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ABSTRACT 

The global winegrowing sector is under pressure due to the effects of global climate change. 
This is particularly true for New Zealand, where the wine industry is limited to a few regions. 
This study focuses on the South Island of New Zealand. It uses the Multi-objective Optimisation 
for Agrosystems (MOA) model to (i) investigate how potential exposure to climate risks and 
phenological stages will evolve under climate change, (ii) assess the suitability of current 
vineyards for viticulture in the future, and (iii) investigate potential emerging areas favourable 
for viticulture.
The results show that a significant shift in the phenological stages of veraison and ripeness 
can be expected in the future due to the warming of the South Island of New Zealand.  
The projected phenological stages advancement is around one week in the near term for both 
Shared-Socioeconomic Pathways studied (SSP2-4.5 and SSP5-8.5) and is more than three 
weeks and one month in long-term for SSP2–4.5 and SSP5-8.5 respectively. A regional to local 
increase in frost risk (Canterbury, Otago, and Southland) and a slight increase in disease risk 
(especially on the coast) are also projected in the future, while the South Island of New Zealand 
is not expected to be affected by heatwaves. The results show that Marlborough, New Zealand’s 
most important winegrowing region, will continue to be one of the best areas for viticulture in 
the 21st century. On the other hand, new winegrowing opportunities are expected to emerge 
inland and southwards.
Overall, this study contributes to the understanding of the impact of climate change on the New 
Zealand wine industry and emphasises the need to adapt to changing climate conditions. It also 
provides insights into the future suitability of vineyards and identifies potential expansion areas 
for the New Zealand viticulture sector.
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INTRODUCTION

Global climate change is having an impact on regional 
climates and winegrowing regions around the world (Jones, 
2015; Jones et al., 2005; van Leeuwen and Darriet, 2016). 
One of the biggest challenges for the wine industry is the 
potential impact of climate change in the 21st century. These 
impacts encompass a range of consequences, from short-
term effects on wine quality and style to long-term concerns 
about varietal suitability and the economic sustainability 
of traditional winegrowing regions (Morales-Castilla et al., 
2020; Quénol et al., 2014b; Schultz and Jones, 2010).

Climate change, particularly the temperature rise, has 
profound effects on grapevine phenology and characteristics 
of grapes and wine (García de Cortázar-Atauri et al., 2017; 
van Leeuwen et al., 2024; van Leeuwen and Darriet, 2016). 
One notable effect on grapevine production is an earlier bud 
break and a shortened growing cycle, which ultimately leads 
to an earlier harvest (García de Cortázar-Atauri et al., 2017; 
van Leeuwen et al., 2024; van Leeuwen and Darriet, 2016). 
In addition, higher temperatures affect the sugar and alcohol 
content of grapes, which in turn affects the aromas of wines 
(Duchêne and Schneider, 2005; van Leeuwen and Darriet, 
2016; Parker et al., 2020). Vines are also exposed to increased 
climatic risks associated with extreme temperatures.  
For example, early bud break increases susceptibility to 
spring frost, while extreme summer temperatures can affect 
grape quality (Cukierman et al., 2021).

The New Zealand winegrowing sector is proving particularly 
vulnerable to the effects of climate change because vineyards 
are concentrated in a few regions and rely heavily on a limited 
number of grape varieties, particularly Sauvignon blanc and 
Pinot noir in the South Island (New Zealand Winegrowers, 
2023). As of 2022, over 80 % of New Zealand’s winegrowing 
regions are located in the South Island and cover 34,304 
hectares of vineyards out of a total of 41,860 hectares, 
including Marlborough, Nelson, Canterbury, Waitaki Valley, 
and Central Otago (New Zealand Winegrowers, 2023).

A modelling approach offers a means to evaluate the evolving 
agroclimatic potential of established vineyards and emerging 
areas in New Zealand, taking into account various climate 
change scenarios. The approach used not only focuses 
on studying climate change impacts on vineyards (e.g., 
Morales-Castilla et al., 2020; Ausseil et al., 2021) but also 
aims to determine optimal combinations of exposure levels 
to different climatic risks (such as frost, heat, and potential 
pathogenic threats). Moreover, this approach enables the 
identification of maturity thresholds that align with desired 
wine styles. The scenario approach allows to define the 
objectives, constraints, and threshold in collaboration with 
winegrowers. The solutions provided by the model represent 
trade-offs between the different objectives and constraints 
specified by the user in the scenario. This novel approach 
has been applied to another wine-growing area (Brittany, 
FRANCE) with a different climate context (Thibault, 2023).

The developed model, known as MOA (Multi-objective 
Optimisation for Agrosystems), stands as a comprehensive 
tool that integrates widely used bioclimatic indices and 
phenological models to investigate viticulture. Furthermore, 
it allows for consideration of specific constraints and 
objectives during the modelling process as well as to 
work at different spatial resolutions thus dealing with the 
spatial complexity of climate (Neethling et al., 2019).  
The model’s outputs consist of the best solutions for existing 
and emerging vineyards. Thus, the MOA model enables 
two key capabilities: (i) assessing the most suitable future 
areas within existing vineyards based on their location and 
climate projections, and (ii) identifying optimal locations 
for winegrowing and selecting appropriate grape varieties, 
according to defined scenarios involving climate projections, 
objectives, and constraints. 

This study specifically focuses on the South Island of New 
Zealand, given its significant vineyard coverage, to address 
the following questions:

- How are climatic risks and grapevine phenological stages 
expected to evolve under current climate change conditions?

- To what extent will Marlborough, the primary winegrowing 
region in New Zealand, remain suitable for viticulture 
throughout the 21st century?

- Which presently non-vineyard areas of the South Island in 
New Zealand have the potential to become favourable for 
viticulture in the coming decades?

To accomplish this, a comparative analysis is conducted 
between two climate models. Subsequently, the model that 
yields the most favourable outcomes for the studied region 
is selected to run the MOA model, with the outputs being 
utilised to address the questions.

