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Abstract. This paper is a contribution to the study of rational discrete
planes, i.e., sets of points with integer coordinates lying between two
parallel planes. Up to translation and symmetry, they are completely de-
termined by a normal vector a ∈ N3. Excepted for a few well-identi�ed
cases, it is shown that there are two approximations b, c ∈ N3 of a,
satisfying a = b + c, such that the discrete plane of normal a can be
partitioned into two sets having respectively the combinatorial structure
of discrete planes of normal b and c. Christo�el graphs are used to com-
pactly encode the structure of discretes planes. This result may have
practical interest in discrete geometry for the analysis of planar features.

Keywords: Discrete Plane · Christo�el Graph · Approximation.

1 Introduction

This paper is a contribution to the study of standard arithmetical rational dis-
crete planes. They are de�ned from a non-zero normal vector a ∈ N3 as follows:

Pa := {x ∈ Z3 | 0 ≤ x · a < ∥a∥1}.

Their combinatorial structure has been studied thirty years ago in [3]. The
main de�nitions and results are recalled below. The adjacency graph associated
to Pa is a graph whose vertices are the points of Pa and that has an edge
between two distinct points x and y if and only if ∥x−y∥1 = 1. The elementary
cycles, which are squares, are called faces. The adjacency graph is connected and,
together with the set of faces, de�nes a two-dimensional combinatorial manifold
without boundary [3] (Fig. 1).

In the adjacency graph associated to Pa, the set of edges incident to a given
vertex x is determined by the quantity x · a, called the height of x (Fig. 1).
The arrangement of edges incident to equally high points is thus the same. In
addition, there are only eight di�erent arrangements of incident edges in all
discrete planes and at most seven in a given one [3] (Fig. 2).

⋆ This work has been funded by PARADIS ANR-18-CE23-0007-01 research grant.
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Fig. 1: P(4, 9, 17). The number displayed close to a point is its height.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2: All arrangements of incident edges � (a) and (b) cannot be in the same
discrete plane. This is close to a vertex-atlas in tiling theory [7, section 5.3].

Related Works. In 2d, it is well known that the smallest segment that periodically
generates a rational discrete line can be uniquely partitioned into two segments,
each of them being the minimal period of another rational discrete line. See, e.g.,
the splitting formula [8, pp. 153�157] or the standard factorization of Christo�el
words [1, pp. 19�22]. This paper aims at extending such decomposition to 3d.
However, there are in�nitely many sets of faces that can periodically generate
the same rational discrete plane and there is no canonical way of decomposing
them. See, e.g., [2] for a practical method of generation and decomposition based
on a geometrical extension of substitutions.

Contribution. In this paper, we propose another framework based on a symmet-
ric version of Christo�el graphs, introduced in [5] as extensions of Christo�el
words. In brief, they describe, for every height h, the arrangement of edges in-
cident to the points of height h in the adjacency graph associated to Pa. They
allow us to compare the arrangements of edges in the adjacency graphs of two
di�erent sets. We say that two sets have the same combinatorial structure if
there is a bijection between their points and the arrangements of edges incident
to them. We show that, excepted for a few cases, there are two approximations
b, c ∈ N3 of a, such that a = b + c and Pa can be partitioned into two sets
having respectively the combinatorial structure of Pb and Pc. See Fig. 3.
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Fig. 3: Decomposition of P(2, 3, 4) in red and blue sets. The arrangements of
edges in the red (resp. blue) set match those of P(1, 1, 2) (resp. P(1, 2, 2)).
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Outline. In section 2, we present several de�nitions based on Christo�el graphs.
In section 3, we provide a condition for having a bijection between a subgraph
and another graph. In section 4, we introduce approximations and gather several
results about them. They are used in section 5 to prove that, excepted in a few
cases, there is an approximation for which our condition for bijection is true.

2 De�nitions

Given a directed graph G := (V,A), let us introduce the function arcsG : 2V 7→
2A that returns all the arcs emanating from the vertices of a given subset V ′ ⊆ V,
i.e., such that arcsG(V ′) = {(v1, v2) ∈ A | v1 ∈ V ′}.

