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Abstract
Cryptography is fundamental to ensuring the security and privacy of space communications, enabling the reliable

exchange of sensitive data between spacecraft, ground stations, and other components of space infrastructure. However,
using encryption can be computationally costly, resulting in lower throughput or higher latencies. One strategy to mitigate
the costs imposed by cryptography is using accelerators. In addition, these systems that operate in space are susceptible
to faults due to adverse conditions and require the implementation of protection techniques to mitigate these faults and
ensure correct operation. In this context, this paper presents a fault-tolerant and high-performance encryption accelerator
for the ChaCha20 stream cipher. We present a low-cost optimized implementation and a fault-tolerant version using
Hamming Error Correction Code (ECC) and Triple Modular Redundancy (TMR). Results show that the optimized and
hardened versions accelerated the application by 23× and 17× compared to the software solution. The optimized solution
can process 281.25 MB/s, presenting a higher throughput than state-of-the-art works that rely on FPGA implementation.
The hardened solution can process 187.50 MB/s, leading to an overhead of 1.52× more Look-Up Tables (LUTs) and
1.03× more Flip-Flops (FFs) compared to the optimized solution of this work.

Index Terms
Cryptography, RFC 8439, Hardware Acceleration, Fault Tolerance.

I. Introduction
Encryption is widely used in various applications to enhance security and meet compliance requirements. However,

implementing encryption can be challenging in scenarios with limited resources, such as embedded devices, due to
potential overheads [1]. In space systems, data cryptography is vital for securing sensitive data transmissions and
ensuring data privacy and security. The encryption protects satellites, subsystems, mission data, and the entire space-
ground system [2].
Cryptography categorizes ciphers into several subdivisions, including symmetric, asymmetric, block-based, or stream-

based. Stream cryptography involves generating a key stream from an initial key and combining it with cleartext to
produce ciphertext [3].
To mitigate encryption/decryption overheads, cryptographic accelerators and lightweight encryption algorithms can

be employed. The study [4] shows that ChaCha and ASCON offer faster performance and lower energy consumption
than traditional AES ciphering. However, the same study concludes that ASCON has a higher cost in some of its
functions, resulting in ChaCha being the best choice for most use cases.
ChaCha, a stream cipher proposed by Daniel J. Bernstein in 2008, is used in various software applications like

WireGuard, OpenSSH, and TLS. It was standardized in RFC 8439, describing its key features and parameters [5]–[7].
Its adaptability to resource-constrained environments makes it well-suited for space systems.
Some works presented the development of hardware cryptographic accelerators for the ChaCha cipher. The work [8]

introduced a scalable hardware implementation capable of achieving high throughput across different configurations
for ChaCha8/12/20. Semenov [9] emphasized the potential of hardware acceleration, achieving a 3.61× speedup over
software by optimizing logic resource usage even with certain operations, like adding internal states and XOR with
cleartext, being performed in software. Similarly, the work [10] implemented the ChaCha20 cipher in FPGA, providing
insights into resource utilization.
This work introduces a fault-tolerant ChaCha20 hardware accelerator aimed at high performance with low resource

utilization. The accelerator was designed with a combination of spatial and information redundancies to improve the
accelerator reliability, including the Hamming Error Correcting Code (ECC) and the Triple Modular Redundancy (TMR).

This work was supported in part by the Foundation for Support of Research and Innovation, Santa Catarina (FAPESC-2021TR001907), the
Brazilian National Council for Scientific and Technological Development (CNPq - process 50794/2023-5), the Brazilian National Coordination of
Superior Level Staff Improvement (CAPES/PROSUC), the EU project RADNEXT - Horizon 2020 (grant 101008126), and Project HARV in the
framework of the action ”Accelerateur d’innovation” from the University of Montpellier.
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II. Hardware Implementation
The accelerator was initially designed in a standard form (STD), utilizing a single instance of the Qround component

and additional registers for storing intermediate results, which were periodically written back to the main state matrix
register.
Subsequently, we developed an optimized design (OPT) featuring two sets of four instances of the Qround com-

ponent, facilitating the computation of parallel column- and diagonal-wise rounds. These sets are interconnected via
internal wiring to map each output of the first set to its corresponding input in the subsequent set. This configuration
enables the computation of a full DoubleRound at once, simplifying the controller and enhancing throughput.
Considering the architecture design of standard and optimized solutions, we developed a fault-tolerant (FT) solution

from the optimized version. We chose the optimized version because it uses fewer memory elements, which leads to
fewer Single-Event Upsets (SEUs) in the design.