MATERIALS AND METHODS

1. Climate Data
Climate data used in this study were sourced from the NEX-
GDDP-CMIP6 dataset (NASA Earth Exchange Global Daily 
Downscaled Projections) (Thrasher et al., 2022). This dataset 
offers bias-corrected (Thrasher et al., 2012) daily global 
data derived from CMIP6 simulations (Coupled Models 
Intercomparison Project phase 6) (Eyring et al., 2016), 
covering the period from 1950 to 2100. The dataset provides 
a high spatial resolution (0.25° × 0.25°) and encompasses 
four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.5, SSP5-
8.5) and 35 GCMs (General Circulation Models). For this 
study, data from the IPSL-CM6A-LR and ACCESS-CM2 
climate models were used, specifically for the SSP2-4.5 and 
SSP5-8.5 scenarios (Bi et al., 2020; Boucher et al., 2020).  
SSPs (Shared Socioeconomic Pathways) are scenarios that 
depict global socio-economic developments constructed 
based on different climate policies and associated 
greenhouse gas emission scenarios. The SSP2-4.5 scenario 
represents a world with intermediate GHG emissions and 
an average global temperature increase of +2.7 °C by 2100.  
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Conversely, SSP5-8.5 is the most pessimistic scenario, 
portraying a significantly warmer world with very 
high emissions (>4 °C increase) (Riahi et al., 2017).  
The downloaded and used climate variables include relative 
humidity, precipitation, wind speed, and mean, maximum, 
and minimum temperatures.

Observed temperature data from the National Institute 
of Water and Atmospheric Research (NIWA) website 
were utilised to assess the performances of both climate 
models. Temperature data from 82 weather stations across 
the South Island, available from 2000 to 2014 (i.e., before 
the “prospective simulation” of climate models), were 
downloaded. The locations of the weather stations and the 
corresponding number of years of records are illustrated in 
SM1.

2. Global Daily Downscaled Projection (GDDP) 
Statistical Analyses and Comparison
To interpret and discuss MOA outputs, a comparison 
between the two climate models was conducted. Statistical 
tests were carried out between the distribution of data from 
IPSL-CM6A-LR and ACCESS-CM2 models to identify any 
significant differences. Statistical analyses were conducted 
with R using a t-test over four periods: baseline (1981–2010), 
near-term (2011–2040), mid-term (2041–2070), and long-
term (2071–2100), for each temperature variable (i.e., daily 
minimum, mean and maximum temperatures) and scenario.

Moreover, the performances of climate models for the 
temperature variable were also assessed. For this purpose, the 
IPSL-CM6A-LR and ACCESS-CM2 models’ temperature 
data were compared to observed climate data during a 
portion (i.e., 2000–2014) of the retrospective simulation 
of the models which has served as training data in the 
downscaling process. Daily mean temperatures from the 
82 weather stations (SM1) were compared to the grid cell 
data of both models (IPSL-CM6A-LR and ACCESS-CM2) 
in which the weather stations were located. In cases where 
multiple weather stations were located within the same grid 
cell, the data from the stations were aggregated before the 
comparison took place. The performance of models was 
evaluated via the linear regression and the mean coefficient 
of correlation.

3. Multi-objective Optimisation for 
Agrosystems (MOA) Model
The MOA optimisation model was employed to calculate 
the bioclimatic index, grape phenological stages, indicators 
of exposure risk, and winegrowing potential. Subsequently, 
a concise depiction of the model’s structure (Figure 1) was 
developed, along with an explanation of the parameters 
encompassing the defined scenario.

3.1. General Structure and Parametrisation of MOA
Using a multi-objective approach, the MOA model has 
been implemented in the R environment. The integration 

FIGURE 1. MOA Model Process. The three main steps (scenarisation, initialisation, and simulation) of the model are 
described (Thibault, 2023).
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of spatial elements provides a significant advantage to the 
model, as the optimisation based on spatial aspects is not 
the main objective of traditional methods (Thibault, 2023). 
MOA has been specifically designed to identify the best areas 
for viticultural activities in response to different climate 
change scenarios (Thibault, 2023). By adopting a scenario-
based approach, the model allows for the exploration 
of diverse hypotheses to address a range of questions.  
These scenarios can be collaboratively developed with 
winegrowers, incorporating different climate change 
projections, multiple objectives and constraints, and distinct 
thresholds for each variable. The model follows a sequential 
structure comprising three main steps: scenarisation, 
initialisation, and simulation (Figure 1).

During the scenarisation step, various parameters were 
defined, including the study area, climate model and projection, 
simulation period, targeted grape varieties, and duration of 
implementation. The two grape varieties investigated were 
Sauvignon blanc and Pinot noir. Scenario definition also 
involves establishing simulation constraints and objectives. 
Objectives represent specific goals that are either maximised 
or minimised based on defined criteria. The first objective 
was to achieve the technical maturity of 190 g/L sugar for 
the GSR (Grapevine Sugar Ripeness) before the 15th of April. 
Objectives related to climate events were also established: 
minimising heat and frost risks. For both, acceptable and 
limit thresholds for risk acceptability were defined. Climatic 
risks (e.g., spring frost, heat waves...) can be interpreted 
differently in the model based on vineyard vulnerability 
and exposure frequency. Therefore, depending on the risk 
and its frequency, the constraint can range from limiting 
to excluding. Below the acceptable threshold, the solution 
remained optimal with no considered risk. Beyond the 
limit threshold, the risk was estimated too high, and the 
cell was excluded from the optimisation process. Between 
the acceptable and limit thresholds, the cell’s optimisation 
was limited. In this case, the acceptable and limit numbers 
of days were arbitrarily set as 4 and 10 days for heat risk 
and 3 and 5 days for frost risk. The last objective was 
to minimise disease risk, which was determined as a 
function of the number of pathogen treatments in vineyards 
(conventional or organic) using the SEVE model method 
(Tissot et al., 2017). In this study, a conventional vineyard 
with an average treatment duration of 12 days was assumed. 
Constraints are conditions that restrict or exclude certain 
solutions, which can be based on land use, soil aspects, 
spatial relations, or the historical presence of vineyards.  
The first constraint was to include cells where the percentage 
of agricultural land was equal to or above 5 %, reflecting the 
low resolution of climate data (0.25°) compared to the scale 
of a vineyard. Spatial relation and winegrowing anteriority 
constraints were also defined. The spatial relation constraint 
allows us to consider existing vineyards favouring locations 
near current winegrowing areas. Thus, direct neighbourhood 
cells of optimal cells determined by the model were favoured 
by the spatial relation constraints. In the same way, the 
anteriority constraint allows one to consider historical 
winegrowing areas promoting cells with previous viticultural 

activity. Four levels can be assigned to these constraints: 
insignificant, weak, moderate, and very important (Thibault, 
2023). The different constraint levels in MOA offer a range 
of options to best adapt to the case study. For example, a 
very important level for the spatial relation constraint can 
be considered to explore new opportunities close to existing 
vineyards. In this application to the South Island of New 
Zealand, both constraints were set at a moderate level.

In initialisation, the cells were excluded according to scenario 
constraints related to land use and soil (e.g., percentage 
of agricultural area per cell). Then, the model defined the 
feasible domain for the simulation process.