For a symmetric graph G, i.e., such that (v1, v2) ∈ A ⇔ (v2, v1) ∈ A, a
partition of V induces a partition of A such that the set of arcs emanating from
a given vertex is included in the same subset of A. Indeed, for two subsets V ′,V ′′

such that V ′ ∪ V ′′ = V and V ′ ∩ V ′′ = ∅, one has

arcsG(V ′) ∪ arcsG(V ′′) = A, arcsG(V ′) ∩ arcsG(V ′′) = ∅.

2.1 Christo�el Graph

De�nition 1. Given A ∈ Z>0, let us de�ne the set VA := {0, . . . , A − 1}. The
symmetric Christo�el graph of normal a ∈ N3 \{0}, with gcd(a) = 1, is the pair
Ga := (V∥a∥1

,Aa), where

Aa := {(v1, v2) | v1, v2 ∈ V∥a∥1
, 1 ≤ i ≤ 3, v2 = v1 ± ai}.

We have symmetrized the original de�nition of Christo�el graph introduced
in [5] in order to de�ne partitions such that the set of arcs emanating from a
given vertex is always included in the same subset of arcs. Since we only consider
symmetric Christo�el graphs in the rest of the paper, we will now omit the term
symmetric.

Two representations of the same Christo�el graph are shown in Fig. 4. The
two arcs (v1, v2) and (v2, v1) are merged into one undirected edge in (b), while
they are represented by two distinct segments in (c): one incident to v1 for
(v1, v2), the other incident to v2 for (v2, v1). In the latter representation, the
following convention is used for all vertices v: the segments at angle 4π/3, 0,
2π/3 respectively correspond to the arcs (v, v + a1), (v, v + a2), (v, v + a3) and
symmetrically, the segments at angle π/3, π, 5π/3 respectively correspond to the
arcs (v, v−a1), (v, v−a2), (v, v−a3), where angles are measured counterclockwise
with respect to the horizontal segment directed to the right.

2.2 Christo�el Subgraph

Given A ∈ Z>0, a bound B ∈ {0, . . . , A−1} and an o�set δ ∈ {−B+1, . . . , A−B}
are used to de�ne a subset of VA:

VB,δ
A := {k ∈ VA | (kB − δ) mod A < B}. (1)
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0◦ 1◦ 2◦ 3◦ 4◦ 5◦

(b)

0 1 2 3 4 5

(c)

Fig. 4: P(1,2,3) in (a). Two representations of G(1,2,3) in (b) and (c). Observe how
they encode the arrangements of edges incident to the points of P(1,2,3).

The following table shows how to compute two subsets of the vertices {0, . . . , 8}
(in blue and red) thanks to (1), where (B, δ) are equal to (4, 0) (resp. (5, 1)) in
the second (resp. third) line.

k 0 1 2 3 4 5 6 7 8
4k mod 9 0 4 8 3 7 2 6 1 5

(5k − 1) mod 9 8 4 0 5 1 6 2 7 3

Then, let us denote by SB,δ
a :=

(
VB,δ
∥a∥1

, arcsGa

(
VB,δ
∥a∥1

))
the subgraph of Ga

of bound B and o�set δ. To say it simply, it contains all the arcs of Ga emanating
from at least one vertex of VB,δ

∥a∥1
. Several subgraphs of G(2,3,4) and G(1,1,7) are

illustrated in Fig. 5.

(a) S4,0
(2,3,4) (red) and S5,1

(2,3,4) (blue)

(b) S3,1
(2,3,4) (red) and S6,0

(2,3,4) (blue)

(c) S1,2
(1,1,7) (red) and S(8,−1)

(1,1,7) (blue)

Fig. 5: Subgraphs of G(2,3,4) (a-b) and G(1,1,7) (c). Since the vertices {0, 1, . . . , 8}
are placed from left to right in increasing order, the numbers are omitted.
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The rationale for the o�set is two-fold. On the one hand, it allows us to
easily describe the relative complement of a subgraph with respect to a graph.
See Fig. 5 and the next subsection. On the other hand, it allows us to always
�nd a subgraph such that it corresponds to a Christo�el graph, excepted for a
few values of a, as it will become clear in section 5.

2.3 Relative Complement

The relative complement of SB,δ
a with respect Ga is de�ned as

SB,δ
a :=

(
V∥a∥1

\ VB,δ
∥a∥1

,Aa \ arcsGa

(
VB,δ
∥a∥1

))
.

Note that SB,δ
a ∪SB,δ

a = Ga by de�nition, where the union is done independently
on the vertices and arcs.

The relative complement of a subgraph with respect to a graph is also a
subgraph in itself with appropriate bound and o�set.

Lemma 1. One has SB,δ
a = SC,γ

a , where C := ∥a∥1 −B and γ := −δ + 1.

Note that γ ∈ {−C + 1, . . . , ∥a∥1 − C}, see subsection 2.2.

Proof. Let us �rst focus on the vertices. By de�nition of V∥a∥1
and VB,δ

∥a∥1
, the

set V∥a∥1
\ VB,δ

∥a∥1
is equal to {k ∈ V∥a∥1

| B ≤ (kB − δ) mod ∥a∥1}.
Denoting by qk and rk, respectively the quotient and remainder of the Eu-

clidean division of kB− δ by ∥a∥1, one has kB− δ = qk∥a∥1 + rk and B ≤ rk <

∥a∥1 for all k ∈ V∥a∥1
\ VB,δ

∥a∥1
. However, kB − δ = qk∥a∥1 + rk is equivalent to

(−kB + δ) + (k∥a∥1 − 1) = (−qk∥a∥1 − rk) + (k∥a∥1 − 1)

⇐⇒ k(∥a∥1 −B) + δ − 1 = (k − 1− qk)∥a∥1 + (∥a∥1 − rk − 1)

⇐⇒ kC − γ = (k − 1− qk)∥a∥1 + (∥a∥1 − rk − 1).

Furthermore, B ≤ rk < ∥a∥1 is equivalent to

−1 < (∥a∥1 − rk − 1) ≤ ∥a∥1 −B − 1

⇐⇒ 0 ≤ (∥a∥1 − rk − 1) < ∥a∥1 −B.

The two above results imply that ∥a∥1 − rk − 1 is the remainder of the
Euclidean division of kC − γ by ∥a∥1 and is strictly less than ∥a∥1 −B = C for

all k ∈ V∥a∥1
\ VB,δ

∥a∥1
.

As a consequence,

V∥a∥1
\ VB,δ

∥a∥1
= {k ∈ V∥a∥1

| B ≤ (kB − δ) mod ∥a∥1}
= {k ∈ V∥a∥1

| (kC − γ) mod ∥a∥1 < C} = VC,γ
∥a∥1

.

Finally, by the de�nitions of Ga and arcsGa , V∥a∥1
\ VB,δ

∥a∥1
= VC,γ

∥a∥1
implies

Aa \ arcsGa

(
VB,δ
∥a∥1

)
= arcsGa

(
VC,γ
∥a∥1

)
, which concludes. ⊓⊔
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2.4 Arc-preserving Bijection

The goal of the paper is to compare a subgraph with another graph.

De�nition 2. Let a, b ∈ N3\{0}, with gcd(a) = gcd(b) = 1, be such that a−b ∈
N3\{0} and δ be in {−∥b∥1+1, . . . , ∥a∥1−∥b∥1}. S∥b∥1,δ

a is said to agree with Gb,

which is denoted by S∥b∥1,δ
a ≃ Gb, if there exists a bijection f : V∥b∥1,δ

∥a∥1
7→ V∥b∥1

such that for all i ∈ {1, 2, 3}, (v, v + ai) ∈ S∥b∥1,δ
a ⇔ (f(v), f(v) + bi) ∈ Gb and

(v, v − ai) ∈ S∥b∥1,δ
a ⇔ (f(v), f(v)− bi) ∈ Gb.

In other words, S∥b∥1,δ
a ≃ Gb means that there exists a bijection f , such that,

for every vertex v in S∥b∥1,δ
a , v and f(v) ∈ Gb are surrounded by the same kinds

of arcs. You can observe that the blue subgraph in Fig. 5 (b) can be mapped to
the graph drawn in Fig. 4 (c), i.e., S6,0

(2,3,4) ≃ G(1,2,3).

Note that we do not rely directly on a subgraph isomorphism de�nition, since
it involves a vertex-induced subgraph, i.e., such that the endpoints of the edges
are all in the vertex subset, which is not the case here.

3 A Criterion for Bijection

In order to compare S∥b∥1,δ
a with Gb, let us consider the following:

De�nition 3. The bijection function fB,δ
A : VB,δ

A 7→ VB is de�ned such that

fB,δ
A (k) :=

⌊
kB − δ

A

⌋
. (2)

Corollary 1 provides a simple criterion for S∥b∥1,δ
a ≃ Gb. It depends on b and

δ and comes from the two following lemmae:

Lemma 2. If k ∈ VB,δ
A , then fB,δ

A (k) ∈ VB.

Proof. Using k ∈ VB,δ
A ⊆ VA and δ ∈ {−B + 1, . . . , A− B} (see subsections 2.1

and 2.2), one can show that

0 ≤
⌊
kB − δ

A

⌋
≤ kB − δ

A
< B.

Indeed, the upper bound is implied by k ≤ A− 1 and −B < δ. The lower bound
is trivial if δ ≤ 0. Otherwise, it is enough to notice that k ∈ VB,δ

A implies δ
B ≤ k.

It follows that 0 ≤ kB − δ, which concludes. ⊓⊔
Lemma 3. For all i ∈ {1, 2, 3}, for all k ∈ V∥b∥1,δ

∥a∥1
,

(C1) if bi∥a∥1 − ai∥b∥1 ≤ µ, then (k, k + ai) ∈ S∥b∥1,δ
a ⇒ (l, l + bi) ∈ Gb,

(C2) if − (bi∥a∥1 − ai∥b∥1) ≤ µ, then (k, k − ai) ∈ S∥b∥1,δ
a ⇐ (l, l − bi) ∈ Gb,

(C3) if ν ≤ bi∥a∥1 − ai∥b∥1, then (k, k + ai) ∈ S∥b∥1,δ
a ⇐ (l, l + bi) ∈ Gb,

(C4) if ν ≤ −(bi∥a∥1 − ai∥b∥1), then (k, k − ai) ∈ S∥b∥1,δ
a ⇒ (l, l − bi) ∈ Gb,

where l = f
∥b∥1,δ
∥a∥1

(k), µ = ∥b∥1 − 1 + δ and ν = −∥a∥1 + ∥b∥1 + δ.
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Proof. First, note that the numbers l and k∥b∥1− l∥a∥1− δ are respectively the
quotient and remainder of the Euclidean division of k∥b∥1 − δ by ∥a∥1.

Let us denote by P0 the proposition δ ≤ k∥b∥1 − l∥a∥1 < δ + ∥b∥1. Since
k∥b∥1 − l∥a∥1 − δ = (k∥b∥1 − δ) mod ∥a∥1, k ∈ V∥b∥1,δ

∥a∥1
implies P0.

In the four cases, the same proof by contradiction is used. It can be coarsely
described as follows: we consider an hypothesisH, and an implication P ⇒ Q; we
show that, assumingH, the negation of the implication, i.e., (P∧¬Q) contradicts
P0, which means that P ⇒ Q must be true.

The hypotheses are given after the if in the claim of the lemma and involve
bounds on the quantity bi∥a∥1 − ai∥b∥1.

The implications and the converse propositions are given in Table 1. We
indeed can derive arithmetic constraints from the fact that both v1 and v2 must
be in V∥a∥1

for an arc (v1, v2) being part of S∥b∥1,δ
a . For instance, knowing that

k ∈ V∥b∥1,δ
∥a∥1

, (k, k + ai) ∈ S∥b∥1,δ
a ⊆ Ga is equivalent to k < ∥a∥1 − ai, while

(k, k − ai) ∈ S∥b∥1,δ
a ⊆ Ga is equivalent to k ≥ ai. Obviously, the same applies

for Gb. Indeed, since k ∈ V∥b∥1,δ
∥a∥1

, one has l ∈ V∥b∥1
by Lemma 2. Knowing that

l ∈ V∥b∥1
, (l, l + bi) ∈ Gb is equivalent to l < ∥b∥1 − bi, while (l, l − bi) ∈ Gb is

equivalent to l ≥ bi.

Case P ⇒ Q P ∧ ¬Q
(C1) (k < ∥a∥1 − ai) ⇒ (l < ∥b∥1 − bi) (k < ∥a∥1 − ai) ∧ (l ≥ ∥b∥1 − bi)

(C2) (l ≥ bi) ⇒ (k ≥ ai) (l ≥ bi) ∧ (k < ai)

(C3) (l < ∥b∥1 − bi) ⇒ (k < ∥a∥1 − ai) (l < ∥b∥1 − bi) ∧ (k ≥ ∥a∥1 − ai)

(C4) (k ≥ ai) ⇒ (l ≥ bi) (k ≥ ai) ∧ (l < bi)

Table 1: The implications to show are on the left. The converse propositions,
which contradicts P0, are on the right.

From the constraints given by P ∧¬Q (see Table 1), we introduce two integral
slack variables to have expressions for k and l. Then, we compute a bound for
k∥b∥1 − l∥a∥1 that contradicts P0.

In the �rst two cases, we have an upper bound for k and a lower one for l:

� ϵA ≥ 1 is such that k = (∥a∥1 − ai)− ϵA in (C1) and k = ai − ϵA in (C2),
� ϵB ≥ 0 is such that l = (∥b∥1 − bi) + ϵB in (C1) and l = bi + ϵB in (C2).

Now, substituting k and l by their values in k∥b∥1 − l∥a∥1, we get for (C1):

k∥b∥1 − l∥a∥1 = (∥a∥1∥b∥1 − ∥b∥1∥a∥1)
+(bi∥a∥1 − ai∥b∥1)︸ ︷︷ ︸

≤µ=∥b∥1−1+δ

−∥b∥1ϵA − ∥a∥1ϵB︸ ︷︷ ︸
≤−∥b∥1

≤ δ − 1,

which raises a contradiction, because k∥b∥1 − l∥a∥1 ≥ δ. We thus conclude that

(k < ∥a∥1 − ai) ⇒ (l < ∥b∥1 − bi) and (k, k + ai) ∈ S∥b∥1,δ
a ⇒ (l, l + bi) ∈ Gb.
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Likewise, for (C2),

k∥b∥1 − l∥a∥1 = −(bi∥a∥1 − ai∥b∥1)︸ ︷︷ ︸
≤µ=∥b∥1−1+δ

−∥b∥1ϵA − ∥a∥1ϵB︸ ︷︷ ︸
≤−∥b∥1

≤ δ − 1,

which means that (k, k − ai) ∈ S∥b∥1,δ
a ⇐ (l, l − bi) ∈ Gb.

For the last two cases, (C3) and (C4), we can similarly conclude using ν. ⊓⊔

The following Corollary sums up the previous results:

Corollary 1. If
∥∥∥b∥1a − ∥a∥1b

∥∥
∞ ≤ min (|∥b∥1 − 1 + δ|, |∥a∥1 − ∥b∥1 − δ|)

then S∥b∥1,δ
a ≃ Gb.

In the next section, we introduce the concept of approximation, which will
be linked later with Corollary 1.

4 Diophantine Approximation

De�nition 4. Let a ∈ N3 \ {0} such that gcd(a) = 1. A vector b ∈ N3 \ {0} is

an approximation of vector a if and only if a− b ∈ N3 \ {0} and∥∥∥∥ a

∥a∥1
− b

∥b∥1

∥∥∥∥
∞

<
1

2∥b∥1
. (3)

In addition, an approximation b is reduced if and only if gcd (b) = 1.

That de�nition is closely related to the simultaneous approximation of frac-
tions. When the denominator is denoted by q, 1

2q is usually considered as a trivial

bound, see [4, Section 5.2]. What is relatively uncommon here is that we consider
only rationals and that the denominator are sums of numerators: ∥b∥1 =

∑
i bi.

Vectors for which the left-hand side of (3) is strictly less than the trivial
bound are called �approximations�, while the others do not deserve to be called
�approximations�. The rationale for the strict inequality sign is technical: it allows
us to have an �if and only if� in Lemma 7 of the next section.

Multiplying both sides of (3) by the product ∥b∥1∥a∥1, one obtains:∥∥∥b∥1a− ∥a∥1b
∥∥
∞ <

∥a∥1
2

. (4)

Note that the condition of Corollary 1 also involves the left-hand side of (4).

An approximation b will turn out to be a good candidate to have S∥b∥1,δ
a ≃ Gb.

However, it must be proved �rst that an approximation exists.

4.1 Existence of an Approximation

Lemma 4. Let a ∈ N3 \ {0} be such that gcd(a) = 1. There exists at least one

approximation of a in N3 \ {0} if and only if a is not a permutation of (0, 0, 1),
(0, 1, 1), (1, 1, 1) or (1, 1, 2).
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Proof. ( =⇒ ) One can check by enumeration that permutations of (0, 0, 1),
(0, 1, 1), (1, 1, 1) and (1, 1, 2) admit no approximation.

( ⇐= ) Suppose that ∥a∥1 ≤ 4. A convenient permutation of (0, 0, 1) is
an approximation of any permutation of (0, 1, 2) and (0, 1, 3). Other cases are
permutations of (0, 0, 1), (0, 1, 1), (1, 1, 1) and (1, 1, 2), which are excluded.

Assume now that ∥a∥1 > 4. Let us consider the open ball B := {x ∈ R3 |
∥x∥∞ < 1/2} and the images B1 and B2 of B under the orthogonal projec-
tion onto (1, 1, 1) and onto the orthogonal complementary subspace respectively.
Since both images have the same volume [6] and that the �rst one is trivially
equal to

√
3, one has vol(B2) =

√
3.

Now, let us consider the open straight segment S := {λa | λ ∈ (−1, 1)} and
the image S1 of S under the orthogonal projection onto (1, 1, 1). It is easy to see
that vol(S1) =

2√
3
∥a∥1.

Finally, let us consider the dilation of S by B2, i.e., D := S ⊕ B2. It is a
symmetric and convex region. Note that the volume of D = S ⊕ B2 is equal
to the volume of S1 ⊕ B2, because one can transform one to the other by a
volume-invariant shearing. Thus,

vol(D) = vol(B2)vol(S1) =
√
3

2√
3
∥a∥1 = 2∥a∥1 > 2 · 4 = 8.

By Minkowski's theorem, since the volume of D is strictly greater than 23, D
contains at least a non-zero integer point b.

By de�nition of D, we have −∥a∥1 < b · (1, 1, 1) < ∥a∥1 and, due to the
symmetry, one can assume without loss of generality that 0 < b · (1, 1, 1). Fur-
thermore, ∥b∥1

∥a∥1
a is the projection of b onto S along projecting lines orthogonal

to (1, 1, 1). Since both b and its projection are in D by de�nition, we have∥∥∥∥∥ ∥b∥1∥a∥1
a− b

∥∥∥∥∥
∞

<
1

2
which implies

∥∥∥b∥1a− ∥a∥1b
∥∥
∞ <

∥a∥1
2

. (5)

Consequently, b is an approximation of a. ⊓⊔

4.2 Reduced Approximations

If an approximation exists, then a reduced one exists. That claim is rather obvi-
ous but crucial to link approximations with Christo�el subgraphs, because the
latter are de�ned for vectors with coprime coordinates.

Lemma 5. If b is an approximation of a ∈ N3 \ {0} such that gcd(a) = 1, then
there exists a reduced approximation b⋆ of a.

Proof. Let us de�ne b⋆ := b/ gcd (b). It is clear that b⋆,a− b⋆ ∈ N3 \ {0} and

max
i

(|∥b⋆∥1ai − ∥a∥1b⋆i |) ≤ max
i

(|∥b∥1ai − ∥a∥1bi|) <
∥a∥1
2

,

which means that b⋆ is a reduced approximation of a. ⊓⊔
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Furthermore, in order to be able to deal with the relative complement of a
subgraph with respect to a Christo�el graph, the following result is useful.

Lemma 6. Let b be a reduced approximation of a ∈ N3\{0} such that gcd(a) =
1. Then a− b is also a reduced approximation of a.

Proof. Let c := a− b. From the hypothesis, we have that c = a− b ∈ N3 \ {0}
and a− c = b ∈ N3 \ {0}. On the other hand, one has for all i ∈ {1, 2, 3},∣∣∥c∥1ai − ∥a∥1ci

∣∣ = ∣∣(∥a∥1 − ∥b∥1)ai − ∥a∥1(ai − bi)
∣∣

=
∣∣∥a∥1ai − ∥a∥1ai − ∥b∥1ai + ∥a∥1bi

∣∣
=

∣∣− (∥b∥1ai − ∥a∥1bi)
∣∣ ≤ ∥∥∥b∥1a− ∥a∥1b

∥∥
∞ < 1

2∥a∥1,

where we used (4). This means that c is a reduced approximations of a. ⊓⊔

5 Existence of a Partition

In this section, we show that there always exist b and δ, such that Ga = S∥b∥1,δ
a ∪

S∥b∥1,δ
a , S∥b∥1,δ

a ≃ Gb and S∥b∥1,δ
a ≃ G(a−b). This result is based on the following:

Lemma 7. Let a ∈ N3 \ {0} be such that gcd(a) = 1. Then b is an approxi-

mation of a if and only if there exists δ ∈ {−∥b∥1 + 1, . . . , ∥a∥1 − ∥b∥1} such

that ∥∥∥b∥1a− ∥a∥1b
∥∥
∞ ≤ min (|∥b∥1 − 1 + δ|, |∥a∥1 − ∥b∥1 − δ|).

Proof. For sake of shortness, let us set q :=
∥∥∥b∥1a − ∥a∥1b

∥∥
∞. The goal is

to search for δ such that q ≤ min (|∥b∥1 − 1 + δ|, |∥a∥1 − ∥b∥1 − δ|). However,
δ ∈ {−∥b∥1+1, . . . , ∥a∥1−∥b∥1} implies 0 ≤ ∥b∥1−1+δ and 0 ≤ ∥a∥1−∥b∥1−δ.
Therefore, one can equivalently search for δ such that both of these conditions
are true:

q ≤ ∥b∥1 + δ − 1 ⇔ q − ∥b∥1 + 1 ≤ δ,

q ≤ ∥a∥1 − ∥b∥1 − δ ⇔ δ ≤ ∥a∥1 − ∥b∥1 − q.

We conclude that such δ exists if and only if the lower bound is less than the
upper bound, i.e., if and only if

q − ∥b∥1 + 1 ≤ ∥a∥1 − ∥b∥1 − q ⇔ q ≤ ∥a∥1 − 1

2
,

which is true if and only if b is an approximation of a. ⊓⊔
Based on all previous results, the main result of the paper follows.

Theorem 1. Let a ∈ N3\{0} be such that gcd(a) = 1. If a is not a permutation

of one of the vectors (0, 0, 1), (0, 1, 1), (1, 1, 1) and (1, 1, 2), then there exist a

reduced approximation b ∈ N3 \ {0} of a and there exists an o�set δ such that

Ga = S∥b∥1,δ
a ∪ S∥b∥1,δ

a , S∥b∥1,δ
a ≃ Gb and S∥b∥1,δ

a ≃ G(a−b).
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Proof. From Lemma 4 and Lemma 5, there exists a reduced approximation b ∈
N3 \ {0} of a. There are two consequences. On the one hand, gcd (b) = 1, which
means that one can de�ne Gb. On the other hand, Lemma 7 and Corollary 1

together prove that there exists an o�set δ such that S∥b∥1,δ
a ≃ Gb (with bijection

function f
∥b∥1,δ
∥a∥1

; see De�nition 3).

Then, note that S∥b∥1,δ
a = S∥c∥1,γ

a by Lemma 1, where c := a − b, γ :=
−δ + 1. In addition, c is also a reduced approximation of a by Lemma 6. Since,
gcd (c) = 1, one can de�ne Gc.

For that subgraph, the condition of Corollary 1 writes∥∥∥c∥1a− ∥a∥1c
∥∥
∞ ≤ min (|∥c∥1 − 1 + γ|, |∥a∥1 − ∥c∥1 − γ|). (6)

Remind that
∥∥∥c∥1a − ∥a∥1c

∥∥
∞ =

∥∥∥b∥1a − ∥a∥1b
∥∥
∞ (see the proof of

Lemma 6). In addition, note that

(i) ∥c∥1 − 1 + γ = (∥a∥1 − ∥b∥1)− 1 + (−δ + 1) = ∥a∥1 − ∥b∥1 − δ,
(ii) ∥a∥1 − ∥c∥1 − γ = ∥a∥1 − (∥a∥1 − ∥b∥1)− (−δ + 1) = ∥b∥1 − 1 + δ.

As a consequence, (6) is equivalent to∥∥∥b∥1a− ∥a∥1b
∥∥
∞ ≤ min (|∥b∥1 − 1 + δ|, |∥a∥1 − ∥b∥1 − δ|),

which is true by Lemma 7 and one can conclude as above that S∥c∥1,γ
a ≃ Gc ⊓⊔

Remark 1. We have not tried to identify a setΣ such that f
∥b∥1,δ
∥a∥1

makes S∥b∥1,δ
a ≃

Gb for all b ∈ Σ and only them. Indeed, in order to have an �only if� part in

Theorem 1, it would be necessary to show that not only f
∥b∥1,δ
∥a∥1

, but all bijection

functions fail to make S∥b∥1,δ
a ≃ Gb if b /∈ Σ. That would require other results

than those provided above, which are mainly based on f
∥b∥1,δ
∥a∥1

.

Remark 2. A few vectors are excluded from Theorem 1 because they do not have
an approximation. They are, up to a permutation of the coordinates, (0, 0, 1),
(0, 1, 1), (1, 1, 1) and (1, 1, 2). It is easy to see that the Christo�el graphs de�ned
from those vectors all contain speci�c local con�gurations (see Fig. 6). Thus, they
cannot contain subgraphs corresponding to a Christo�el graph de�ned from a
shorter vector. That is why it is not possible to have a result similar to Theorem 1
for them.

G(0,0,1) G(0,1,1) G(1,1,1) G(1,1,2)

Fig. 6: Undecomposable Christo�el graphs.

Remark 3. As shown in Fig. 5 (a-b), there may be several possible b and δ.
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6 Conclusion and Perspectives

We have shown in Theorem 1 that for all a ∈ N3 \{0} such that gcd(a) = 1 and
which is not a permutation of (0, 0, 1), (0, 1, 1), (1, 1, 1) or (1, 1, 2), there are an

approximation b and an o�set δ such that Ga = S∥b∥1,δ
a ∪S∥b∥1,δ

a , S∥b∥1,δ
a ≃ Gb and

S∥b∥1,δ
a ≃ G(a−b). In other words, Pa can be partitioned into two parts having

respectively the combinatorial structure of Pb and P(a−b). Compare Fig. 7 with
Fig. 3.

A short-term perspective is to focus on the geometrical aspects of the parti-
tion. It seems that a rational discrete plane is decomposed into parallel strips.
See Fig. 3 (a). Are the subsets in each strip connected? What are the thickness
and direction of the strips? Another perspective is to e�ciently compute one or
all approximations for which a decomposition is possible. Finally, we are also
interested in the practical application of these studies in discrete geometry.

G(2,3,4)

G(1,1,2) G(1,2,2)

Fig. 7: G(2,3,4) = S4,0
(2,3,4) ∪ S5,1

(2,3,4), S
4,0
(2,3,4) ≃ G(1,1,2), S5,1

(2,3,4) ≃ G(1,2,2).
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