire Information System

(San-Miguel-Ayanz et al, 2012)), and that these high values are properly captured in

MSTWeatherGen simulations. All in all, Figures 10 and 11 show that MSTWeather-

Gen effectively reproduces both the spatial and the temporal observed patterns and

extremes of FWI, thereby providing reliable simulations for daily fire risk assessment.

This is a very encouraging result considering that MSTWeatherGen was not designed

to reproduce extreme multivariate combinations of the weather variables.

7 Concluding remarks

Splitting the modeling effort to embrace the complexity of the

weather system

In the realm of stochastic weather generation, the simulation of realistic meteorological

scenarios involves the joint simulation of multiple variables with complex interactions

and space-time dynamics. This study tackles this challenge by splitting the stochastic
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weather model into three components: a regional weather type process, a set of site-

specific transformation functions, and a multivariate space-time Gaussian process. We

discuss hereafter the influence of each component and their underlying hypotheses on

the statistical and meteorological properties of the resulting synthetic weather data.

The regional weather types process has been designed to identify states within

which the weather is expected to be homogeneous when considered at the regional

scale. For example, the six weather types identified for the PACA region during win-

ter and displayed in Figure 2 characterize the main weather patterns observed in this

region during the cold season. By replicating such patterns, the SWG effectively repro-

duces the temporal variability of the regional weather system within each season, which

in the present case is achieved through a non-homogeneous Markov chain as outlined

in Section 3.1. One limitation of the current approach is the assumption of a first-

order Markov chain, which may impact the temporal persistence of the weather types

(Ailliot et al, 2015). If this problem emerges, a potential solution would be to con-

dition the transition probabilities of the weather types on large-scale covariates such

as the continental pattern of geopotential height or the phase of the North Atlantic

Oscillation (Furrer and Katz, 2007).

MSTWeatherGen adopts a trans-Gaussian framework to model the multivariate

and space-time behavior of the weather system within each weather type. Nonlin-

ear transformation functions are central in this framework, as they link the standard

Gaussian variables used for modeling with the target meteorological variables. The

inverse of these transformation functions can be seen as normalization functions. In

this study, we adopted the OQN method to design the transform functions (Peterson

and Cavanaugh, 2019). This method effectively transforms complex continuous distri-

butions, including multimodal ones, into standard Gaussian distributions. In practice,

the OQN allows MSTWeatherGen to accurately reproduce the marginal distributions

of all meteorological variables of interest, as shown in Figure 4. Furthermore, we

successfully extended this method to accommodate truncated distributions, which is

particularly useful for zero-inflated variables such as precipitation (Figure 5). Another

advantage of the OQN is its ability to extrapolate the distribution of each meteoro-

logical variable beyond the range of observed values using a generalized linear model

(Peterson and Cavanaugh, 2019). This is crucial in stochastic weather generation, and

in particular when studying extreme events.

The dependence structure between variables is modeled by a latent Gaussian field

with the non-separable multivariate and space-time covariance function proposed in

Allard et al (2022). Our case study demonstrates that this covariance model aligns
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well with the empirical covariances derived from a high-resolution reanalysis dataset

over South-East France, and that this model captures the majority of inter-variable

and intra-variable dependencies of the regional weather system (Figure 3). However,

a few complex dependence structures challenge the current model, in particular when

the second order non-stationarity of the latent field becomes substantial, for example

due to the presence of strong elevation differences, despite our efforts to restrict it

through seasonal weather typing and data transformation. To improve this aspect, new

non-stationary, multivariate and space-time covariance models need to be designed.

MSTWeatherGen - a ready to use multivariate and space-time

SWG

This paper introduces MSTWeatherGen, a stochastic weather generator designed to

simulate a broad range of meteorological variables across space and time. The targeted

resolution is daily in time, and 8 km x 8 km in space (typical of a regional-scale

reanalysis dataset) with a footprint of the order of 500 pixels (corresponding to a

French administrative Region) but MSTWeatherGen can be used at other scales and

resolutions. The requirement is that there are enough pixels for a good estimation of

the covariance function.

By integrating advancements in weather typing, Markov chain modeling, normal-

ization functions, and multivariate space-time covariance functions, MSTWeatherGen

offers a flexible and robust framework for generating realistic weather scenarios. Appli-

cations range from hydrology- or agriculture-focused impact studies to risk assessment,

and in this field an illustrative case study showed that MSTWeatherGen has very good

skills at simulating realistic Forest Fire Weather Index patterns and dynamics across

a gradient of Mediterranean to mountain climates.

An R package has been developed to facilitate the use of MSTWeatherGen. It

is available at https://github.com/sobakrim/MSTWeatherGen. This package allows

users to calibrate MSTWeatherGen from any reanalysis or RCM climate projection

dataset, and to swiftly emulate long (i.e., hundred of years) and realistic (i.e., faithfully

reproducing the statistics of the training dataset) weather series. The resulting sim-

ulations preserve the space-time and multivariate dependencies of the target weather

system, which is deemed essential for high resolution and multivariate impact studies

and risk assessment.
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