During the simulation step, the phenological stages and 
the climate risk events were first computed for each cell 
of the search domain and each grape variety according to 
the scenario defined. The climate risk vulnerability period 
extends from the budburst to the ripeness stage. The cells 
that did not meet the scenario objectives with a given grape 
variety were then excluded. The requirements to reach the 
phenological stages are different for each grape variety, 
thus the same cell could be excluded for one variety and 
kept for another. At the end of this step, only the solutions 
that correspond to all cell-variety combinations meeting the 
objectives remained. An overall score based on the scenario 
objectives and constraints was associated with each solution. 
The last phase of the simulation step was the selection of the 
best solutions. Two types of optimisation were made with 
MOA, one corresponding to an optimisation by grape variety 
and the other corresponding to an optimisation between grape 
varieties. In the latter case, the varieties with the best score 
were first selected. Then, for the two types of optimisations, 
the overall scores of the solutions were compared to the 
values range established during initialisation. The solutions 
with a better score were considered as the best solutions by 
MOA. The simulation and selection processes were then 
repeated for each year of the simulation period.

A noteworthy aspect of MOA is its ability to offer multiple 
solutions to users. Due to the diversity of objectives, it 
is rare to find a single solution that satisfies all criteria.  
Thus, the solutions represent trade-offs between the objectives 
and constraints. Ultimately, the selection of a solution is left 
to the user, allowing them to make the final decision at the 
end of the process (Collette and Siarry, 2003).

3.2. Grapevine Growth Knowledge
The MOA model relies on grapevine growth 
knowledge to determine phenological stages and 
compute solutions. To achieve this, two bioclimatic 
indices and two phenological models were used. 
Budburst was determined using the Winkler Growing 
Degree Days (GDD) index proposed by Winkler et al. 
(1974), employing the van Leeuwen et al. (2008) method. 
This method involves calculating the heat summation with 
a thermal base of 10 °C after the 1st of January for the 
Northern Hemisphere and the 30th of June for the Southern 
Hemisphere.
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The Grapevine Flowering Veraison (GFV) model, developed 
by Parker et al. (2011, 2013), was employed to determine 
the flowering and veraison phenological stages. Additionally, 
the Grapevine Sugar Ripeness (GSR) model was used to 
determine technical maturity based on the desired sugar 
concentration (Parker et al., 2020). The GFV and GSR 
models respectively calculate the phenological stages from 
the 60th and 91st day of the growing season. Grape varieties 
are assigned threshold values for each phenological stage and 
sugar concentration (170, 180, 190, 200, 210, 220 g/L) in 
the GSR model (Parker et al., 2020). These models based on 
grapevine phenology are particularly robust, especially in the 
context of climate change (Quénol et al., 2014a).

In addition, the Huglin Index (Huglin, 1978) was employed 
to provide supplementary information. It is calculated from 
the 1st of October to the 30th of April and allows for the 
classification of winegrowing regions into different climatic 
categories: very cool (IH ≤ 1,500), cool (1,500 < IH ≤ 1,800), 
temperate (1,800 < IH ≤ 2,100), temperate warm 
(2,100 < IH ≤ 2,400), warm (2,400 < IH ≤ 3,000), and 
very warm (IH > 3,000). All indicators used during the 
computation of the solution are presented in Table 1.

RESULTS

1. GDDP Models Comparison
The temperature data from the IPSL-CM6A-LR and 
ACCESS-CM2 climate models are compared in Figure 2.  

Statistical tests revealed significant differences 
(p-value < 0.05) between the two models for each daily 
temperature variable (minimum, mean, and maximum 
temperatures), periods, and SSPs (Table 2). The ACCESS-
CM2 model was consistently warmer than the IPSL-CM6A-
LR model, with the largest differences observed for maximum 
temperatures and the smallest differences for minimum 
temperatures. Over the baseline period (1981–2010), the 
differences were relatively small, ranging from –0.09 °C 
for the mean and maximum temperature to –0.10 °C for the 
minimum temperature. However, the projected differences 
increased from the near-term period (2011–2040) onwards. 
For example, the differences in mean temperature reached 
–0.22 °C and –0.36 °C for SSP2-4.5 and SSP5-8.5, respectively.  
The differences remained relatively constant or decreased in 
the mid-term, but they became more significant towards the 
end of the century (Table 2). In the long term, the differences 
between the IPSL-CM6A-LR and ACCESS-CM2 models 
exceeded –0.34 °C for all temperature variables with SSP5-
8.5 and ranged from –0.24 °C (minimum temperature) to 
–0.48 °C (maximum temperature) for SSP2-4.5.

Furthermore, the differences between the two models were 
not evenly distributed across the study area (Figure 3). 
The inter-model spread over the region was assessed using 
the standard deviation of differences for each temperature 
variable, period, and SSP (Table 2). The general trend was an 
increase in the inter-model spread over the 21st century for 
all temperature variables. The standard deviations increased 

Type of hazards Indicators Calculation period Calculation method References

Frost occurrences

Number of frost days From budburst to 
veraison

Poling (2008);  
Gavrilescu et al. (2022); 

Webb et al. (2018)

Gavrilescu et al. (2022); 
Webb et al. (2018)

Advective frost From budburst to 
veraison Poling (2008)

Wet frost From budburst to 
veraison

Gavrilescu et al. (2022);  
Itier et al. (1991)

Last frost date From budburst to 
veraison

LFdate in Julien Day Gavrilescu et al. (2022)

Heat wave occurrences
Number of hot days From veraison to 

maturity Bahr et al. (2021)

Heat waves From budburst to 
maturity Fraga et al. (2020)

Pathogen occurrences Potential exposure for 
organic production systems

From budburst to 
leaf fall

Tissot et al. (2017);  
Velasquez-Camacho et al. 

(2022)

TABLE 1. Indicators used in the MOA model. They are classified by type of hazards and their calculation period 
and method are presented.

arelative humidity.
bheat wave = (tmax >35 °C) ≥ 5 days.
cpotential exposure = prd >2 mm and hursa >60 % and wind >2.3m.s-1.
dprecipitation.