A. Hardware Architecture
The architecture of the hardened accelerator is illustrated in Fig. 1. In this optimized configuration, two sets of four

elements compute the Qround function connected in series. The first set concurrently computes the four column-wise
rounds using an instance of the QuarterRound. Subsequently, the outputs of these blocks are linked to the inputs of
the subsequent set of QuarterRound blocks, which concurrently compute the diagonal-wise rounds. This approach
eliminates the need for a write-back register to store intermediate results, as each clock cycle computes an entire
DoubleRound.
The Concat component merges various cipher inputs, including the current block counter (i_BLK_COUNT), the key

(i_KEY), and the nonce (i_NONCE). These inputs constitute 3/4 of the initial state matrix, while the remaining 128 bits
correspond to the constant ”expand 32-byte k”. The MUX switches between the initial state (i_DATA_FROM_CONCAT)
and the state of the previous round (i_DATA_FROM_LAST_ROUND), feeding into the RegPP component.
The QRound function takes four 32 bit inputs as a 128 bit vector, which undergo various logic and arithmetic operations,

including 4 additions, 4 XORs, and 4 rotations. The DoubleRound component encompasses two sets of four instances of
the QRound component (totaling 8), arranged to execute all column-wise operations in parallel, followed by simultaneous
computation of diagonal-wise rounds.
The RoundCounter signals through its output (o_ALL_ROUNDS_FINISHED) when all 20 rounds are done. The SMAdder

module adds each of the 16 elements of the current state matrix (RegPP) to the initial state matrix (Concat), without
carrying bits between matrix elements.
After all rounds, a bitwise XOR operation is performed between the cleartext and the generated One-Time Pad

(OTP), generating the ciphertext in the output o_CIPHER_TEXT.
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Fig. 1. Block Diagram of the hardened ChaCha20 Accelerator
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B. Fault Tolerance Implementation
We applied Hamming ECC to harden the memory elements of the datapath (RegPP and Round Counter). From Fig. 1,

the ENC and DEC components represent the encoding and decoding logic from Hamming and generate the ECC that
is stored with its respective value. The controller was hardened by using TMR with a bitwise majority voter system,
sufficient to protect against SEUs affecting one of its triplicated modules, mitigating most of the errors in memory
elements for radiation environments, as seen in [11].

C. Fault Injection
We performed a simulation-based fault injection to evaluate the reliability of the accelerator. The solution presented

in [12] was used to perform SEU injections affecting a single bit into the registers and was customized to operate on
the designed accelerator. This fault injection technique uses built-in commands of the ModelSim simulator.
The fault injection strategy for each iteration consists of initially simulating without fault injections to obtain a golden

run. The next stage consists of listing all the registers in the circuit and randomly choosing one bit to perform the fault
injection. Next, a time is randomly calculated to perform the fault injection within the simulation execution time. In each
simulation, a single fault is injected by inverting a bit within the value of the target signal. Whether the output of any
external port differed from the golden run at the end of the simulation, it is assumed that the fault resulted in an error
in the ciphertext. We performed 1000 simulations, each configured to encrypt 1MB of data.

III. Results
We used Xilinx Vivado 2020.1 to synthesize the hardware described in VHDL and the Mentor ModelSim 20.1 for

design verification and reliability analysis. We used the Xilinx Zedboard development kit (Zynq-7000) for prototyping
and the OpenSSL [13] as a software implementation reference.

A. ChaCha20 Accelerator
Table I summarizes the usage of Look-Up Tables (LUTs) and Flip-Flops (FFs), with themaximum operating frequency

and estimated power dissipation for each implementation.

TABLE I
ChaCha20 accelerator synthesis results.

Implementation LUTs FFs Fmax (MHz) Power (mW)
ChaCha20 STD 1,562 1,044 81.80 167
ChaCha20 OPT 2,676 518 52.64 202
ChaCha20 FT 4,086 532 35.09 212

The optimized (OPT) solution requires about 1.63× more LUTs and 2× less FFs than the standard (STD) solution,
and presents a lower maximum frequency because the circuit modifications increased the critical path. The hardened
(FT) version requires around 52% more LUTs and 3% more FFs than the optimized version, resulting in the hardened
version having a 33% reduction in the maximum frequency.
Considering the number of cycles required to encrypt 512 bits of data, we estimated the throughput and energy

consumed to process 1MB in each version, as shown in Table II.

TABLE II
ChaCha20 accelerator performance.

Implementation Cycles Throughput (MB/s) Energy∗ (mJ)
ChaCha20 STD 103 51.25 3.26
ChaCha20 OPT 12 281.25 0.72
ChaCha20 FT 12 187.50 1.13

∗ Estimated energy consumed to process 1MB.

Even with a lower frequency than the standard solution, the optimized solution achieves a 5.4× higher throughput
while consuming 4.6× less energy. The throughput of the hardened version is lower than the optimized version due to
the reduction in frequency, but it is still 3.6× higher than the standard version, consuming 2.9× less energy.
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B. ChaCha20 SoC
The accelerator was integrated into an SoC to compare the processing time with the software implementation on

an ARM processor (Table III). We used the AXI4-Stream interface with a Direct Memory Access (DMA) controller for
integration.

TABLE III
ChaCha20 SoC synthesis results.

Implementation LUTs FFs Fmax (MHz) Power (W)
ChaCha20 SoC STD 3,109 4,391 72.84 1.696
ChaCha20 SoC OPT 3,914 3,871 44.60 1.702
ChaCha20 SoC FT 5,416 3,895 31.78 1.711

The introduction of DMA caused an increase of 2× in LUTs and 4.2× in FFs for the standard solution, and by 1.5× in
LUTs and 7.4× in FFs for the optimized and hardened versions. Including DMA with the AXI4-Stream interface slightly
reduced the maximum frequency compared to the standalone accelerator.
We compared the SoC versions of the accelerator to the software solution running at 667MHz on the ARM processor.

The system was initially configured to perform the cryptography only by the ARM processor. