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The distributions P (ML,MS) of the total magnetic quantum numbersML and MS for N electrons
of angular momentum ℓ, as well as the enumeration of LS spectroscopic terms and spectral lines,
are crucial for the calculation of atomic structure and spectra, in particular for the modeling of
emission or absorption properties of hot plasmas. However, no explicit formula for P (ML,MS) is
known yet. In the present work, we show that the generating function for the cumulants, which
characterize the distribution, obeys a recurrence relation, similar to the Newton-Girard identities
relating elementary symmetric polynomials to power sums. This enables us to provide an explicit
formula for the generating function. We also analyze the possibility of representing the P (ML,MS)
distribution by a bi-variate Gram-Charlier series, which coefficients are obtained from the knowledge
of the exact moments of P (ML,MS). It is shown that a simple approximation is obtained by
truncating this series to the first few terms, though it is not convergent.
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I. INTRODUCTION

In the non-relativistic case, electrons are characterized by uncoupled moments ℓ, s, where s is the one-half spin
and ℓ the orbital quantum number. The magnetic quantum numbers ML and MS are respectively the sums of the
individual numbers mℓ,ms for each electron. The enumeration of the spectroscopic LS terms arising in a given non-
relativistic configuration made of ℓN subshells, N being the number of electrons, was addressed by different methods,
such as the so-called vector model [1], recurrence relations [2] or group theory [3–7]. The knowledge of LS terms, of
the distribution Q(L, S) of angular momenta L and S, as well as of the distribution P (ML,MS) of their projections
(ML and MS), is a prerequisite for the determination of the lines between two configurations, which plays a major
role in the study of emission or absorption spectral properties of hot plasmas [8], encountered for instance in stellar
physics [9], inertial-confinement fusion [10], or laser-plasma experiments [11]. The latter applications imply taking into
account complex ions, i.e., multi-electron configurations with several open subshells [12]. The properties (regularities,
trends) of Q(L, S) and P (ML,MS), are also worth investigating [13], from a fundamental point of view but also in
order to develop approximate models [14]. The statistics of electric-dipole (E1) lines was studied by Moszkowski [15],
Bancewicz [16], Bauche and Bauche-Arnoult [2, 17], Kucas [18, 19], Gilleron and Pain [20] and by us in a previous
article [21]. Such a quantity is important for opacity codes, for instance, in order to decide whether a transition array
can be described statistically or requires a detailed-line accounting calculation, relying on the diagonalization of the
Hamiltonian [22]. In the same spirit, the statistics of electric quadrupole (E2) lines was also investigated [23]. We
recently published explicit and recurrence formulas for magnetic quantum number MJ , projection the of the total

angular momentum ~J = ~L + ~S on the z axis [24], together with a statistical analysis through the computation of
cumulants. Recurrence relations obtained within this formalism lead to analytical expressions for the number of states
of a given value of total magnetic number M and number of fermions N . Explicit formulas have been given for this
distribution for the values of N up to 4 [25] and then obtained up to N = 6 together with a general algorithm for
any number of fermions [26]. This formalism also allows one to obtain closed-form expressions for the distribution of
the total angular momentum J [21]. Worth noticing is the expression of the total number of levels given by a piece-
wise polynomial, derived in the above quoted papers [25] and [26] for N = 3, 4, 5 and 6 in the so-called “relativistic
configuration” framework, i.e., when the electrons are characterized by their total angular momentum j. A particular
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case of fluctuation, the odd-even staggering (i.e., the fact that, in an electronic configuration, the number of odd
values of J can differ from the number of even values of J), was also studied [21, 27].
The object of this work is to show that similar considerations apply to the distribution of the magnetic quantum

numbers ML and MS. Up to our knowledge, there exists no compact analytical expression for the quantum magnetic
number distribution, which motivates the present investigations.
The paper is organized as follows. In section II, the recursive determination of P (ML,MS) is outlined. The

latter method is a generalization of the one described in Ref. [20] (which was limited to (J,MJ)). In section III, we
introduce the two-variable generating functions for the cumulants of the (ML, MS) joint distribution. A recurrence
relation for that function is derived. Based on an analogy with the Newton-Girard identities for elementary symmetric
polynomials, an explicit formula is provided for the cumulant generating function. Expressions of the first moments
for small values of ℓ and of the number of fermions N are provided in section IV, and the corresponding expressions
for the cumulants are given in section V. In section VI, the exact expressions for the magnetic quantum number
distribution are compared to simple analytical formulas based on the Gram-Charlier expansion.
It is worth noting that, with minor changes, the present work also concerns nuclear physics, where nucleons in a

given shell are characterized by a total angular momentum j and isospin 1/2 [28–30].

II. NUMERICAL DETERMINATION OF (L, S) STATISTICS USING A RECURSION RELATION FOR
P (ML,MS)

The number Q(L, S) of LS terms of a configuration ℓN can be obtained from the relation

Q(L, S) =

L+1
∑

ML=L

S+1
∑

MS=S

(−1)L−ML+S−MSP (ML,MS)

= P (L, S)− P (L+ 1, S)− P (L, S + 1) + P (L+ 1, S + 1), (1)

where P (ML,MS) is the number of states with total orbital magnetic number ML and spin magnetic number MS . For

a N -electron configuration ℓN1

1 ℓN2

2 ℓN3

3 · · · ℓNw
w , P (ML,MS) is determined through the standard convolution formula

P (ML,MS) = (P1 ⊗ P2 ⊗ · · · ⊗ Pw) (ML,MS) , (2)

Pi being the (ML,Ms) distribution for the i-th subshell ℓNi

i . The distributions are convoluted two at a time, namely

(Pi ⊗ Pj) (ML,MS) =
∑

M ′

L

∑

M ′

S

Pi (M
′
L,M

′
S)Pj (ML −M ′

L,MS −M ′
S) . (3)

The individual-subshell distributions Pi(ML,MS) can be obtained by an efficient algorithm proposed in Ref. [20],
adapted to the present situation, where (ML,MS) are considered separately, instead of their sum ML + MS . The
idea is to consider the g = 4ℓ + 2 one-electron states (or micro-states) of ℓN . Each of them is characterized by the
projection mi = mℓ,i +ms,i, with the spin projection ms,i = (−1)i/2 and the orbital-angular-momentum projection
mℓ,i =

[

2i− 4ℓ− 3− (−1)i
]

/4. One has therefore mi =
[

2i− 4ℓ− 3 + (−1)i
]

/4. The index i varies from 1 to 4ℓ+2.
P (ML,MS) is the number of N -electron states such as mℓ,1 + · · ·mℓ,N = ML and ms,1 + · · ·ms,N = MS. If the last
state (corresponding, in the previous ordering, to i = 4ℓ+2) is occupied by one electron (having therefore projections
mℓ,4ℓ+2 = ℓ and ms,4ℓ+2 = 1/2), then the N − 1 remaining electrons must be distributed in the 4ℓ + 1 remaining
one-electron states, their total projections being then ML −mℓ,4ℓ+2 = ML − ℓ and MS −ms,4ℓ+2 = MS − 1/2. This
reads

PN,4ℓ+2(ML,MS) = PN−1,4ℓ+1(ML − ℓ,MS − 1/2) + PN,4ℓ+1(ML,MS). (4)

Such a reasoning applies for any subset of k one-electron states, and one obtains the recurrence relation

Pn,k(ML,MS) = Pn−1,k−1(ML −mℓ,k,MS −ms,k) + Pn,k−1(ML,MS), (5)

where Pn,k(M) represents the number of states with n electrons populating k one-electron states, and giving projec-
tions ML and MS . The recurrence is initialized with P0,k (ML,MS) = δML,0δMS ,0 where δi,j is the Kronecker symbol
and k is varied from 1 to g = 4ℓ + 2 (total number of one-electron states), n from 1 to N , MS from −MS,max to
MS,max and ML from −ML,max to ML,max.
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We have

MS,max =

{

N/2 if N ≤ 2ℓ+ 1,

(4ℓ+ 2−N)/2 if N ≥ 2ℓ+ 1,
(6)

and

ML,max =
[

(−1)N − 1 + 2N(4ℓ+ 2−N)
]

/8. (7)

L 0 1 2 3 4 5 6 7 8 9 10 11 12

Q(L, 1/2) 8 26 37 46 46 44 36 28 19 12 6 3 1

Q(L, 3/2) 7 18 28 32 33 29 24 17 11 6 3 1 0

Q(L, 5/2) 1 5 5 8 6 6 4 3 1 1 0 0 0

TABLE I. Value of the number of LS spectroscopic terms Q(L, S) for the configuration d2f3 and three values of S: 1/2, 3/2,
and 5/2. The total degeneracy of d2f3 is

(

10
2

)(

14
3

)

= 16380, the maximum orbital angular momentum is Lmax=12 and the
maximum spin Smax=5/2. The correctness of the results can be checked using

∑

ML,MS
P (ML,MS) = 16380 and

∑

L,S
(2L+

1)(2S + 1)Q(L, S)=16380. The total number of LS spectroscopic terms is
∑

L,S
Q(L, S)=561.

Table I provides values of Q(L, S) for the d2f3 configuration and S=1/2, 3/2 and 5/2. For fixed S, Q(L, S) has a
truncated bell shape.
We may estimate the number of operations needed to obtain the whole set of P (ML,MS) values in a ℓN subshell.

The brute-force technique consists in evaluating all the

Nbf =

(

4ℓ+ 2

N

)

(8)

N -tuple elements and compute the sums
∑N

i=1 mℓ,i and
∑N

i=1 ms,i for each of them. The much better alternative
provided by the recurrence (5) amounts to perform roughly

NEq.(5) = N(4ℓ+ 2)(2ML,max + 1)(2MS,max + 1) (9)

operations: (number of one-electron states) × (number of electrons) × (number of values of ML) × (number of values
of MS). Thus, if N ≤ 2ℓ+ 1:

NEq.(5) = N(N + 1)(4ℓ+ 2)

[

(−1)N + 3 + 2N(4ℓ+ 2−N)

4

]

(10)

and if N ≥ 2ℓ+ 1

NEq.(5) = N(4ℓ+ 3−N)(4ℓ+ 2)

[

(−1)N + 3 + 2N(4ℓ+ 2−N)

4

]

. (11)

For a half-filled subshell, one has

NEq.(5) = 4(ℓ+ 1)(2ℓ+ 1)2 [2ℓ(ℓ+ 1) + 1] . (12)

ℓ 0 1 2 3 4 5 6 7 8

NEq.(5) 4 360 3900 19600 66420 177144 402220 813600 1508580

Nbf 2 20 252 3432 48620 705432 10400600 155117520 2333606220

TABLE II. Number of operations needed to obtain the P (ML,MS) distribution for the ℓN configuration with N = 2ℓ+1, using
a brute-force technique or recurrence relation (5).

Table II shows the number of operations needed to obtain the P (ML,MS) distribution for the ℓN configuration
with N = 2ℓ + 1, using a brute-force technique or recurrence relation (5). We can see that for ℓ > 4, the recurrence
relation becomes much more efficient than the direct calculation.
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III. THE TWO-VARIABLE GENERATING FUNCTION FOR THE CUMULANTS OF THE (ML, MS)
JOINT DISTRIBUTION

A. Definition

As stated in statistical treatises [31], the whole information about the distribution P (ML,MS) of magnetic quantum
number is contained in the exponential of the cumulant generating function defined as

exp(K(u, v)) = 〈exp(uML + vMS)〉 =
∑

ML,MS

P (ML,MS) e
uML+vMS

/

∑

ML,MS

P (ML,MS). (13)

From the Pauli exclusion principle this normalization factor is given by the binomial coefficient

∑

ML,MS

P (ML,MS) =

(

4ℓ+ 2

N

)

. (14)

The numerator of the cumulant generating function of the distribution P (ML,MS) reads

s(N, ℓ, u, v) =
∑

ML,MS

P (ML,MS) e
uMLevMS =

(

4ℓ+ 2

N

)

exp(K(u, v)), (15)

and will be, for simplicity, referred to as the “generating function” in the following.

B. Cumulant generating function for the first values of N

The N = 1 value is given by

s(1, ℓ, u, v) =

ℓ
∑

mℓ=−ℓ

1/2
∑

ms=−1/2

emℓuemsv = 2
sinh [(2ℓ+ 1)u/2]

sinh(u/2)
cosh(v/2). (16)

The generating function in the case of two fermions reads

s(2, ℓ, u, v) =
1

2





g
∑

k=1

emℓ,kuems,kv

g
∑

i=1,i6=k

emℓ,iuems,iv



 =
1

2

[

g
∑

k=1

emℓ,kuems,kv

(

g
∑

i=1

emℓ,iuems,iv − emℓ,kuems,kv

)]

=
1

2





(

g
∑

k=1

emℓ,kuems,kv

)2

−
g
∑

k=1

e2mℓ,kue2ms,kv



 =
1

2





(

g
∑

k=1

emℓ,ku+ms,kv

)2

−
g
∑

k=1

e2mℓ,ku+2ms,kv



 .

(17)

Let us set

Sp =

g
∑

k=1

ep(mℓ,ku+ms,kv) = 2
sinh [(2ℓ+ 1)pu/2]

sinh(pu/2)
cosh(pv/2). (18)

By comparison with Eq. (16), one can check that Sp = s(1, ℓ, pu, pv). We have also

s(2, ℓ, u, v) =
1

2

(

S
2
1 − S2

)

, (19)

and a similar calculation for N = 3 gives

s(3, ℓ, u, v) =
1

6

(

S
3
1 − 3S1S2 + 2S3

)

. (20)

In the case of four fermions, a similar direct calculation yields

s(4, ℓ, u, v) =
1

24

(

S
4
1 − 6S 2

1 S2 + 3S 2
2 + 8S1S3 − 6S4

)

. (21)
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C. Recurrence over the number of fermions for the cumulant generating function

The generating function can be expressed as a multiple summation over one-electron states

s(N, ℓ, u, v) =
∑

ML,MS

1
∑

p1=0

1
∑

p2=0

· · ·
1
∑

pg=0

δ

(

ML −
g
∑

k=1

pkmℓ,k

)

δ

(

MS −
g
∑

k=1

pkms,k

)

δ

(

N −
g
∑

k=1

pk

)

eMLueMSv, (22)

where the sum over ML and MS may be eliminated

s(N, ℓ, u, v) =

1
∑

p1=0

1
∑

p2=0

· · ·
1
∑

pg=0

δ

(

N −
g
∑

k=1

pk

)

exp

(

g
∑

k=1

pkmℓ,ku

)

exp

(

g
∑

k=1

pkms,kv

)

. (23)

In the above equations, for the sake of readability δ(Q) stands for the Kronecker symbol δQ,0. Isolating in this multiple
sum the contributions of the pg index and then the p1 index, repeating exactly the procedure used in Eq. (2.14) of
[24], one gets the recurrence property on the generating function

s(N, ℓ, u, v) = s(N, ℓ − 1, u, v) + 2 cosh (ℓu+ v/2) s(N − 1, ℓ− 1, u, v) + s(N − 2, ℓ− 1, u, v). (24)

The recurrence (24) is the same as for a single moment, i.e. (5.5) of Ref. [24]. Thus, in the present case, the recurrence
over the number of fermions only is, mutatis mutandis,

s(N, ℓ, u, v) =
1

N

N
∑

p=1

(−1)
p+1

s(1, ℓ, pu, pv) s(N − p, ℓ, u, v), (25)

with s(0, ℓ, u, v) = 1. The case of a general spin (non necessarily 1/2), i.e., the generalization to a pair of arbitrary
angular momenta, is discussed in appendix A.

D. General expression of the generating function

Let x1, ..., xn be variables and denote for k ≥ 1 by pk(x1, ..., xn) the k−th power sum:

pk(x1, . . . , xn) =
n
∑

i=1

xk
i = xk

1 + · · ·+ xk
n, (26)

and for k ≥ 0 denote by ek(x1, ..., xn) the elementary symmetric polynomial (that is, the sum of all distinct products
of k distinct variables). One has

ek(x1, · · · , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik , (27)

and e0 = 1, ek = 0 if k > n. The Newton-Girard identities can be stated as (see for instance Refs. [32–34]):

kek(x1, . . . , xn) =
k
∑

i=1

(−1)i−1ek−i(x1, . . . , xn) pi(x1, . . . , xn), (28)

valid for all n ≥ 1 and n ≥ k ≥ 1. It can be shown that

en = (−1)n
∑

m1+2m2+···+nmn=n

m1≥0, ··· ,mn≥0

n
∏

i=1

(−pi)
mi

mi! imi
. (29)
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Our recurrence relation over the number of fermions (25) is the same as Eq. (28), making the replacements eN →
s(N, ℓ, u, v) and pi → Si. For the N -fermion case, we have therefore, mutatis mutandis, the general expression

s(N, ℓ, u, v) = (−1)N
∑

~q/q1+2q2+···+NqN=N

N
∏

p=1

1

qp!

(

−Sp

p

)qp

, (30)

where ~q stands for the N -fold set (q1, q2, . . . qN ) and with

Sp = 2
sinh [(2ℓ+ 1)pu/2]

sinh(pu/2)
cosh(pv/2). (31)

A more detailed proof is provided in appendix B. The numerical implementation of Eq. (30) requires the numerical
determination of partitions of an integer.
In addition, the cumulant generating function s(N, ℓ, u, v) itself can be expressed in terms of incomplete Bell

polynomials Bn,k. One has

s(N, ℓ, u, v) =
1

N !

N
∑

k=1

BN,k(S1,−S2, · · · , (−1)p−1(p− 1)!Sp, · · · , (−1)N−k(N − k)!SN−k+1) (32)

where

Bn,k(x1, x2, · · · , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

, (33)

the sum running over all ensembles of integers j1, j2, · · · , jn−k+1 such that j1 + j2 + · · ·+ jn−k+1 = k and j1 + 2j2 +
3j3 + · · ·+ (n− k + 1)jn−k+1 = n.

IV. DETERMINATION OF THE FIRST MOMENTS FOR 2 AND 3 FERMIONS

The expansion of s(N, ℓ, u, v)/
(

4ℓ+2
N

)

at (u = 0, v = 0) provides the moments µm,n. The moments µm,n are defined
by the expansion

M(u, v) = eK(u,v) =

∞
∑

m,n=0

µm,n
umvn

m!n!
, (34)

where M(u, v) is proportional to the generating function defined by Eq. (15). The formulas of the moments can be
obtained easily using a computer algebra system, such as Mathematica.

A. Moments for N = 2

For N = 2, one has

s(2, ℓ, u, v) =
sinh [(2ℓ+ 1)u/2]

sinh(u/2) sinhu
{(1 + 2 cosh v) sinh(ℓu) + sinh[(ℓ + 1)u]} . (35)

The expressions of the moments as functions of ℓ for N = 2 and m = 0, 2, are given in Table III.
For m = 4, one has, t being any positive integer,

µ4,0(ℓ
2) =

4ℓ(ℓ+ 1)(16ℓ3 + 12ℓ2 − 6ℓ+ 3)

15(4ℓ+ 1)
, (36a)

µ4,2t(ℓ
2) =

2ℓ(ℓ+ 1)(2ℓ− 1)(8ℓ2 + 4ℓ− 7)

15(4ℓ+ 1)
. (36b)
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m n = 0 n = 2t

0 1
2ℓ

(4ℓ+ 1)

2
8ℓ2(ℓ+ 1)

3(4ℓ+ 1)

2ℓ(ℓ+ 1)(2ℓ− 1)

3(4ℓ+ 1)

TABLE III. Expressions of the moments µm,n for N = 2, m = 0, 2 and n = 2t with t > 0. The moments µn,2t are independent
of t if t > 0.

It is easy to show that µ2s,2t is independent of t > 0 in the two-electron case. Indeed, one has then S = 0 or 1, so
that MS = 0,±1 and M2t

S = M2
S does not depend on t, the same property being valid for µ4,2t. For n = 6, t being

again any positive integer, one gets

µ6,0(ℓ
2) =

4ℓ(ℓ+ 1)(48ℓ5 + 72ℓ4 − 20ℓ3 − 6ℓ2 + 40ℓ− 15)

21(4ℓ+ 1)
, (37a)

µ6,2t(ℓ
2) =

2ℓ(ℓ+ 1)(2ℓ− 1)(24ℓ4 + 24ℓ3 − 46ℓ2 − 26ℓ+ 31)

21(4ℓ+ 1)
, (37b)

and µm,n(ℓ
2) = 0 if n is odd.

B. Moments for N = 3

The general expressions of moments for N = 3 are more cumbersome. One has

s(3, ℓ, u, v) =
sinh(ℓu) sinh[(2ℓ+ 1)u/2] sinh

(

(ℓ + 1)u
)

sinh(u/2) sinh(u) sinh(3u/2)
U1(cosh(u/2))U1(cosh(v/2))

+
sinh

(

(2ℓ− 1)u/2
)

sinh(ℓu) sinh[(2ℓ+ 1)u/2]

sinh(u/2) sinh(u) sinh(3u/2)
U3(cosh(v/2)), (38)

where Un is the Chebyshev polynomial of the second kind of order n. Explicitly, one has U1(X) = 2X , U3(X) =
8X3 − 4X . The expressions of the moments as functions of ℓ for N = 3, m = 0, 2 and n = 0, 2, 4 are given in Table
IV.

m n = 0 n = 2 n = 4

0 1
3(4ℓ− 1)

4(4ℓ+ 1)

3(28ℓ − 13)

16(4ℓ + 1)

2
ℓ(ℓ+ 1)(4ℓ− 1)

(4ℓ+ 1)

(ℓ+ 1)(12ℓ2 − 13ℓ + 4)

4(4ℓ+ 1)

(ℓ+ 1)(84ℓ2 − 121ℓ + 40)

16(4ℓ + 1)

TABLE IV. Expressions of the moments µm,n for N = 3, m = 0, 2 and n varying from 0 to 4. The moments are zero if m or n
is odd.

For m = 4, one has

µ4,0(ℓ
3) =

(ℓ + 1)(52ℓ4 + 13ℓ3 − 35ℓ2 + 21ℓ− 6)

5(4ℓ+ 1)
, (39a)

µ4,2(ℓ
3) =

(ℓ + 1)(156ℓ4 − 143ℓ3 − 135ℓ2 + 249ℓ− 82)

20(4ℓ+ 1)
, (39b)

µ4,4(ℓ
3) =

(ℓ + 1)(1092ℓ4 − 1547ℓ3 − 1035ℓ2 + 2301ℓ− 766)

80(4ℓ+ 1)
, (39c)

and µm,n(ℓ
3) = 0 if n is odd.
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V. EXPRESSIONS OF THE FIRST CUMULANTS IN THE TWO- AND THREE-FERMION CASES

The cumulants κm,n are obtained by expanding log(s(N, ℓ, u, v)/
(

4ℓ+2
N

)

) at (u = 0, v = 0).

A. Cumulants for N = 2

The expressions of the cumulants as functions of ℓ for N = 2, are given in Table V for m = 0, 2 and n = 0, 2 and 4.

m n = 0 n = 2 n = 4

0 0
2ℓ

4ℓ+ 1
−

2ℓ(2ℓ− 1)

(4ℓ+ 1)2

2
8ℓ2(ℓ+ 1)

3(4ℓ + 1)
−

2ℓ(ℓ+ 1)(2ℓ+ 1)

3(4ℓ+ 1)2
2ℓ(ℓ+ 1)(2ℓ+ 1)(8ℓ− 1)

3(4ℓ+ 1)3

TABLE V. Expressions of the cumulants κm,n for N = 2, m = 0, 2 and n varying from 0 to 4.

For m = 4, one has

κ4,0(ℓ
2) = −4ℓ(ℓ+ 1)(2ℓ− 1)(8ℓ3 + 12ℓ2 + 12ℓ+ 3)

15(4ℓ+ 1)2
, (40a)

κ4,2(ℓ
2) =

2ℓ(ℓ+ 1)(2ℓ+ 1)(16ℓ3 + 12ℓ+ 7)

15(4ℓ+ 1)3
, (40b)

κ4,4(ℓ
2) = −2ℓ(ℓ+ 1)(2ℓ+ 1)(128ℓ4 + 104ℓ3 + 276ℓ2 + 104ℓ− 7)

15(4ℓ+ 1)4
, (40c)

and κm,n(ℓ
2) = 0 if n is odd.

B. Cumulants for N = 3

The expressions of the cumulants as functions of ℓ for N = 3, are given in Table VI.

m n = 0 n = 2 n = 4

0 0
3(4ℓ− 1)

4(4ℓ+ 1)
−

3(16ℓ2 − 24ℓ + 11)

8(4ℓ+ 1)2

2
ℓ(ℓ+ 1)(4ℓ − 1)

(4ℓ+ 1)
−

(ℓ+ 1)(4ℓ2 − 1)

(4ℓ+ 1)2
(ℓ+ 1)(4ℓ2 − 1)(8ℓ− 7)

(4ℓ+ 1)3

TABLE VI. Expressions of the cumulants κm,n for N = 3, m = 0, 2 and n equal to 0, 2 and 4. The cumulants are zero if m or
n is odd.

For m = 4, one has

κ4,0(ℓ
3) = − (ℓ+ 1)(32ℓ5 + 16ℓ4 + 22ℓ3 − 34ℓ2 + 3ℓ+ 6)

5(4ℓ+ 1)2
, (41a)

κ4,2(ℓ
3) =

(ℓ+ 1)(4ℓ2 − 1)(16ℓ3 + 8ℓ2 + 56ℓ+ 25)

5(4ℓ+ 1)3
, (41b)

κ4,4(ℓ
3) = − (ℓ+ 1)(4ℓ2 − 1)(128ℓ4 + 312ℓ3 + 752ℓ2 − 282ℓ− 265)

5(4ℓ+ 1)4
, (41c)

and κm,n(ℓ
3) = 0 if n is odd.
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C. Relation between cumulants and moments for the first orders

The cumulants κm,n are obtained from the expansion

K(u, v) =
∑

m,n

κm,n
umvn

m!n!
, (42)

with M(u, v) = exp(K(u, v)) (see Eq. (34)). For the ML,MS distribution the function K contains only even-order
terms.
The relations between moments and cumulants in the bi-variate case can be obtained by the formal method devised

by Kendall [35] and used by Cook [36] who provided tables. For m+ n ≤ 6 one gets

κ2,0 = µ2,0, (43a)

κ4,0 = µ4,0 − 3µ2
2,0, (43b)

κ2,2 = µ2,2 − µ2,0µ0,2, (43c)

κ6,0 = µ6,0 − 15µ2,0µ4,0 + 30µ3
2,0, (43d)

κ4,2 = µ4,2 − µ4,0µ0,2 − 6µ2,0µ2,2 + 6µ2
2,0µ0,2. (43e)

These relations are completed using the symmetry m ↔ n, e.g., κ0,4 = µ0,4 − 3µ2
0,2, etc.

One can also express the moments µm,n as a function of cumulants

µ4,0 = κ4,0 + 3κ2
2,0, (44a)

µ2,2 = κ2,2 + κ2,0κ0,2, (44b)

µ6,0 = κ6,0 + 15κ2,0κ4,0 + 15κ3
2,0, (44c)

µ4,2 = κ4,2 + κ4,0κ0,2 + 6κ2,0κ2,2 + 3κ2
2,0κ0,2. (44d)

VI. STATISTICAL MODELING OF THE P (ML,MS) DISTRIBUTION USING GRAM-CHARLIER
EXPANSION SERIES

A. Bi-variate Gram-Charlier series

The Gram-Charlier expansion was derived in an attempt to express non-Gaussian distributions as infinite series
using the moments as input terms [37]. The one-dimensional Gram-Charlier series has been widely used in different
fields of physics. For instance, it was successfully applied to the statistical modeling of transition arrays of absorption or
emission lines in hot-plasma complex spectra, or of the distribution of angular momentumMJ in atomic configurations.
The two-variable (or bi-variate) Gram-Charlier series are much less frequent in the literature. However, Kampé de
Fériet [38] has provided formulas relevant for this case. If the two variables are uncorrelated (indeed we have here
〈MLMS〉 = 0), these expressions become much simpler, and one has

GT (u, v) =
e−u2/2σ2−v2/2τ2

2πστ



1 +

T
∑

n=2

n
∑

j=0

c2n−2j,2j He2n−2j

(u

σ

)

He2j

(v

τ

)



 (45a)

where u = ML, v = MS . (45b)

In the above equations, T is an arbitrary integer — hereafter called “half truncation order” — and Hen(X) is the
Hermite polynomial of order n [39]. The approximation PT (u, v) for P (ML,MS) is obtained by multiplying the
function GT (u, v) by the configuration degeneracy

PT (u, v) = N GT (u, v) with N =

w
∏

i=1

(

4ℓi + 2

pi

)

(46)

assuming that the configuration is made of w subshells of orbital momentum ℓi and population pi. The two variances
entering Eq. (45a) are given by σ2 = κ2,0 and τ2 = κ0,2. In the present case, all the odd moments are zero

〈

u2p+1
〉

= 0,
〈

v2q+1
〉

= 0, (47)
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as well as
〈

u2p+1vn
〉

= 0,
〈

umv2q+1
〉

= 0.
The global error on all ML,MS values may be characterized by the averages

∆abs(T ) =





∑

ML,MS

(PT (ML,MS)− P (ML,MS))
2

/

(2Lmax + 1)(2Smax + 1)





1/2

, (48)

∆rel(T ) =





∑

ML,MS

′
(

PT (ML,MS)/P (ML,MS)
)2
/

Npos





1/2

, (49)

where the prime means that the sum is restricted to elements (ML,MS) for which P (ML,MS) > 0 and Npos is the
number of such elements. In the following discussion, we have chosen to compute both ∆abs(T ) and ∆rel(T ) since they
convey different information. The absolute error is more sensitive to the differences where P (ML,MS) is maximum,
namely for ML,MS close to 0, while the relative error favors regions where P (ML,MS) is small, namely |ML| and/or
|MS | close to their maximum value. In the following, for simplicity reasons, the first data point in plots for such errors
is at T = 1 which is identical to T = 0. As seen in Eq.(45a), if T < 2 the sum over n is absent and the Gram-Charlier
approximation simplifies into the Gaussian expression.

B. Moments expressed as functions of Gram-Charlier coefficients

With the above expression (45a), one may express the various moments 〈u2sv2t〉 = µ2s,2t as a function of the
Gram-Charlier coefficients c2i,2j

〈

u2
〉

= σ2, (50a)
〈

u2v2
〉

= σ2τ2(1 + 4c2,2), (50b)
〈

u4
〉

= 3σ4(1 + 8c4,0), (50c)
〈

u4v2
〉

= 3σ4τ2(1 + 8c2,2 + 8c4,0 + 16c4,2), (50d)
〈

u6
〉

= 15σ6(1 + 24c4,0 + 48c6,0), (50e)
〈

u4v4
〉

= 9σ4τ4(1 + 8c4,0 + 16c2,2 + 8c0,4 + 32c4,2 + 32c2,4 + 64c4,4), (50f)
〈

u6v2
〉

= 15σ6τ2(1 + 12c2,2 + 24c4,0 + 48c4,2 + 48c6,0 + 96c6,2), (50g)
〈

u8
〉

= 105σ8(1 + 48c4,0 + 192c6,0 + 384c8,0), (50h)

together with expressions obtained by changing u ↔ v. Such formulas assume that T is sufficiently large, for instance
if T = 6, the terms c6,2, c4,4 and c8,0 are absent from the three above formulas.
It is possible to provide a general form of the moments from properties of the Hermite polynomials. We use the

expansion (45a) and calculate the integral 〈upvq〉 =
∫ +∞

−∞
du dv upvqPT (u, v). Noting that

Hen(x) = n!

⌊n
2
⌋

∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m
, (51)

where ⌊x⌋ is the integer part of x, the calculation of the average of upvq boils down to the evaluation of simple integrals
of the kind

χp(σ) =

∫ +∞

−∞

du upe−u2/2σ2

. (52)

If p is odd, one has χp(σ) = 0. For p = 2j one gets after basic algebra

χ2j(σ) =
√
2πσ2j+1 (2j)!

2jj!
if p = 2j is even. (53)

From the distribution GT (45a), the expansion (51) and the above definition of χ, we get the average

〈upvq〉 = 1

2πστ



χp(σ)χq(τ) +
T
∑

n=2

n
∑

j=0

c2n−2j,2j Vp,2n−2j(σ)Vq,2j(τ)



 (54)
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with

Vm,n(σ) =

∫ +∞

−∞

du ume−u2/2σ2

Hen(u/σ). (55)

Obviously Vm,n(σ) = 0 if m+ n is odd. After basic algebraic manipulations, one gets V2s,2t(σ) = 0 if s < t, and

V2s,2t(σ) =
(2π)1/2(2s)!

2s−t(s− t)!
σ2s+1 if s ≥ t. (56)

C. Gram-Charlier coefficients expressed in terms of averages

Using the orthogonality relation

∫ ∞

−∞

Hem(x)Hen(x) e
−x2/2 dx =

√
2π n! δn,m, (57)

we get, after multiplying Eq. (45a) by He2n−2j(u/σ)He2j(v/τ) and integrating over u, v,

c2n−2j,2j =

n−j
∑

k=0

j
∑

r=0

(−1)k+rσ2k−2n+2j τ2r−2j

2k+rk!r!(2n− 2j − 2k)!(2j − 2r)!
〈u2n−2j−2k v2j−2r〉 (58)

or simplifying the notations

c2s,2t =
s
∑

m=0

t
∑

n=0

(−1)m+nσ2m−2s τ2n−2t

2m+nm!n!(2s− 2m)!(2t− 2n)!
〈u2s−2m v2t−2n〉. (59)

D. Test of the accuracy of the Gram-Charlier expansion in a single-subshell configuration

The Gram-Charlier expansion PT (ML,MS) is first tested in the f3 case in Fig. 1(a). The errors ∆abs (48) and
∆rel (49) are plotted as a function of the half truncation order T in Fig. 1(b). In what follows, the “Gaussian”
approximation is provided by the factor before the brackets in Eq. (45a) multiplied by the configuration degeneracy,
which is N = 364 in the f3 case. Using the Gaussian approximation amounts to set T = 0 or 1 in this formula, which
cancels the sum over n.
We can see that the Gaussian distribution overestimates P (ML,MS = 1/2) for small values of |ML|, and that a

fairly accurate description is obtained for T = 2 or 3 for all values of ML. With T = 6, the agreement is comparable
to the T = 3 case, which is confirmed by the occurrence of a plateau in the absolute and relative errors. Then the
series starts to diverge (see the T = 9 case for instance), tending asymptotically (at least in the considered range of T
values) to a relative error between 100 and 200 %. The absolute error may be scaled by noticing that the maximum
value for the distribution P is reached if ML = 0, MS = 1/2, for which one has P (0, 1/2) = 17.
In addition to the errors ∆abs(T ), ∆rel(T ), the accuracy of the Gram-Charlier representation at a given order can

also be quantified by comparing the area of the latter expansion series to the quantity
∑

ML
P (ML,MS). Let N+

be the number of fermions with spin ms = 1/2 and N− the number of fermions with spin ms = −1/2. We have
N+ = N/2 +MS and N− = N/2−MS . Therefore, one obtains

Gℓ,N (MS) ≡
∑

ML

P (ML,MS) =

(

2ℓ+ 1

N+

)(

2ℓ+ 1

N−

)

=

(

2ℓ+ 1

N/2 +MS

)(

2ℓ+ 1

N/2−MS

)

. (60)

By simple algebraic manipulations, for instance using the generating-function formalism, we recover the Weyl-Paldus
formula for the degeneracy at fixed spin S [40]:

Gℓ,N (S)−Gℓ,N (S + 1) =
2S + 1

2ℓ+ 2

(

2ℓ+ 2

N/2− S

)(

2ℓ+ 2

N/2 + S + 1

)

. (61)

As an example, in the f3 case, we have s1/2 =
∑

ML
P (ML, 1/2) = 147 and s3/2 =

∑

ML
P (ML, 3/2) = 35 and

since
∑

ML
P (ML,MS) =

∑

ML
P (ML,−MS), we recover the proper total degeneracy of configuration f3, namely
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FIG. 1. Gram-Charlier analysis for the configuration f3.

2(s1/2+s3/2) = 364 =
(

4×3+2
3

)

. The quantity (60) must be compared to the area of the statistical modeling by truncated
Gram-Charlier expansion series (resulting from the orthogonality and normalization of Hermite polynomials):

∫ ∞

−∞

GT (u, v)du =
e−v2/2τ2

√
2πτ

[

1 +
T
∑

n=2

c0,2nHe2n(v/τ)

]

, (62)

with

c0,2n =

n
∑

k=0

(−1)k
τ2k−2n

2kk!(2n− 2k)!
〈v2n−2k〉. (63)

Table VII displays the area of the Gram-Charlier series (integrated between ML = −∞ and ∞) for different orders
2T in the cases MS = 1/2 and MS = 3/2. The right-hand side of Eq. (62) is multiplied by the total degeneracy
(

14
3

)

= 364.

2T 2 4 6 8 10 12 14 16

MS = 1/2 149.697 147.439 147.485 146.606 145.466 147.342 155.585 172.071

MS = 3/2 30.9650 34.3295 34.3410 35.3613 36.5085 35.1317 31.5573 29.0911

TABLE VII. Area of the Gram-Charlier series (integrated between ML = −∞ and ∞) in the case of the f3 configuration for
different orders 2T and MS = 1/2 (second line) as well as MS = 3/2 (third line). The values are obtained taking the right-hand
side of Eq. (62) multiplied by the total degeneracy of f3, which is equal to 364. The exact value of

∑

ML
P (ML, 1/2) is 147

and the exact value of
∑

ML
P (ML, 3/2) is 35.

In order to demonstrate how the approximation improves for a greater number of electrons, we have plotted in
Figs. 2(a) and 2(b) the corresponding Gram-Charlier data for the configuration k8 (ℓ = 7). Looking at the MS = 0
data in Fig. 2(a), we notice that the lowest order T = 0, i.e., the simple Gaussian factor in Eq. (45a), provides an
acceptable approximation only if 10 < ML < 35. The T = 2 approximation is correct over the whole range, except
for ML ≥ 43. The T = 3 approximation performs quite well over the whole ML range (though being one per-cent
too low for ML = 0, while T = 2 and 4 are then accurate at the per-thousand level). When T increases up to 15,
the distribution is almost T -independent: the T = 10 and 15 data would be indistinguishable at Fig. 2(a) drawing
accuracy. For greater T values the approximation quality deteriorates for any ML value as seen on the T = 20 curve.
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Looking into more detail, the absolute and relative errors plotted in Fig. 2(b) significantly decrease for T < 10, while
the relative error was almost constant for 1 < T < 6 in the f3 case. For T > 15, as seen on Fig. 2(b), the series begins
to diverge, and including more terms may result in a poorer approximation. This observation is similar to the one
made for single-variable Gram-Charlier series [24].
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(b) Error defined by Eq. (48,49) on the distribution P (ML,MS).
The absolute error (48) may be scaled by the maximum value
P (ML = 0,MS = 0) = 67189. As above the T = 1 value is by

convention the Gaussian approximation.

FIG. 2. Gram-Charlier analysis for the configuration k8.

E. Accuracy of the Gram-Charlier expansion in a multiple-subshell configuration

As is well known the interest of cumulants is that they are additive, e.g., the cumulants of the configuration p2d3 are
the sums of the cumulants of p2 and d3 configurations. One may then use the above mentioned values of single-subshell
cumulants.

As a first example of multiple-subshell configuration, we present on Fig. 3(a) the Gram-Charlier approximation of
P (ML,MS = 0) in the case of the configuration p3p1, i.e., containing 3 equivalent p electrons and another p electron
on a distinct subshell, as in 2p33p. The curve labeled as T = 0 corresponds to the plain Gaussian bi-variate function,
as given by Eq. (46) where GT is replaced by the factor in front of the brackets in Eq. (45a). The curves labeled
as T = 2, 3, 4, 5 correspond to the various corrections appearing in the series. In this case, we note that the T = 2
correction improves the quality of the distribution, while taking into account higher orders does not bring significant
changes. This plot displays clear similarities with the f3 case (Fig. 1(a)). Comparing the absolute errors in Figs. 1(b)
and 3(b), we note that in the both cases the plateau T = 2–7 is about 3 times below the T = 1 (Gaussian) value.
The relative error levels off at about 0.15 for T < 8 values, while it increases up to ∆rel ≃ 2 for large T .

Since it is useful to consider configurations with a greater number of electrons we show on Fig. 4(a) the Gram-
Charlier analysis in the 5-subshell case sp3d5f7g9. One observes that for this 25-electron configuration, the Gram-
Charlier series performs more efficiently than in the 4-electron case p3p1 considered above. Noticeably, the T = 3
(respectively 4) truncation provides a poor approximation of P (ML,MS) if ML ≥ 33 (respectively 34) while greater
T -values lead to a more acceptable representation. For instance the T = 10 and 15 curves are almost superimposed
at the drawing accuracy, but the latter approximation is better for the maximum value ML = 40. One has then
P (40, 1/2) = 10, to be compared to 32.94, 12.46, and 10.16 for T = 10, 15, and 20 respectively. Looking at
absolute and relative errors in Fig. 4(b), we observe that increasing T from 1 to 15 results in an improvement in the
Gram-Charlier approximation by 4 orders of magnitude. This is even better than in the k8 case (Fig. 2(b)) where
the error was only lowered by a factor of ∼ 100. As mentioned in the caption, when assessing the quality of the
present approximation, one must compare the absolute error with a plateau at about 600 to the maximum value
P (ML,MS) < 1.83 × 1010. In the present case for T > 32 the series begins to diverge, though we did not explore
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FIG. 3. Gram-Charlier analysis for the 2-subshell configuration p3p1.

its behavior for very large T . Finally one may notice that one has ∆rel(T ) > 0.03 even in the most favorable case
T ∼ 20, which is due to the approximation for P (ML = 40,MS) which is of moderate quality.
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FIG. 4. Gram-Charlier analysis for the configuration sp3d5f7g9.

As a last example, we may analyze the two-subshell case d2l, i.e., with two ℓ = 2 electrons and a single ℓ = 8
electron. As noticed before [20], when a configuration contains several low-ℓ electrons together with a large-ℓ electron,
the momentum distribution exhibits a wide plateau in its center. This case is analyzed in Figs. 5(a) and 5(b). As
expected, one observes that the Gaussian approximation T = 1 is a poor representation of the exact P (ML,MS = 1/2)
distribution. Nevertheless higher-order values such as T ≃ 5 provide an acceptable approximation of the whole-range
distribution. Looking at the absolute and relative errors in Fig. 5(b), we notice that, as in the previous cases with
few electrons (f3, p3p1), the T ≃ 5 expansion improves the simple Gaussian value by less than an order of magnitude.
However in the present case, increasing T from 1 to 5 results in a decrease of ∆rel by a factor greater than 3, while
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the improvement was mostly negligible in the the f3 case or in the p3p1 case, as seen on Fig. 1(b) or Fig. 3(b)).
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FIG. 5. Gram-Charlier analysis for the configuration d2l (two electrons ℓ = 2, one electron ℓ = 8).

VII. CONCLUSION

In this paper we have shown that the distribution of (ML,MS) magnetic quantum numbers, from which the number
of LS spectroscopic terms Q(L, S) is deduced, can be obtained numerically using an efficient recurrence relation
generalizing the one described in Ref. [20] for J and MJ . A recurrence relation for the two-variable generating
function of the cumulants of the (ML, MS) joint distribution was derived, together with an explicit form involving
simple partitions. The relation was also extended to the case where the second angular momentum (spin in atomic
physics, isospin in nuclear physics) is not necessarily equal to 1/2 (i.e., for two arbitrary angular momenta). Based
on an analogy with the Newton-Girard identities for elementary symmetric polynomials, an explicit formula for the
cumulant generating function was also provided. A bi-variate Gram-Charlier expansion has been proposed to provide
an analytical approximation for the P (ML,MS) distribution. It has been checked that such expansion with few
terms included is particularly efficient for configurations with a large number of electrons. Such series with less
than a dozen terms may even represent the momentum distribution even for configuration with few electrons in an
acceptable way, even in special cases where the P (ML,MS) distribution exhibits a wide plateau. Nevertheless as for
the single-variable P (MJ) case studied in previous works, it turns out that the Gram-Charlier series diverges, with
an onset of this divergence for a number of terms increasing with the total number of electrons in the configuration.
The Gram-Charlier-series modeling of P (ML,MS) makes it possible to estimate quite accurately the number of lines
between two non-relativistic configurations. Such a number is important for the computation of hot-plasma radiative
opacity, in particular when combining statistical methods [8] and fine-structure calculations.

Appendix A: Recurrence over the number of fermions for the cumulant generating function: case of a general
spin

The recurrence relation for generating functions can be rewritten with minor changes in the case where the fermions
are characterized by two moments ju, jv, the case of the present work corresponding to ju = ℓ and jv = 1/2. This
seems rather formal in an atomic-physics framework, but enables one to deal with the 3/2 isospin case, relevant in
particle physics (see for instance Ref. [41]). Indeed for any “orbital momentum” ju and “spin momentum” jv, the
single-particle generating function for arguments (u, v) is easy to obtain, as shown in this Appendix.
To each fermion is attributed a pair of indices (µi, νi) where µi is the “orbital” (respectively spin-orbital) magnetic

quantum number and νi the “generalized-spin” magnetic quantum number (respectively the isospin projection) of
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fermion i in the atomic-physics (respectively nuclear-physics) case. The composite index becomes

ξi = (2jv + 1)µi + νi + 2jujv + ju + jv + 1 with − ju ≤ µi ≤ ju and − jv ≤ νi ≤ jv, (A1)

where ju denotes the “orbital momentum” and jv the “spin”. The index ξi varies from 1 to (2ju + 1)(2jv + 1). The
proof is similar to the 1/2-spin case. Because of the Pauli exclusion principle, all the ξi coefficients of fermions of a
configuration (respectively subshell) are distinct.
The two-variable generating function s(N, ju, jv, u, v) — we add an additional argument to the s function considered

in Sec. III since two moments are involved now — can be put in a compact form relating the N = 1 case to the N > 1
case. This can be derived in a similar way as Eq. (25). One obtains

s(N, ju, jv, u, v) =
1

N

N
∑

p=1

(−1)p+1s(N − p, ju, jv, u, v)s(1, ju, jv, pu, pv). (A2)

The one-fermion generating function can be obtained from the generalization of Eq. (16):

s(1, ju, jv, u, v) =
∑

|µ1|≤ju,|ν1|≤jv

eµ1u+ν1v =
∑

µ1

eµ1u
∑

ν1

eν1v =
sinh [(ju + 1/2)u]

sinh(u/2)
· sinh [(jv + 1/2)v]

sinh(v/2)
(A3)

and the second factor of Eq. (A3) is, as expected, equal to 2 cosh(v/2) if jv = 1/2.
The single-momentum case is recovered setting jv = 0 which shows that the formula remains valid for a single

momentum j = ju.

Appendix B: Newton-Girard identities and explicit formula for the cumulant generating function

The cumulant generating function reads

s(k, ℓ, u, v) =
∑

1≤i1<i2<···<ik≤N

Xi1Xi2 · · ·Xik , (B1)

with Xi = e(mℓ,iu+ms,iv) and s(0, ℓ, u, v) = 1. Let us calculate the generating function

Ξ =
∑

0≤k≤∞

s(k, ℓ, u, v) tk, (B2)

noting that in fact the latter summation is finite, since s(k, ℓ, u, v) = 0 if k > n. One has, identifying the coefficients
of the tk terms:

Ξ =
∏

1≤i≤N

(1 +Xit). (B3)

Indeed, in the products of the N factors above, the tk term is the sum of the
(

N
k

)

products of k factors Xi1Xi2 · · ·Xik ,
with 1 ≤ i1 < i2 < · · · < ik ≤ N . Let us rewrite (B3) in the form

Ξ =
∏

1≤i≤N

exp [log(1 +Xit)] = exp





∑

1≤i≤N

log(1 +Xit)



 . (B4)

With the expansion log(1+x) = x−x2/2+x3/3+· · · convergent if |x| < 1, one gets, if |max(Xi)t| < 1 (for analyticity
reasons, the expansion remains actually valid whatever the modulus of t),

Ξ = exp





∑

1≤i≤n

∞
∑

s=1

(−1)s−1

s
Xs

i t
s



 = exp

(

∞
∑

s=1

(−1)s−1Ss

s
ts

)

=

∞
∑

m=0

1

m!

(

∞
∑

s=1

(−1)s−1Ss

s
ts

)m

, (B5)

with

Sk =
∑

1≤i≤N

Xk
i . (B6)
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The m−th power in the sum may be computed with the identity used in our previous work [42] (see also section 24.1.2
in Ref. [39]):

1

m!

(

∞
∑

N=1

xn
tN

N !

)m

=

∞
∑

N=m

tN
∑

a1,a2,···aN

∏

1≤j≤N

(xj/j!)
aj

aj !
(B7)

involving the partition number P(N ; a1, · · · aN ), and where integer indices a1, a2, · · · , aN are constrained by

a1 + a2 + · · ·+ aN = m

a1 + 2a2 + · · ·+NaN = N. (B8)

With the substitution xj/j! → (−1)j−1Sj/j, the new expression of the expansion of the generating function Ξ (see
Eq. (B5)) reads

Ξ =

∞
∑

m=0

∞
∑

N=m

tN
∑

a1,a2,··· ,

aN

N
∏

j=1

[

(−1)j−1Sj/j
]aj

aj !
(B9)

where the ai satisfy the constraints (B8). In the above expression, the double sum over m,N can be replaced by a
single sum over N , and it remains

Ξ =
∞
∑

N=0

(−1)N tN
∑

a1,a2,··· ,aN

N
∏

j=1

(−Sj/j)
aj

aj !
, (B10)

where because of constraint (B8), we replaced the product of factors (−1)jaj by (−1)N . This gives

s(N, ℓ, u, v) = (−1)N
∑

a1,a2,··· ,aN
a1+2a2+···+NaN=N

N
∏

j=1

(−Sj/j)
aj

aj !
. (B11)

A similar proof was given by Richter [43]. Setting

f(t) =

N
∑

k=0

s(k, ℓ, u, v)tk, g(t) =

∞
∑

k=0

Skt
k, with f(0) = N, g(0) = S0 = N, (B12)

one can check easily that g(t) = N − tf ′(t)/f(t). Indeed, as we have seen, f(t) =
∏N

j=1(1 + Xjt), and thus the

logarithmic derivative can be reformulated with the Taylor expansion of 1/(1 +X),

f ′(t)

f(t)
=
∑

j

Xj

1 +Xjt
=

N
∑

j=1

Xj

∞
∑

k=0

(−1)kXk
j t

k = −1

t

∞
∑

k=0

(−1)k+1
Sk+1t

k+1 = −g(t)−N

t
(B13)

which, by integration, yields Eq. (B5). The proof ends up as above by expanding the exponential.
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[19] S. Kučas, R. Karazija, V. Jonauskas, and S. Aksela, Global characteristics of atomic spectra and their use for the analysis

of spectra. III. auger spectra, Phys. Scr. 52, 639 (1995).
[20] F. Gilleron and J.-C. Pain, Efficient methods for calculating the number of states, levels and lines in atomic configurations,

High Energy Density Phys. 5, 320 (2009).
[21] M. Poirier and J.-C. Pain, Distribution of the total angular momentum in relativistic configurations,

J. Phys. B: At. Mol. Opt. Phys. 54, 145006 (2021).
[22] Q. Porcherot, J.-C. Pain, F. Gilleron, and T. Blenski, A consistent approach for mixed detailed and statistical calculation

of opacities in hot plasmas, High Energy Density Phys. 7, 234 (2011).
[23] J.-C. Pain, F. Gilleron, J. Bauche, and C. Bauche-Arnoult, Statistics of electric-quadrupole lines in atomic spectra,

J. Phys. B: At. Mol. Opt. Phys. 45, 135006 (2012).
[24] M. Poirier and J.-C. Pain, Angular momentum distribution in a relativistic configuration: magnetic quantum number

analysis, J. Phys. B: At. Mol. Opt. Phys. 54, 145002 (2021).
[25] M. Poirier and J.-C. Pain, Exact expressions for the number of levels in single-j orbits for three, four, and five fermions,

Phys. Rev. C 104, 064324 (2021).
[26] M. Poirier and J.-C. Pain, Exact expressions of the distributions of total magnetic quantum number and angular momentum

in single-j orbits: A general technique for any number of fermions, Phys. Rev. C 109, 024306 (2024).
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