 
Fday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  −1 °𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏  

Fday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  −0 °𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏  

AFday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  −1 °𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏   

AND 𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤 > 16 𝑘𝑘𝑡𝑡/ℎ 

AFday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  −1 °𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏   

AND ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑣𝑣  > 60 % 

LFdate in Julien Day 

Hday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >  35 °𝐶𝐶𝑚𝑚𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏𝑚𝑚
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

Hday =∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >  38 °𝐶𝐶𝑚𝑚𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏𝑚𝑚
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

Hday = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >  40 °𝐶𝐶𝑚𝑚𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏𝑚𝑚
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

Hwave = ∑ ℎ𝑣𝑣𝑏𝑏𝑚𝑚𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏𝑚𝑚
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏  
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from 0.018–0.022 over the baseline period (1981–2010) to 
0.069–0.231 in the long term (2071–2100). The increase 
in the inter-model spread was more pronounced for the 
minimum temperature variable (0.022 to 0.189 for SSP2-
4.5 and 0.231 for SSP5-8.5), while the difference was lower 
for the maximum temperature (0.019 to 0.069 for SSP2-4.5 
and 0.150 for SSP5-8.5). Additionally, the analysis of the 
difference in the inter-model spread indicated that it was 

higher for SSP5-8.5 compared to SSP2-4.5 for all temperature 
variables and periods, and the gap between SSPs widened.

Regarding the performance of climate models, the correlation 
coefficients of the comparison between cell temperatures 
and weather station data were relatively low (ranging from 
0.29 to 0.59) for both models (SM2). ACCESS-CM2 had 
higher correlation coefficients for the majority of individual 
cells (45 out of 69) while IPSL-CM6A-LR presented higher 
coefficients for 13 cells; 11 cells showed the same correlation 

Baseline 
(1981–2010)

Near term 
(2011–2040)

Mid-term 
(2041–2070)

Long term 
(2071–2100)

SSP2-4.5

tas –0.09 °C * 
(sd = 0.018)

–0.22 °C * 
(sd = 0.047)

–0.21 °C * 
(sd = 0.093)

–0.36 °C * 
(sd = 0.115)

tasmax –0.09 °C * 
(sd = 0.019)

–0.26 °C * 
(sd = 0.040)

–0.28 °C * 
(sd = 0.074)

–0.48 °C * 
(sd = 0.069)

tasmin –0.10 °C * 
(sd = 0.022)

–0.18 °C * 
(sd = 0.061)

–0.14 °C * 
(sd = 0.127)

–0.24 °C * 
(sd = 0.189)

SSP5-8.5

tas –0.09 °C * 
(sd = 0.018)

–0.34 °C * 
(sd = 0.053)

–0.23 °C * 
(sd = 0.126)

–0.44 °C * 
(sd = 0.177)

tasmax –0.09 °C * 
(sd = 0.019)

–0.36 °C * 
(sd = 0.053)

–0.33 °C * 
(sd = 0.126)

–0.53 °C * 
(sd = 0.150)

tasmin –0.10 °C * 
(sd = 0.022)

–0.31 °C * 
(sd = 0.060)

–0.14 °C * 
(sd = 0.144)

–0.34 °C * 
(sd = 0.231)

TABLE 2. Projected minimum, mean, and maximum temperature differences between IPSL-CMA6-LR and ACCESS-
CM2 models over the South Island of New Zealand in near-term (2011–2040), mid-term (2041–2070), and long-
term (2071–2100) with SSP2-4.5 and SSP5-8.5. The minus sign comes from the fact that the differences have been 
calculated as IPSL-CM6A-LR vs ACCESS-CM2. tas: mean surface temperature; tasmax: maximal surface temperature; 
tasmin: minimal surface temperature.

*p-value < 0.05.

FIGURE  2. Projected minimum, mean, and maximum temperatures for the South Island of New Zealand with 
ACCESS-CM2 and IPSL-CM6A-LR models in the near term (2011–2040), mid-term (2041–2070), and long term 
(2071–2100) with SSP2-4.5 and SSP5-8.5. Shaded areas represent the baseline temperatures interquartile range. 
tas: mean surface temperature; tasmax: maximal surface temperature; tasmin: minimal surface temperature.
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FIGURE 3. Mean temperatures difference between IPSL-CMA6-LR and ACCESS-CM2 models for minimum, mean, 
and maximum temperatures for the baseline (1981–2010), in the near term (2011–2040), mid-term (2041–2070) 
and long term (2071–2100) over the New Zealand South Island with SSP2-4.5 (a) and SSP5-8.5 (b). tas: mean 
surface temperature; tasmax: maximal surface temperature; tasmin: minimal surface temperature.

FIGURE 4. New Zealand South Island climate classification according to the mean Huglin Index (IH) for the baseline 
(1981–2010), in the near term (2011–2040), mid-term (2041–2070) and long term (2071–2100) with SSP2-4.5 
and SSP5-8.5. Very cold: IH ≤ 1500; Cold: 1500 < IH ≤ 1800; Temperate: 1800 < IH ≤ 2100; Temperate warm: 
2100 < IH ≤ 2400; Warm: 2400 < IH 3000; Very warm: IH > 3000. Results correspond to the inter-model (IPSL-
CMA6-LR and ACCESS-CM2) means.
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coefficient for both models. However, significant differences 
between ACCESS-CM2 and IPSL-CM6A-LR were observed 
for only 22 cells among which 12 had a higher correlation 
coefficient with ACCESS-CM2 and 5 with IPSL-CM6A-
LR (SM2). The result for the aggregation of all cells with 
a significant difference between the two climate models 
(SM3) showed close correlation coefficients for both models 
(0.40 for ACCESS-CM2 and 0.39 for IPSL-CM6A-LR). 
Although ACCESS-CM2 tended to have higher correlation 
coefficients, the comparison with weather station data did 
not show a strong difference in the performances of both 
models regarding mean temperature. Thus, climate from 
both, ACCESS-CM2 and IPSL-CM6A-LR were used to run 
the MOA model.

2. Bioclimatic Indices, Phenological Models, 
Climate Risk Exposure Indicators and 
Winegrowing Potential

2.1 Bioclimatic Indices and Phenological Models
The results presented in this part correspond to the 
inter-model (ACCESS-CM2 and IPSL-CM6A-LR) 
mean of MOA outputs. Maps of associated inter-model 
uncertainty are provided in the Supplementary Material. 
The climate of the South Island of New Zealand was classified 
as very cool for the baseline according to the Huglin Index 
(HI), with only a few exceptions (6 out of 334 cells) classified 
as cool (Figure 4). From the near-term period (2011–2040) 
onwards, the climate was projected to warm for both scenarios, 
with a similar magnitude of change (46 cells moving to a 
cool class for SSP2-4.5 compared to 38 cells for SSP5-8.5). 

FIGURE 5. Veraison (left panel) and ripeness (time to 190 g/L sugar—right panel) date anomalies compared to 
the baseline (1981–2010) in near-term (2011–2040), mid-term (2041–2070) and long-term (2071–2100) with 
SSP2-4.5 and SSP5-8.5 for Sauvignon blanc (a) and Pinot noir (b). Only cells having reached at least once veraison 
or ripeness, respectively, over the baseline are mapped. Results correspond to the inter-model (IPSL-CMA6-LR and 
ACCESS-CM2) means.
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This warming was particularly pronounced in northern or 
low-altitude regions such as Marlborough and Canterbury 
(Figure 4). In mid- (2041–2070) and long term (2071–2100), 
the warming trend continued, spreading southward and 
intensifying according to the Huglin Index, with respectively 
4 and 12 cells classified as temperate or warmer for SSP2-4.5 
and SSP5-8.5 in mid-term, and 19 and 94 cells in long-term. 
The HI inter-model uncertainty was relatively low over the 
baseline increasing over the 21st century for both SSPs (SM4) 
with South Island standard deviation means ranging from 10 
(baseline) to 88 HI (long term with SSP5-8.5).

For Sauvignon blanc and Pinot noir, veraison was projected 
to advance by 8 days in the near term (2011-2040) when 
simulated with GFV model, by 20 days for SSP2-4.5, and 
25 days for SSP5-8.5 in mid-term (2041–2070), and by 
27 and 40 days in the long term (2071–2100) (Figure 5).  
The time to reach 190 g/L sugar was projected to decrease 
by 5 to 6 days in the near term for both grape varieties and 
SSPs. The advancement was projected to increase to 14 and 
18 days for Sauvignon blanc with SSP2-4.5 and SSP5-8.5 
(15 and 20 days for Pinot noir) by 2041–2070. In the long 
term, the time to reach 190 g/L sugar was projected to reduce 
by 3 weeks for SSP2-4.5 (22 days for Pinot noir and 20 days 
for Sauvignon blanc), and under SSP5-8.5 conditions, the 
advancement was projected to exceed a month (35 and 
33 days). The anomalies of these two phenological stages 
were further investigated in the Marlborough region and 
the same order of magnitude advancements were also 
projected (SM5). The values differed by 1 to 2 for the 

veraison and by –1 to –2 for ripeness at 190 g/L sugar. 
The uncertainties related to veraison and ripeness are 
presented in SM6. The average South Island standard 
deviation mean for veraison was about 2 days in the near 
and mid-term for both SSPs and increased to 3 days in the 
long term. For ripeness (time to 190 g/L sugar), slightly 
higher average South Island inter-model uncertainties were 
observed, with 3 days for SSP2-4.5 in the near and mid-term, 
and 5 days in the long term while a constant value of 4 days 
for all periods was observed for SSP5-8.5.

Although the South Island overall mean of anomalies 
suggests a lengthening of the period between the veraison and 
ripeness (time to 190 g/L sugar), the difference between these 
two phenological stages showed a trend toward a compression of 
the time (SM7). A significant time compression of 1 to 2 and 
2 to 3 days was projected from mid-term (2041–2060) for 
respectively Pinot noir and Sauvignon blanc with SSP2-4.5. 
No significant time compression was projected for SSP5-8.5 
except in the near term for Pinot noir.

2.2. Climate Risk Potential Exposure
As for bioclimatic indices and phenological models, the 
results of climate risk potential exposure presented in this part 
correspond to the inter-model mean and associated inter-model 
uncertainty maps are provided in the Supplementary Material. 
For both Sauvignon blanc (Figure 6) and Pinot noir (SM8), 
the model projected an increase in the area subject to frost 
events between 98 and 104 cells in the long term for SSP2-
4.5 and between 138 and 156 in the long term for SSP5-8.5 

FIGURE 6. Projected frost risk (a—frequency of years with at least one frost event) and disease risk (b—mean number 
of pathogen treatments per year) exposure for the baseline (1981–2010) in the near term (2011–2040), mid-term 
(2041–2070) and long term (2071–2100) with SSP2-4.5 and SSP5-8.5 for Sauvignon blanc. Results correspond to 
the inter-model (IPSL-CMA6-LR and ACCESS-CM2) means.

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society10 | volume 58–3 | 2024

being affected. While some areas were projected to remain 
unaffected by frost risk, the frequency of frost events was 
projected to increase overall. The number of cells experiencing 
a frost frequency greater than 10 % increased from 0 over the 
baseline for both cultivars to 2 to 4 cells in the near term for 
both SSP2-4.5 and SSP5-8.5, to 13 and 24 in the mid-term 
for Sauvignon blanc, and 18 and 27 for Pinot noir. In the long 
term with SSP5-8.5, 6 cells for Sauvignon blanc and Pinot 
noir exceeded a frost frequency of 50 %. Pinot noir showed 
a slightly more important vulnerability to frost risk than 
Sauvignon blanc. Moreover, the projected frost risk exposure 
occurs locally, with greater risk in the middle and South of 
Canterbury, and in Otago and Southland regions. Additionally, 
the coast appeared to be relatively unaffected by frost risk, 
with only 29 to 35 cells along the coast (out of 142) projected 
to be threatened by frost in the long term for both SSPs 
and both cultivars, which was proportionally significantly 
lower than the projections for the South Island as a whole. 
The inter-model uncertainties to frost risk exposure appeared 
to be relatively low for both SSPs over the baseline and in 
the near term, and for most of the South Island in the mid 

and long term (SM9). However, the uncertainty increased 
with a higher frost risk exposure ranging from 5 % to 20 % 
and exceeding 20 % for a few cells in the long term for both 
SSPs.

The average number of pathogen treatments per year for the 
South Island showed a relatively stable trend with a slow 
increase; 10.35 to 11.18 for Sauvignon blanc (Figure 6) from 
the baseline to the long-term with SSP2-4.5 (10.35 to 11.20 
with SSP5-8.5), and 11.69 to 11.53 for Pinot noir (SM8) with 
SSP2-4.5 (11.69 to 11.44 with SSP5-8.5). On the other hand, 
the maximum number of treatments was projected to increase 
from around 14 to around 17 for SSP5-8.5 from the baseline 
period to the long term for both cultivars. Therefore, the overall 
trend suggested a small increase in the exposure to pathogens. 
Pinot noir was also slightly more impacted than Sauvignon 
blanc by disease risk. The assessment of pathogen threat 
risk also reveals that the coastline area appeared to be more 
vulnerable to potential exposure to this risk, as indicated by 
the higher mean number of treatments. This pattern intensified 
over the century, particularly evident with SSP5-8.5. 

FIGURE 7. Projected best solutions for Sauvignon blanc (a) and Pinot noir (b) with ACCESS-CM2 (left panel) and 
IPSL-CM6A-LR (right panel) in the near-term (2011–2040), mid-term (2041–2070) and long-term (2071–2100) with 
SSP2-4.5 and SSP5-8.5.
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A very low inter-model uncertainty of disease risk exposure 
was observed for all periods and all SSPs with values lower 
than 1 (SM9).

According to the MOA model, the projection of risk exposure 
indicated that heat waves would not impact the South Island 
in the near-, mid-, and long-term under both SSPs and grape 
varieties studied (SM10).

2.3. Future Winegrowing Potential
In the near-term period (2011–2040), the most suitable 
winegrowing areas (i.e., best solutions of MOA) modelled 
for Sauvignon blanc occurred predominantly on the coast, 
specifically in the Marlborough and Canterbury regions, 
for both SSPs (Figure 7a). The best solutions increased in 
number in the mid- (2041–2070) and long-term (2071–
2100); for Sauvignon blanc, they grew from 60 (56) and 
70 (48) cells in the near term for SSP2-4.5 and SSP5-8.5, 
respectively, to 116 (71) and 130 (136) cells in the mid-term, 
and 155 (110) and 202 (188) cells in the long term with 
ACCESS-CM2 (IPSL-CM6A-LR). This expansion occurred 
inward and southward, encompassing regions such as Otago 
and Southland in the mid-term and nearly covering the entire 
South Island (excluding the Southern Alps) in the long term. 
A similar pattern was observed for Pinot noir, following the 
expansion described for Sauvignon blanc. However, the 
modelled expansion of Pinot noir was comparatively more 
important with the number of best solutions increasing 
from 67 cells in the near term for SSP2-4.5 (84 cells 
with SSP5-8.5) to 131 cells (160 cells) in the mid- and 
194 cells (246 cells) in the long term with ACCESS-CM2. 

Although the number of best solutions was higher with 
ACCESS-CM2, MOA outputs were relatively close to those 
obtained with IPSL-CM6A-LR. Moreover, for both cultivars 
and both climate models, the number of best solutions 
identified MOA was greater with the SSP5-8.5 than with the 
SSP2-4.5.

Although the projected expansion of best solutions was 
greater for Pinot noir compared to Sauvignon blanc, a 
comparison between the two grape varieties (Figure 8) 
indicated that Sauvignon blanc was the primary option 
for the South Island of New Zealand for all periods, SSPs 
and climate models (except in near term for SSP2-4.5 with 
IPSL-CM6A-LR). In the near term, 13 and 25 cells of best 
solutions were allocated to Pinot noir compared to 49 and 
51 for Sauvignon blanc, respectively with SSP2-4.5 and 
SSP5-8.5 with ACCESS-CM2; 30 and 43 compared to 93 
and 89 in mid-term. By the end of the century (long term), 
Sauvignon blanc remained more suitable than Pinot noir with 
121 cells for SSP2-4.5 and 143 cells for SSP5-8.5, compared 
to 56 cells and 68 cells for Pinot noir (ACCESS-CM2). 
Generally, the Pinot noir best solutions tended to be located 
further inland or at higher altitudes. As for the optimisation 
by grape varieties (Figure 7), a greater number of best 
solutions were identified by MOA for SSP5-8.5 than with 
SSP2-4.5 for the optimisation between grape varieties. 
Overall, there was an agreement between the two climate 
models for more than 50 % of the best solutions while the 
agreement was limited to 27 % of the cells and conflicts were 
observed for 21 % of the cells (SM11).

FIGURE 8. Projected best solutions between Pinot noir and Sauvignon blanc with ACCESS-CM2 (a) and IPSL-CM6A-
LR (b) in the near term (2011–2040), mid-term (2041–2070) and long term (2071–2100) with SSP2-4.5 and SSP5-
8.5.
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DISCUSSION

1. Global Daily Downscaled Projection
The comparison of temperatures between the data from 
the GDDP IPSL-CM6A-LR and ACCESS-CM2 models 
underlines the importance of the choice of climate model as 
input for MOA. Firstly, significant temperature differences 
were observed between climate models in terms of minimum, 
mean, and maximum temperatures. For example, such 
differences were observed between the IPSL-CM6A-LR 
and ACCESS-CM2 models for all combinations of periods, 
temperature variables, and SSPs over the South Island of New 
Zealand and these differences increased over time. Secondly, 
the spatial distribution of these temperature differences is 
not uniform. This means that the temperature differences 
between climate models can be different across regions.  
The non-uniform spatial distribution of temperature 
differences can further influence spatial outcomes since 
MOA provides spatial solutions.

In addition, MOA uses climate indices (Huglin, 1978;  
van Leeuwen et al., 2008; Winkler et al., 1974) and 
phenological models (Parker et al., 2011; Parker et al., 
2020) based on thermal summation to determine solutions. 
As these indices and models use temperature summations, 
the temperature differences between the climate models may 
lead to significant differences in results depending on the 
climate model that is selected. With these considerations 
in mind, selecting climate data as input for MOA should be 
done carefully, considering the specific characteristics and 
limitations of the climate models used. 

The analysis of ACCESS-CM2 and IPSL-CM6A-LR 
performances over the South Island did not show a strong 
difference regarding the daily mean temperature. Moreover, 
it is worth noting that the low correlation values observed 
(ranging between 0.29 and 0.59) likely reflect that the 
comparison was made between simulated data representing a 
0.25 ° resolution cell and observed data from weather stations 
located at specific points within this cell. Additionally, the 
region study is known to be complex to model accurately 
(Pohl et al., 2021; Pohl et al., 2023). As a consequence of 
the close performances of the two climate models, both were 
used to run MOA.

2. Winegrowing Future in New Zealand South 
Island
The application of the MOA optimisation model provided 
insights into the potential impacts of climate change on 
current vineyards and explored the wine-growing potential of 
the New Zealand South Island beyond existing wine-growing 
regions. The observed change in climate, as indicated by 
the Huglin Index, aligns with the expected warming trends 
in this area (Ausseil et al., 2021; Pearce et al., 2018).  
Although the warming may not be substantial in the near term 
compared to future periods, the advancement of veraison 
and ripeness stages demonstrates the high sensitivity of 
grapevine development to potential future temperatures. 
Ausseil et al. (2021) also investigated the impact of 

climate change on flowering, veraison, and target sugar 
ripeness for mid-century (2046–2065) and end-of-century 
(2081– 2100) periods in New Zealand, including Sauvignon 
blanc. Their findings of advanced veraison and ripeness 
dates are consistent with the results obtained in this study.  
However, the authors reported smaller advancements in 
phenological stages compared to the projections presented in 
this work; approximately one to two weeks for both stages 
in the mid-term and intermediate scenarios (i.e., RCP2.5 and 
SSP2-4.5) in the long term, and around two to three weeks 
for both stages in the long term with the high GHG emission 
scenario (i.e., RCP5-8.5 and SSP5-8.5). The compression 
of time between the veraison and target sugar ripeness 
projected by MOA is also consistent with their findings. 
The disparities in results can be attributed to differences in 
climate data used, including the regional climate models 
(RCMs) and climate projections (RCPs instead of SSPs), as 
well as variations in the studied period and scale (regional 
instead of the entire South Island). Nonetheless, the overall 
trend of advancing phenological stages is consistent with 
previous studies conducted in New Zealand and worldwide 
(Cameron et al., 2020; Cook and Wolkovich, 2016; Hall et al., 
2016; Koufos et al., 2020; Ramos and Martínez de Toda, 
2020). 

While previous studies have examined the changes in 
grapevine varieties in New Zealand, there has been less 
focus on integrating the potential exposure to climate risks.  
This research addressed this gap by considering the climate 
risks associated with viticulture. Several studies have explored 
the risk of frost events on viticulture, with some indicating a 
decrease (Campos et al., 2017; Llanaj and McGregor, 2022; 
Molitor et al., 2014), an increase (Mosedale et al., 2015), 
or a combination of both (Meier et al., 2018) in frost risk, 
depending on the specific region and climate projections.  
The assessment of future potential exposure to climate risks 
using the MOA model reveals a projected increase in frost risk 
as a consequence of the earlier budburst, leading to a wider 
window of vulnerability between the budburst and the last 
spring frost. The budburst of Pinot noir, an earlier ripening 
variety than Sauvignon blanc, occurs earlier making it more 
vulnerable to late spring. Moreover, the projected increase in 
frost risk is expected to exhibit regional or localised patterns. 
The parts of the South Island projected to be most threatened 
by frost risk in the future were the plains and southern regions 
of Canterbury, Otago, and Southland, while the coastline 
was projected to be less impacted by frost, as previously 
demonstrated by Blanco-Ward et al. (2007) and Webb et al. 
(2018). Thus, understanding the regional risk of frost 
frequency is crucial, as parts of the south of the Island and 
the Canterbury region are strongly impacted by frost events. 
Grapevine disease risk under climate change has been the 
focus of a limited number of studies. Salinari et al. (2006) 
conducted simulations suggesting that climate change could 
increase disease pressure, while Mozell and Thach (2014) 
suggested that changes in temperature and humidity could 
contribute to the increased presence of insect-borne diseases. 
In this study, the assessment of potential exposure to disease 
risk was based on the number of pathogen treatments.  
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The results indicated a minor increase in disease risk over 
the studied periods. Vetharaniam et al. (2021) investigated 
botrytis risk and projected both a minor decrease and a 
modest increase in disease risk, which aligns broadly with 
the findings of this study. Additionally, the larger increase in 
disease risk projected for near-coast areas and with the SSP5-
8.5 scenario corresponded to the higher expected humidity in 
these regions and under this scenario. As for frost risk, Pinot 
noir was projected to be more impacted by pathogens than 
Sauvignon blanc as a consequence of its earlier budburst. 
Regarding heat risk, the results of this study suggested that 
the South Island is projected to remain unimpacted by heat 
waves. This finding indicates that heat waves are unlikely 
to be a limiting factor for winegrowing in the South Island 
of New Zealand in the future. However, uncertainties and 
limitations related to this finding are discussed below.

The MOA model provides the best solutions based on the 
defined scenario and chosen parameters, which represent the 
optimal combinations of objectives and constraints. Due to 
the diversity of objectives, it is rare to find a single solution 
that satisfies all criteria. Thus, the solutions represent trade-
offs between the objectives and constraints. Ultimately, the 
selection of a solution is left to the user, allowing them to make 
the final decision at the end of the process (Collette and Siarry, 
2003). Cells not defined as best solutions by the model do not 
imply that they are unsuitable for winegrowing, but rather 
that the objectives/constraints combination is less favourable. 
Therefore, the figures presented in the study (Figure 5–8) 
represent only the best solutions, and other areas may still 
be suitable for winegrowing but are considered less optimal. 
According to the MOA model, the current vineyards in the 
Marlborough region are projected to remain among the 
best areas for winegrowing in the South Island throughout 
the 21st

 century for both Pinot noir and Sauvignon blanc, 
under both SSPs. This finding aligns with the projections of 
a previous study (Vetharaniam et al., 2021). Additionally, 
Vetharaniam et al. (2021) suggested that the suitability for 
Pinot noir in Marlborough may experience a small decrease, 
while the suitability for Sauvignon blanc is expected to 
increase or remain constant. Although this study did not 
directly assess the degree of suitability, the presence of 
a significant number of Sauvignon blanc solutions in the 
Marlborough region (Figure 8) among different cultivars 
tends to support this projection. However, it’s important 
to note that changes in agroclimatic conditions, such 
as warming and advancement of phenological stages, 
may make it more challenging to produce current wine 
types and lead to changes in wine style in the upcoming 
decades. Winegrowers may need to adapt by considering 
alternatives like switching to later-ripening grape varieties or 
relocating their vineyards further inland and/or southward. 
The study by Vetharaniam et al. (2021) identified Nelson, 
Marlborough, Canterbury, Otago, and Southland as the 
most suitable parts of the South Island for winegrowing 
of both Pinot noir and Sauvignon blanc based on climate 
scenarios. These findings are consistent with the best 
solutions identified in our study. Furthermore, the inter-
cultivar analysis highlights that Pinot noir tends to be more 

suitable than Sauvignon blanc in Otago, while the opposite 
is projected for Canterbury, which aligns with the previous 
study (Vetharaniam et al., 2021).

3. Uncertainties and Limitations
The uncertainties and limitations of this work primarily 
revolve around the climate data used. The dataset employed 
in the study consists of downscaled projections derived 
from General Circulation Models (GCMs). There are 
inherent assumptions and limitations associated with the bias 
correction method and downscaling process, as described 
by Trasher et al. (2022). Additionally, the choice of the 
climate model itself introduces uncertainties. Bias correction 
is a technique used to address systematic errors in climate 
models, but it does not guarantee the accuracy of models. 
One way to address this issue is to employ a multi-model 
approach by combining different climate models (Thao et al., 
2022). Several ensemble averaging methods (Massoud 
et al., 2019) exist that aim to enhance the reliability of 
climate projections by reducing uncertainties among 
GCMs (Tegegne et al., 2020). Research by Tegegne et al. 
(2020) indicates that ensemble approaches yield results 
closer to observations compared to using a single model. 
Raju and Kumar (2020) have proposed a method for selecting 
and combining GCMs in an ensemble. However, it is worth 
noting that ensemble approaches require more computational 
resources and time to implement. Additionally, it has been 
observed that ensemble approaches may struggle to capture 
different extreme characteristics (Tegegne et al., 2020). 
The spatial resolution of 0.25 ° × 0.25 ° used in this study 
allows for the examination of climate impacts at local 
to regional scales. However, it may not capture events 
occurring at finer levels. Since the study focused on events 
such as frosts and heatwaves, which can occur at various 
spatial scales including vineyard and plot levels, some of 
these events in the future may not be fully captured in the 
results. For example, while the study projects that the South 
Island of New Zealand will remain unaffected by heat waves, 
New Zealand already experiences hot days, thus localised 
areas within the South Island may experience heatwaves. 
However, the spatial resolution of the data used in this 
study may not be sufficient to identify such localised events. 
Additionally, when identifying new areas favourable for 
viticulture in the future, coarse spatial resolutions can lead 
to less precise investigations. In other words, regions with 
good winegrowing potential may not be identified as the best 
solutions due to the poor winegrowing conditions within the 
larger grid cell. Studies employing finer spatial resolutions can 
address these limitations and provide more detailed insights 
into localised climate events and suitable viticultural areas. 
The uncertainty related to the choice of climate data was 
estimated by separately running MOA with two climate models 
(ACCESS-CM2 and IPSL-CM6A-LR). The inter-model 
uncertainties tended to increase toward the 21st century which 
are consistent with the increasing temperature difference 
observed between the two climate models. However, their 
values remained relatively low providing confidence in 
the orders of magnitude of projected warming, projected 
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veraison and ripeness date anomalies (GFV and GSR), and 
projected frost, heat, and disease risk exposure. Regarding 
MOA winegrowing best solutions, outputs with ACCESS-
CM2 and IPSL-CM6A-LR were also very close. The lower 
number of best solutions identified with IPSL-CM6A-LR is 
also consistent with the cold bias of this model compared 
to ACCESS-CM2. The agreement between the two climate 
models for the optimisation of grape varieties also shows 
the consistency of the MOA model optimisation process. 
More robust results could be obtained by coupling MOA 
to more climate models, especially when using higher-
resolution climate data. Indeed, the small difference between 
climate models at 0.25 ° × 0.25 ° may lead to relatively similar 
outcomes. However, climate data with a higher resolution 
may better capture extreme climate events influencing the 
optimisation process of MOA. 

Secondly, there are uncertainties and limitations associated 
with the MOA model itself, both in terms of the defined 
scenario and the model’s construction. The scenario chosen 
for the model provides the necessary information and guides 
how the model computes solutions. Therefore, the results 
cannot be interpreted without considering the specific 
scenario and its parameters, such as objectives, constraints, 
and grape varieties. It should be noted that this study only 
investigated two grape cultivars, and different results may be 
obtained with other cultivars. 

The construction of the MOA model also introduces 
uncertainties and limitations to this work. The model is 
based on various concepts having their inherent limitations 
(Huglin, 1978; Parker et al., 2011; Parker et al., 2020; 
van Leeuwen et al., 2008; Winkler et al., 1974). While MOA 
primarily relies on temperature projections, other climate 
variables, such as rainfall (van Leeuwen et al., 2009) and wind 
(Bonnardot et al., 2005), also influence wine development. 
Neglecting these variables can lead to discrepancies in the 
results. For example, the MOA model projects some best 
solutions for viticulture in the future on the West coast of the 
South Island, which is known for its high rainfall amount. 
However, based on the expertise of the authors, winegrowing 
in this area is not considered feasible, even in the context 
of climate change. Therefore, the MOA model likely 
underestimates the impacts of precipitation, particularly in 
areas with very high rainfall. Caution should be exercised 
when using the MOA model to investigate such areas, and 
additional considerations should be taken into account. 
Overall, the uncertainties and limitations associated with 
the MOA model highlight the need for careful interpretation 
of results and the consideration of other relevant climate 
variables and expert knowledge in viticulture.

Therefore, it is important to interpret our results with caution, 
particularly when examining specific values of variables 
(e.g., veraison or ripeness date advancement, frost risk 
frequency...). However, despite this work’s assumptions, 
uncertainties, and limitations, we have confidence that the 
overall trends and orders of magnitude described here are 
accurate. Further research will be necessary to validate 

the presented values and address remaining gaps, such as 
studying climate risks using data with finer spatial resolution. 

CONCLUSION

In summary, we used the MOA optimisation model to 
investigate the potential impacts of climate change on 
viticulture in the South Island of New Zealand. The aims were 
to evaluate the projected evolution of climate risks (frost, 
heat waves, diseases) and phenological stages (veraison, 
target sugar ripeness) for two cultivars (Sauvignon blanc 
and Pinot noir), to assess the suitability of current vineyards 
for the future and to identify emerging areas favourable for 
viticulture.

Two climate projection datasets, IPSL-CM6A-LR and 
ACCESS-CM2, were compared and the results showed 
significant differences in the minimum, mean, and maximum 
temperatures in the different scenarios and periods, with a 
remarkable spatial variability. Both datasets were separately 
used to run the MOA model.

The findings revealed an overall advancement of veraison 
and ripeness phenological stages throughout the 21st century, 
particularly pronounced at higher temperatures. Moreover, a 
compression of the time between the veraison and target sugar 
ripeness was also projected. The frost is projected to have 
more impact on Pinot noir than Sauvignon while it is projected 
to occur at a regional to local scale, mainly affecting the 
Canterbury Plains, southern Canterbury, and Otago regions. 
However, the coastal areas are expected to be less affected by 
frost. A slight increase in disease risk exposure is expected, 
with a greater impact along the coast and on Pinot noir.  
In terms of heatwaves, the study shows that the South Island 
of New Zealand is unlikely to be affected by this climate risk. 
Marlborough region is projected to remain an important 
winegrowing region in New Zealand over the next decades as 
its vineyards were identified by the MOA model among the 
best solutions for viticulture in the near, mid-, and long term, 
for both Pinot noir and Sauvignon blanc grape varieties.  
For the South Island of New Zealand, MOA modelled that 
the best solutions for winegrowing would spread inland and 
southwards, with a faster pace for Pinot noir than Sauvignon 
blanc.

It is important to consider the limitations and uncertainties 
associated with the climate data, the scenario used, and the 
MOA model itself. These factors should be considered when 
interpreting the results. Further research is needed to confirm 
our findings and fill the remaining gaps.

MOA model demonstrated its promising usefulness for 
assessing climate risks, as well as for identifying future 
winegrowing regions and optimising cultivars. It is a valuable 
and useful tool to help determine the optimal location of 
future vineyards and grape varieties based on a range of 
objectives and constraints.
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