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Determination of biogeochemical 
properties in sea waters using 
the inversion of the three‑stream 
irradiance model
Paolo Lazzari 1*, Mirna Gharbi Dit Kacem 1,2, Eva Álvarez 1, Ilya Chernov 3 & 
Vincenzo Vellucci 4,5

Inversion models, in the context of oceanography, relate the observed ocean color to the 
concentrations of the different biogeochemical components present in the water of the ocean. 
However, building accurate inversion models can be quite complex due to the many factors that can 
influence the observed ocean color, such as variations in the composition or the optical properties of 
biogeochemical products. Here we assess the feasibility of the inversion approach, by implementing 
the three-stream light inversion model in a one-dimensional water column configuration, 
represented at the BOUSSOLE site in the northwestern Mediterranean Sea. Moreover, we provide a 
comprehensive sensitivity analysis of the model’s skill by perturbing the parameters of the bio-optical 
properties and phytoplankton physiology. Analysis of the inversion indicates that the model is able to 
reconstruct the variability of the optical constituents. Results indicate that chlorophyll-a and coloured 
dissolved organic matter play a major role in light modulation. The sensitivity analysis shows that 
the parameterization of the ratio of chlorophyll-a to carbon is important for the performance of the 
inversion model. A coherent inversion model, as presented, can be used as an observational operator 
to assimilate remote sensing reflectance.

Satellites sensors provide useful data at different temporal and spatial scales to reconstruct the variability of 
marine ecosystems. Ocean color sensors in Earth orbit allow the derivation of spectral water leaving radiance 
and  inference of physical and biogeochemical properties of the water masses1. In simple terms, the color of the 
sea is related to dissolved and particulate matter present in the water that for most of the ocean are of biological 
origin. In recent years, suitable algorithms have been developed to estimate the biogeochemical state of the oceans 
from measured radiance2. In particular, the derivation of water biogeochemical properties can be formulated 
in terms of the inversion of a forward problem. Mathematically, the so-called forward description resolves light 
propagation according to the properties of the medium in which the light propagates; the corresponding math-
ematical framework is well established3. In parallel, the inversion algorithms use the available information about 
the light field to retrieve the Inherent Optical Properties (IOPs) of the medium in which the light propagates. 
The major optical constituents of seawater in open oceans are phytoplankton, chromophoric dissolved organic 
matter (CDOM), and non algal particles (NAP) such as organic and mineral particles, bacteria, viruses and air 
bubbles. These biogeochemical components are important indicators of the ecosystem trophic regime and carbon 
pool formation4 and are among the most common products derived from inversion algorithms2. In addition, 
these indicators are extremely useful to validate surface dynamics of coupled hydrodynamic biogeochemical 
ocean models, by comparing the distribution of satellite-derived biogeochemical products with corresponding 
distributions derived from model simulations5.

Traditionally, biogeochemical models used a simple Beer-Lambert formulation to describe photosyntheti-
cally available radiation (PAR) propagation along the water column, i.e. the downwelling irradiance integrated 
over visible wavelengths (from 400  to 700 nm) that decays exponentially due to attenuation. In recent years, a 
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number of biogeochemical models have begun to resolve spectral light propagation, to simulate photon scatter-
ing and backscattering, and to simulate the remote sensing reflectance ( Rrs)4,6–8. This improvement in model-
ling algorithms is consistent with the progressive increase in data streams received from multispectral (Global 
Monitoring for Environment and Security-GMES-Sentinel-39) and hyperspectral (PRecursore IperSpettrale della 
Missione Applicativa-PRISMA-10; Plankton, Aerosol, Clouds, Ocean Ecosystem-PACE-11) satellite ocean color 
sensors. In this work, we aim to present an inversion approach that is fully compatible with the forward model 
introduced in recent multispectral marine biogeochemical models4,6,12. The inversion module can be used for 
direct assimilation of optical/radiometric measurements, as it appears to be more robust than those based on 
phytoplankton proxies, i.e. chlorophyll-a concentration (Chl-a), thanks to a more accurate knowledge of uncer-
tainties in optical measurements13. The so-called observation operator maps measured data into model state 
variables, allowing correction of model trajectories and model parameters. The three-stream inversion model 
can be used as an observation operator to assimilate remote sensing reflectance in a model equipped with the 
forward three-stream model to resolve the biogeochemistry.

Typically, the approximations used in inversion algorithms to estimate data for model validation and assimila-
tion are not the same as those used in the forward models used to solve biogeochemistry. Here we demonstrate 
the feasibility of the inversion approach for identifying important physical and biological processes needed to 
coherently map information between optical and biogeochemical model variables. The inversion study is being 
conducted at the BOUSSOLE site in the northwestern Mediterranean Sea14. Given the high availability of bio-
optical data, this location is ideal for the test and skill analysis of the proposed approach.

Results
To test the possibility and efficacy of inverting the three-stream model, we performed a series of simulations 
in which the input data to minimize the model error, expressed by the functional J in Eq. 1, are satellite-based 
remote sensing reflectances at 5 selected wavelengths (412.5, 442.5, 490, 510 and 555 nm). In the present work, 
they are quality checked and processed for the study area as described in the “Methods” section.

Based on Rrs information, the model provides estimates of the temporal variability of surface Chl-a and 
IOPs associated with phytoplankton, CDOM and NAP. We started with a reference configuration (REF) with 
the parameters derived from literature data and described in the Methods section. The model results of the 
REF output configuration show that the inversion model is able to reproduce a seasonal variability with higher 
Chl-a values during the spring phytoplankton bloom and lower values during the summer stratification, Fig. 1. 
However, the REF configuration tends to underestimate Chl-a compared to in-situ Chl-a for stratified periods. 
Phytoplankton absorption also appears to be underestimated in summer. To better understand the model results, 
we conducted additional experiments to test the sensitivity of the model to perturbations of the bio-optical 
parameters and the physiological properties of the phytoplankton. Taking into account the results of the sensi-
tivity analysis experiments, we have defined an optimized configuration that provides the best results in terms 
of Chl-a (EXP-1-Chla, described in Optical configurations). In this section we analyse the results of the EXP-1-
Chla configuration in comparison to the REF configuration and to the in-situ data. In both cases, thanks to the 
minimization of the functional J, the agreement between satellite and model Rrs is very high for each wavelength 
(see Supplementary Information).

Within the time window under consideration (2005–2012), the BOUSSOLE site exhibited Chl-a values in 
two orders of magnitude, ranging from oligotrophic conditions in summer (0.1 mg Chla m−3 ) to mesotrophic 
conditions in spring (2 mg Chla m−3 ). This variability is consistently reproduced by the inverse model in both 
the REF and EXP-1-Chl-a configurations, Fig. 1a, e. In winter, Chl-a is modulated by strong mixing events, with 
the phytoplankton bloom persisting on the monthly time scale. In late fall, surface Chl-a increases consistently 
both in observed and modeled data. The variability of Chl-a appears better reconstructed by the EXP-1-Chl-a 
model configuration, Fig. 1e, especially for the summer period. The performance of the two model configurations 
is evaluated against in-situ data and summarized in Table 1. The comparison is performed using daily model 
data compared with filtered daily in situ data as described in the Methods section. The Chl-a statistics show 
that the model tends to underestimate the annual average, while the EXP-1-Chl-a shows a positive BIAS. In the 
case of the RMSE, the EXP-1-Chl-a configuration shows a reduction in terms of REF. The EXP-1-Chl-a model 
configuration better represents the phytoplankton variability, as shown by the higher CORR value for Chl-a. 
Both the REF and EXP-1-Chl-a configurations are able to reproduce the interannual variability and show, for 
example, a lower chlorophyll concentration during the mixing period in 2011.

The simulated phytoplankton absorption coefficient at 442 nm, Fig. 1b,f, shows similar variability to the avail-
able data and predicts higher absorption in spring and minimum values in summer, which increase further in fall. 
Also in this case, the EXP-1-Chl-a configuration provides a better agreement with the observed data, especially in 
the summer months of 2008 and 2009, when the REF underestimates the absorption. The absorption coefficient 
of NAP at 442.5 nm , Fig. 1c, g, shows a seasonality synchronized with Chl-a; model and data cover a similar 
range in the case of the EXP-1-Chl-a configuration, while it is underestimated for REF. The CDOM absorption 
coefficient at 442.5 nm also shows a similar seasonal variability to that observed for Chl-a. The maximum values 
of aCDOM(442.5) between April and June coincide with the observed minimum values of Chl-a.

The surface spectral diffuse light attenuation coefficients ( Kd(�) ) also show seasonal variability with maxima 
in late winter/early spring and low values in summer. In summer, the model tends to overestimate Kd(412.5) , 
Fig. 2a, f, and a similar overestimation of the model is also found for the other wavelengths, Fig. 2. Simulated 
Kd(�) show higher negative BIAS at the shorter wavelengths, the difference between REF and EXP-1-Chl-a is 
less pronounced in terms of statistical indicators than the results for Chl-a, except for the BIAS at 442, 490 nm 
and 510 nm, where EXP-1-Chl-a shows a much lower value.
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The modeled particle backscattering coefficients are compared with in-situ data in Fig. 3. Particle backscat-
tering, Fig. 3, accounts for both phytoplankton and NAP contributions and shows biologically driven variability 
with higher backscattering during the spring phytoplankton bloom. In summer, the model tends to underestimate 
bbp(442) , it mathches bbp(488) better and slightly underestimate bbp(550) . The BIAS for the particulate backscat-
ter is always negative, Table 1, the correlation is generally lower with respect to Chl-a and Kd , and overall the 
statistical indicators between REF and EXP-1-Chl-a are similar.

Optimal configurations
The results of the sensitivity experiments show that, depending on the indicator under consideration (Chl-a, 
Kd , bbp ), different parameter configurations provide the best fit. In EXP-1, which analyzes the optical proper-
ties of phytoplankton (see Methods section for details), the best parameter configuration has the a∗PH used for 
REF, it has negative slope of b∗PH from 412 to 555 nm ( b∗PH(� = 412.5)/b∗PH(� = 555)=1.57) and lower ratio of 
backscattering to scattering ( b∗bPH/b

∗
PH = 10−4 ). The best configurations for bbp at the different wavelengths have 

the same parameters characteristics: higher absorption than the reference absorption (increase by a factor of 

Fig. 1.   Inversion results for the years 2005 to 2012 at the BOUSSOLE site. (a-d) Refer to the REF model 
configuration and (e–h) to the EXP-1-Chl-a configuration, which provides the best skill metrics for Chl-a. 
(a,e) Time series of model-derived Chl-a (daily frequency, black dots), fluorescence FChl-a (daily frequency, 
blue dots) and HPLC measurements (monthly frequency red dots). (b,f) Time series of modelled and in-situ 
aPH(442.5) , with daily (black) and monthly frequency (red). (c,g) Seasonal variations of modelled and 
in-situ aNAP(442.5) at daily (black) and monthly frequency (red). (d,h) Time series of modelled and in-situ 
aCDOM(442.5) with daily (black) and monthly frequency (red). CDOM data are only available from 2011 
onwards.
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Table 1.   Statistics for the period 2005 to 2012 for REF and EXP-1 ( EXP-1-Chl-a) inversion experiments. The 
data and model results are logarithmically transformed before the statistical indicators are calculated.

Variable NDATA​ BIAS-REF BIAS-EXP-1 RMSE-REF RMSE-EXP-1 Corr-REF Corr-EXP-1

chl-a 2607 −0.11 0.19 0.66 0.56 0.69 0.79

kd412.5 792 −0.19 −0.15 0.41 0.4 0.78 0.77

kd442.5 1824 −0.18 −0.09 0.41 0.39 0.8 0.79

kd490 1865 −0.12 −0.04 0.39 0.37 0.77 0.76

kd510 1820 −0.14 −0.08 0.34 0.31 0.74 0.72

kd555 916 0.0 0.04 0.18 0.18 0.66 0.61

bb442 1178 −0.83 −0.7 0.88 0.75 0.66 0.71

bb490 567 −0.35 −0.28 0.54 0.49 0.5 0.55

bb555 1158 −0.44 −0.36 0.56 0.5 0.65 0.66

Fig. 2.   Inversion results of Kd(�)  for the years 2005 to 2012 at the BOUSSOLE site. (a–e) For the REF 
configuration and (f–j) for the EXP-1-Chl-a configuration; time series of the modelled (black) and in-situ 
measured (red) spectral diffuse attenuation coefficient at 412.5, 442.5, 490, 510 and 555 nm at daily frequency.
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1.9-1.95), negative spectral slope of the scattering ( b∗PH(� = 412.5)/b∗PH(� = 555)=22) and low backscattering 
( b∗bPH/b

∗
PH = 10−4 ). In the case of Kd(�) , the best set has lower a∗PH , b∗PH , b∗bPH.

Given the focus of the study, which relates to biogeochemical modeling, the most interesting configuration is 
the one with the best Chl-a skill metrics. The corresponding statistical metrics, Fig. 4a–c show the dependence 
of skill on the perturbation of the three parameters a∗PH , b∗PH and b∗bPH , respectively. The higher skill is strongly 
controlled by a∗PH , Fig. 4a, and b∗bPH given the “stability” of the color near the minimum error with respect to the 
data (corresponding to the center of the target), and for the same reasons b∗PH seems less relevant.

The second group of experiments, EXP-2, appears to be less efficient in terms of error minimization, Fig. 4d. 
In EXP-2, four parameters are considered and the best configuration for Chl-a is achieved with σ = 24 µ 
mol Q m−2 s−1 , β = 600 µ mol Q m−2 s−1 , θ0 = 0.045 mg Chl mg C−1 and θmin = 0.01 mg Chl mg C−1.

bbp is always better captured with θ0 = 0.045 mg Chl mg C−1 and θmin = 0.002 mg Chl mg C−1 , but in this 
case, the chlorophyll patterns are very unrealistic with very low values throughout the year (see the Supplemen-
tary Information). Optimal solutions for Kd(� = 412.5) and Kd(� = 442.5) show unrealistic Chl-a evolution 
with very low values throughout the year, while better parameter configurations for Kd(� = 412.5, 510, 555) are 
similar to those with higher skill for Chl-a.

To summarize, EXP-1 with improved parameters for Chl-a (EXP-1-Chl-a) is a good alternative to the REF 
configuration.

Fig. 3.   Inversion results of bbp(�)  for the years 2005 to 2012 at the BOUSSOLE site. Left panels (a–c) for the 
REF configuration and right panels (d–f) for the Exp-1-Chla configuration; time series of modelled (black) and 
in-situ measured (red) bbp(442) , bbp(490) and bbp(555) at daily frequency.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:22347  | https://doi.org/10.1038/s41598-024-71457-5

www.nature.com/scientificreports/

Additional analysis were related to the role of photoprotective pigments. In fact, in principle, the presence of 
photoprotective pigments also affects the bio-optical properties of the phytoplankton cell, absorption is increased 
by the presence of additional pigments, such as photoprotective carotenoids (PPC), that protect the photosyn-
thetic machinery against excessive light. We calculated the monthly climatology of the ratio between Chl-a and 
PPC for the BOUSSOLE site. The analysis of the climatology of available data for the BOUSSOLE site indicates 
that the most abundant PPC at the site are Zeaxanthin, Violaxanthin, and Diadinoxanthin, see Supplementary 
Information. The modelling of PPC is less developed than for θCHL and in this study we considered a monthly 
variability and normalized the contribution of pigments to absorption with a factor varying from 0 to 1 as its 
absorption contribution was found to be comparable with respect to the one of Chl-a in high light regimes (i.e. 
during summer)16, but considering only two species grown in culture. Thus, more expanded dataset should be 
examined. As it was not possible to identify a clear parameterization for such pigments dynamics, we decided 
to focus only on photoacclimation.

Discussion
In this study, we investigated and assesed the feasibility of inverting the three-stream irradiance model to derive 
relevant biogeochemical properties such as Chl-a, NAP, and CDOM absorption coefficient. Semi-analytical 
methods have been successfully developed in the past2,17 and are widely used in remote sensing. This work relies 

Fig. 4.   Target diagrams15 comparing the results of the model inversion and the in-situ data from Chla-a for the 
years 2005 to 2012. (a–c) The skill metrics for Chl-a from EXP-1, with a color scale referring to the parameter 
value perturbations a∗

PH
(�) , b∗

PH
(�) and b∗bPH(�) . (d) The skill metrics for Chl-a from EXP-2, with a color scale 

related to the perturbation of the parameter β . Details of the parameter perturbations are given in Table 3.
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on the formalism and concepts introduced in advanced bio-optical biogeochemical models6 and in particular4, 
with the novelty that we consider here the problem of the inversion of the three-stream model. A similar inver-
sion procedure was developed as part of the 2SeaColor two-stream model18, which has proven to be extremely 
effective, especially for turbid waters, and is focused on the derivation of Kd. The application proposed here is to 
be used in the context of biogeochemical modelling, where a forward model is used to calculate light penetration 
along the water column and an analogous coherent inversion model can be used as an observation operator to 
assimilate remote sensing reflectance. In this context the inversion model will be applied to open ocean, such 
as BOUSSOLE site, but simultaneously to more optically complex coastal waters, as for example the northern 
Adriatic Sea. The study has raised a number of interesting questions.

The use of Rrs as input data for the inversion approach and, as an extension, for data assimilation requires, 
like all ocean color applications, a special quality control procedure. The procedure proposed here appears to 
be well suited to reduce noise in the model output while preserving the temporal and spectral variability of the 
observational data. It is clear that further work is needed, such as testing the assimilation with a simplified 1D 
biogeochemical model for the BOUSSOLE site19.The application with 3D operational systems, as used in the 
Copernicus Marine Service (https://​marine.​coper​nicus.​eu/), may require the further development of quality 
control procedures to handle the Rrs data for the assimilation procedure.

From a scientific point of view, the use of an analytical approach in conjunction with sensitivity analysis 
experiments is useful to understand which are the most critical processes controlling the information flow 
from measured data, i.e. Rrs , to biogeochemical properties. This approach could be combined with modern 
machine learning methods such as Physically Informed Neural Networks. The IOPs analysed in EXP-1, such as 
phytoplankton absorption and particulate backscattering coefficients, appear to be important elements influenc-
ing model skill. Physiological processes such as phytoplankton photoacclimation, which affect absorption and 
backscattering, are also a key element to consider. The analysis of the modelled spectral shape of particle back-
scattering shows that within the modelling hypotheses, it is difficult to reproduce the decrease of bbp observed at 
BOUSSOLE, with higher values at 442 nm, which decreases sharply at 490nm. We have analysed different NAP 
constituents but all yield flatter spectral shapes for bbp , see Supplementary Information. A possible explana-
tion could be that the scattering of the phytoplankton has a marked clearly negative slope. Indeed, the tests in 
EXP-1 with the best ability to reconstruct the bbp spectral shape has a higher scattering slope ( b∗PH(� = 412.5)

/b∗PH(� = 555)=22), but more data on these optical traits of the phytoplankton are needed.
The presented approach can in principle be extended to any number of constituents, e.g., one could include 

different phytoplankton functional types with type-specific optical properties and Chl-a to carbon ratios. The 
problem, in this case, could be that the solution space is non-singular and therefore additional constraints should 
be added to the minimization procedure to obtain a single stable solution.

The approach can be extended to any number of wavelengths, since the functional J defined in Eq. (1), which 
represents the cost function of the error between the model and the observations, can in principle be iterated 
over any number of bins, including for example the hyperspectral data streams from PRISMA or PACE satellite 
sensors10.

The dependence of bio-optical and physiological parameters on different ecological regions should also be 
taken into account. The sensitivity experiments show the impact of parameter perturbations at the BOUSSOLE 
site, but it would be important to further evaluate how this approach works in other areas where phytoplankton 
IOPs could be very different: different pigment compositions could influence absorption, or different size dis-
tributions could influence the spectral shape of the backscattering coefficient.

Methods
Study area
In the present work, in-situ data were acquired at the BOUSSOLE site in the Ligurian Sea ( 7◦54’E, 43◦22’N), one 
of the Northwestern Mediterranean sub-basins, at about 32 nautical miles from the French coast (water depth is 
2440 m), as shown in the Supplementary Information. Here an autonomous fixed buoy is deployed since 200320, 
sampling bio-optical parameters every 15 min, and monthly oceanographic cruises are conducted since 2001 
for discrete bio-optical sampling. The BOUSSOLE site is located in the central area of the cyclonic circulation 
characterizing the Ligurian Sea where the prevailing ocean currents are weak ( < 20 cm s−1 ). Generally, this site 
shows a marked seasonality of the physical forcing, switching from deep ( ∼ 400 m depth) mixed layers in winter 
to a prevailing stratification in summer ( ∼ 20 m). Oligotrophic conditions prevail during the summer period 
with Chl-a values less than 0.1 mg m−3 at surface (with minima ∼ 0.05 mg m−3 ) and undetectable nitrate levels. 
The early spring phytoplankton bloom period usually occurs from February to March-April, producing higher 
Chl-a concentrations up to 3–5 mg m−3 because of the nitrate repleted surface waters21. Most of the other periods 
of the year are characterized by moderate concentrations of Chl-a, ranging from 0.1 to 0.2 mg m−3 . Considering 
these oceanographic conditions, four distinct trophic situations have therefore been identified in the area: vertical 
winter mixing (November–December–January), spring phytoplankton bloom (February–March–April), summer 
stratification (May–June–July–August), and fall oligotrophic conditions (September–October).

Chlorophyll‑a and inherent optical properties (IOPs)
Light absorption coeffecients were acquired from monthly cruises. CDOM samples were analyzed and quality-
controlled. The particulate absorption spectra were decomposed into phytoplankton ( aph(�) ) and non-algal 
particle ( aNAP(�) ; i.e., detritus) absorption coefficients using the numerical decomposition technique22.

Phytoplankton pigment concentrations was measured by high performance liquid chromatography (HPLC)23. 
The fluorescence emission of Chlorophyll-a was measured by WETLabs ECOFLNTUs fluorometers at 4 and 9 m 

https://marine.copernicus.eu/
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at the fixed buoy and calibrated with discrete samples from HPLC analyses24, these data were daily averaged to 
be compared with model output.

The in-situ volume scattering function (VSF) at 140◦ , β(140) , was collected with HOBI Labs (Hydro-Optics, 
Biology, and Instrumentation Laboratories) Hydroscat-4 backscattering meters installed at the lower measure-
ment depth of the buoy (9 m) and equipped with filters at 442, 488, 550 and 620 nm. From these measurements, 
the particulate backscattering coefficient was calculated25.

Apparent optical properties (AOPs)
Radiometric data were acquired from the fixed buoy with multispectral Satlantic OCR-200 series at 7 waveleng-
hts. Downward plane irradiance, Ed(z, �) , was measured at the surface (4.5 m above water), 4 and 9 m depth. 
Nadir upward radiance Lu(z, �) was measured at 4 and 9 m depth. Measurements with Ed(z, �) values lower than 
0.005 µW cm−2 nm−1 were excluded from further analyses. The diffuse attenuation coefficient Kd(�) were calcu-
lated from radiometric measurements as in21. The remote sensing reflectance, Rrs , was obtained form the Coper-
nicus Marine Data Store (https://​scihub.​coper​nicus.​eu, multisensor L3 product), and it is used as model input.

To ensure consistency amongst the acquired AOPs, Kd and Rrs , and therefore, facilitate their evaluation, a 
preliminary phase was performed.

•	 Quality check (QC) of Kd data: Only Kd data recorded in the 10:00 to 14:00 GMT time window were kept 
as representative of the measurements for each day. Data acquired with an absolute tilt higher than 10◦ were 
filtered out from the analysis. Measurements collected at a depth of more than 2 m below the nominal depth 
were removed. In fact, observations collected with the above water sensor too close to the sea surface were 
discarded. Moreover, potential outliers were detected and removed using the 3-σ rule over the time aver-
age. After visually inspecting all spectra, geophysically unrealistic data or spectra with negative values (e.g., 
those monotonically increasing magnitudes for the attenuation coefficient) were removed. In addition, the 
amplitude variability in Kd measurements were smoothed using the Savitzky–Golay (SG) filtering technique, 
while adopting a polynomial of a third order and a smoothing window size of 10 days. The smoothing action 
of the SG filter produced the lowest noise while keeping the sharpest step response.

•	 Quality Control (QC) of satellite Rrs : The Rrs are the product of a multi-sensor merging of SeaWiFS, MODIS, 
MERIS, VIIRS-SNPP & JPSS1, and OLCI ocean color sensor mounted on sentinel-3A and sentinel-3B 
satellites9, with a ∼ 1-day revisit period and at a spatial resolution of 1× 1 km (https://​scihub.​coper​nicus.​
eu/). These data were acquired from January 2005 to December 2021 and we focused on the period from 
2005 to 2012. The acquired L3 daily multi-sensor Rrs went through certain QC steps during data treatment. 
These processes included cloud filtering to remove clouds/shadows from the analysis. This step helps to 
remove outliers affected by clouds with measurements that do not represent the nature of the target and can 
lead to misleading results. Potential outliers were removed using the 3-σ rule over the quality indicator of 
Rrs at each wavelength. At the end, a smoothing process is applied to Rrs using the method of Savitzky-Golay 
filtering. This process performs noise reduction while preserving the original spectral features of the spectrum 
such as absorption band heights and widths. For Rrs data at each studied wavelength, we least-squares fit a 
polynomial of a third order and a smoothing window length of 10 days. Before proceeding with this step, a 
parameter optimization selection phase was carried out to select the optimal polynomnial order and frame 
size according to the characteristics of the spectrum.

Prominent features of the satellite R
rs

 spectrum
Peaks and troughs in the Rrs spectra is modulated by the optical properties of oceanic water and at a lesser extent 
by phytoplankton absorption. Average Rrs spectra for 2012 shows relatively higher remote sensing reflectance 
values at the blue end region (412–490 nm), followed by an abrupt downward slope starting at around 500 nm 
due to water particles absorption, as shown in the Supplementary Information. These values are explained by 
the theoretical blue absorption peak of Chlorophyll-a at around 443 nm followed by a mild smooth increase to 
a prominent peak at the the end blue region mainly at 490 nm. This reflectance peak stands for the dominant 
colour of the water, that is mostly bluish over the entire zone1.

Three‑stream light inversion model
The three-stream method to simulate light propagation in the forward implementation is currently used opera-
tionally in the MedBFM system within the Marine Copernicus Service26. In this framework, the optical properties 
such as chlorophyll, CDOM and NAP are used to calculate the remote sensing reflectance. In the present work, 
we have considered an equivalent model, but used for the opposite task, namely using reflectance data to derive 
optical properties, Fig. 5. The inversion procedure is based on the minimization of a cost function J in the form 
of a mean square difference depending on the considered optical component, x:

The x = (Chl − a, CDOM,NAP) vector entries are the concentrations of the biogeochemical parameters deter-
mining the modelled reflectances RMODEL

rs (�, x) . ROBS
rs (�) are measured remote sensing reflectances. The sum in 

Eq. (1) spans over the wavelengths of interest measured by the sensors.
The forward light propagation model4,6 resolves light propagation according to three streams: a downward 

direct, sun collimated, component Edir , a diffuse downward component Edif  and a diffuse upward component Eu.

(1)J(x) =
∑

�

(

RMODEL
rs (�, x)− ROBS

rs (�)

)2

https://scihub.copernicus.eu
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22347  | https://doi.org/10.1038/s41598-024-71457-5

www.nature.com/scientificreports/

Fig. 5.   Schematic flowchart of the operational system in which the inversion model will be embedded. The 
forward model used for the inversion is shared with the operational model currently in operation within the 
Marine Copernicus Service. The line regarding data assimilation points to future applications where it will 
be possible to assimilate the biogeochemical variables Chl-a, CDOM, NAP derived with the inversion model 
alongside the variables that are currently assimilated. A sensitivity procedure can be used to analyze the 
dependence of model skill on parameter perturbations or to optimize model results for specific regions.
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where a(�) , b(�) and bb(�) are the total absorption, scattering and backscattering coefficients, respectively, which 
are independent of the ambient light field and defined as inherent optical properties (IOPs). rdir , rdif  and ru are 
the effective scattering coefficients, and cos θdir , vdif  and vu are the average cosines of the three light fields, which 
are constant for diffuse irradiance but vary with solar zenith angle for direct irradiance. The boundary conditions 
at surface, EOASIMdir (�, 0−) and EOASIMdif (�, 0−) , are obtained from the OASIM model validated for the BOUSSOLE 
site12. The RMODEL

rs,�  is computed as a ratio between the diffuse upward component normalized over the sum of 
downward components and over the Q factor4,27:

The transition between the water interface, from just above the sea surface ( 0+ ) to just below the sea surface ( 0− ) 
and the correction for Raman scattering are based on empirical relationships17,28.

a(�) , b(�) , bb(�) are determined summing the product of the each optical constituent concentration and the 
specific optical coefficients as reported in Table 2, Eqs. 14, 15, and 16 plus the contribution of seawater ( aw,� , 
bw,� , bb,w,�).

The relationships between the total coefficients and the biogeochemical properties Chl-a, CDOM, and NAP imply 
that the light propagation equations are coupled for each wavelength; for example, the change in Chl-a concentra-
tion affects all wavelengths. We used the ratio of Chl-a to carbon to express the C concentration of phytoplank-
ton as the product of the reciprocal of θCHL(PAR) by Chl-a to determine the scattering and backscattering of 
phytoplankton in Eqs. (8) and (9). With this approach the information derived from the inversion of Rrs for each 
wavelength can be used simultaneously to determine the vector x that is the target of the inversion. An additional 
constrain makes Chl-a to carbon ratio ( θCHL ) dependent on surface irradiance29, through a sigmoidal curve:

with PAR expressed as µ mol Q m−2 s−1 , θ0CHL = 0.03 mg Chl mg C−1 , θmin
CHL = 0.005 mg Chl mg C−1 , σ = 20 µ 

mol Q m−2 s−1 β = 500 µ mol Q m−2 s−1 . PAR is computed from OASIM model output integrated from 400 to 
700 nm30. The choice of a sigmoid function is justified by the assumption that two saturation regimes at low and 
high light regimes are considered31.

(2)
dEdir(�, z)

dz
=−

a(�)+ b(�)

cos θd
Edir(�, z)

(3)
dEdif (�, z)

dz
=−

a(�)+ rdif bb(�)

vdif
Edif (�, z)+

rubb(�)

vu
Eu(�, z)+

b(�)− rdirbb(�)

cos θd
Edir(�, z)

(4)−
dEu(�, z)

dz
=−

a(�)+ rubb(�)

vu
Eu(�, z)+

rdif bb(�)

vs
Edif (�, z)+

rdirbb(�)

cos θd
Edir(�, z)

(5)Edir(�, 0
−) =EOASIMdir (�, 0−), Edif (�, 0

−) = EOASIMdif (�, 0−), Eu(�,∞) = 0

(6)RMODEL
rs,� =

Eu(�, 0
+)

Q(θdir)[Edir(�, 0+)+ Edif (�, 0+)]

(7)a(�) =aw(�)+ a∗PH(�) · Chl - a + a∗CDOM(�) · CDOM+ a∗NAP(�) ·NAP

(8)
b(�) =bw(�)+ b∗PH(�) · θCHL(PAR)

−1 · Chl - a
︸ ︷︷ ︸

C

+b∗NAP(�) ·NAP

(9)
bb(�) =bbw(�)+ b∗bPH(�) · θCHL(PAR)

−1 · Chl - a
︸ ︷︷ ︸

C

+b∗bNAP(�) ·NAP

(10)θCHL(PAR) =θ0CHL

e−(PAR−β)/σ

1+ e−(PAR−β)/σ
+ θmin

CHL

Table 2.   Bio-optical parameters used for water and phytoplankton absorption, scattering and backscattering. 
The wavelengths considered are the ones used for the inversion procedures and match with the Rrs wavelengths 
measured by satellite sensor data used in the present work.

� (nm) aw(�) (m−1) bw(�) (m−1) bbw(�) (m−1) a
∗

PH
(�) (m2 mg Chl−1) b

∗

PH
(�) (m2 mg C−1) b

∗

bPH
(�) (m2 mg C−1)

412.5 0.0048 0.00535 0.002674 0.034 0.02102 5.38E−05

442.5 0.00742 0.00437 0.002184 0.040 0.02022 5.18E−05

490 0.01758 0.00284 0.001421 0.028 0.02054 5.26E−05

510 0.02918 0.00247 0.001234 0.018 0.02050 5.25E−05

555 0.06098 0.00167 0.000836 0.009 0.01907 4.88E−05
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To build the inversion tool we assume that the water column is infinitely deep and homogenous32. In prelimi-
nary tests, we found that, assuming no a-priori correlation between biogeochemical properties at different layers, 
the error minimization procedure was correcting only the shallower layer contiguous to the boundary condition, 
therefore we considered only homogeneous concentration of biogeochemical properties along the vartical. In 
the particular case of the one-layer model the analytical solution of the system of Eqs. (2)–(4) can be derived:

Here k+ , x, y, cdir are functions of the coefficients of the system (2)–(4), as given in the Supplementary 
Information.

The minimization of the functional J is operated using the “limited memory algorithm for bound constrained 
optimization” L-BFGS-B33,34 embedded and freely available within the Python SciPy package35.

Optical constituents
The spectral absorption coefficients of seawater (aw(�), m−1) was taken from literature data36. The scattering 
coefficients of seawater ( bw(�), m−1 ) was taken from Smith and Baker (1981) and linearly interpolated to the 
model wavelengths (412.5, 442.5, 490, 510, 555, 560, 665, 670 and 681.25 nm). The backscattering to total scat-
tering ratio of seawater was set to 0.5 ( ̃bbw , Morel (1974)). For each non-water constituent, their IOPs were 
computed as the product of the constituent mass and their respective mass-specific absorption or scattering 
coefficients. To prescribe the optical properties of phytoplankton we used Chl-a-specific absorption spectra 
of phytoplankton cultures from several taxa ( a∗PH(�) , m 2 mg Chl−1 ) , digitized from literature and provided as 
Supplementary Information in a specific study focused on the Mediterranean Sea37. The collection of aPH(�) are 
originally reported in 6 nm intervals from 300 to 800 nm and averaged for four phytoplankton functional types 
(PFTs) that represented picophytoplankton, nanophytoplankton, diatoms and dinoflagellates. In this work, the 
four spectra were further averaged and linearly interpolated to the model wavelengths. The carbon specific scat-
tering and backscattering coefficients of phytoplankton ( b∗PH(�) and b∗bPH(�) , m 2 mg C−1 ) were parameterized 
as in4. Colored dissolved organic matter (CDOM) is an important contributor to total absorbtion but a negligible 
contribution to scattering. The mass-specific absorption coefficients of CDOM ( a∗CDOM(�) , m 2 mg  C −1 ) were 
considered to decrease exponentially with increasing wavelength as:

where a∗CDOM(450) is the mass-specific absorption coefficient at 450 nm and is set to 0.015 m2 mg C−1  37, and 
SCDOM is the spectral slope between 350 and 500 nm that was set to 0.017 nm−1  37. Non-algal particles (NAP) 
absorb and scatter light. The mass-specific absorption coefficients of NAP ( a∗NAP(�) , m 2 mgC−1 ) were considered 
to decrease exponentially with increasing wavelength38, as:

where a∗NAP(440) is the mass-specific absorption coefficient at 440 nm set to 0.0013 m2 mg C−1  37, and SNAP is 
the spectral slope, set to 0.013 nm−1  37. The NAP mass-specific scattering coefficients ( b∗NAP(�) m 2 mmol C−1 ) 
were computed as an exponential function of wavelength38, as:

where b∗NAP(550) is the mass-specific scattering at 550 nm of 0.02875 m2 mg C−1 and fNAP an exponent of 
0.5 nm−1  37. The backscattering to total scattering ratio for NAP was set to 0.005, i.e. a scattering efficiency typi-
cal of small organic detritus38.

Sensitivity experiments
We have considered two classes of ensemble experiments: EXP-1 and EXP-2. The first refers to the optical prop-
erties of phytoplankton, the second to the physiological properties of phytoplankton, the perturbed parameters 
are shown in Table 3. For each experiment, we performed ensemble simulations in which we perturbed the 
model configuration in a neighbouring region of parameter space around the REF configuration. Statistical 
indicators such as BIAS and Root Mean Square Error (RMSE) are used to compare the role of each parameter 
in determining model behaviour and accuracy with respect to the data. The statistics are calculated using inde-
pendent data in relation to the data used as model input for Rrs(�) , Chl-a, Kd(� = 412.5) and bbp(� = 442) . To 
account for the possible variability and uncertainty of the parameters that determine the absorption, scattering 
and backscattering in relation to the concentration of biogeochemical constituents in EXP-1, we performed an 
ensemble of 1131 simulations ( 113 members). We perturbed three parameters, eleven levels each, related to the 

(11)Edir(z) = Edir(0) exp

∫ z

0
(−cdir)dζ ,

(12)Edif (z) =
(
Edif (0)− xEdir(0)

)
e−k+z + xEdir(z),

(13)Eu(z) =
(
Edif (0)− xEdir(0)

)
r+e−k+z + yEdir(z).

(14)a∗CDOM(�) = a∗CDOM(450)e−SCDOM(�−450)

(15)a∗NAP(�) = a∗NAP(440)e
−SNAP(�−440)

(16)b∗NAP(�) = b∗NAP(550)

(
550

�

)fNAP
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optical properties of phytoplankton, but left the optical parameters related to CDOM and NAP unchanged. The 
spectral shape of the phytoplankton absorption curves shows a maximum in the blue wavelength range from 400 
to 555 nm1. The curve we adopted as a reference configuration is derived from the aggregation of various spectra 
related to different phytoplankton groups. In EXP-1, to account for the uncertainty and variability associated to 
this aggregated variable, we perturbed a∗PH(�) multiplying it by a factor varying from 0.05 to 1.95, thus reducing 
or amplifying the absorption in the blue bands (around 400 nm) versus the green ones (around 550 nm), with 
these perturbation a∗PH(�) is in the range 0.0017–0.0663  m 2 (mg chl)−1 , compatible with the one observed in 
nature, though lower with respect to in-situ measured values obtained in previous studies39. Two physiological 
processes related to phytoplankton cells may be of importance: photoacclimation, expressed as the ratio of Chl-a 
to carbon ( θCHL ), and photoprotection, expressed as the ratio of photoprotective pigments to Chl-a. Both are 
assumed to be dependent on PAR. Experimental formulations of the ratio of Chl-a to carbon29,31,40 are widely 
used in biogeochemical models where basic physiological processes are considered. In general, these formulas 
predict higher θCHL values at low daily PAR conditions (winter in the present study) and lower values at high 
daily PAR conditions (summer). We focused on the role of photoacclimation and perturbed in EXP-2 the four 
parameters that modulate θCHL as a function of PAR, for a total of 14641 simulations ( 114 members): perturba-
tion of the slope of the curve at the inflection point ( σ ), the position of the inflection point ( β ), the values of 
θCHL for low and high PAR: θ0CHL and θmin

CHL.

Data availability
Chl a and HPLC data at BOUSSOLE are available from http://​www.​obs-​vlfr.​fr/​Bouss​ole/​html/​bouss​ole_​data/​
other_​useful_​files.​php (last access: 1 March 2024). IOP data at BOUSSOLE are available upon request to IMEV. 
Satellite data are available from the EU Copernicus Marine Service cmems_obs-oc_med_bgc-reflectance_my_
l3-multi-1km_P1D at https://​doi.​org/​10.​48670/​moi-​00299 (E.U. Copernicus Marine Service Information, 2022).
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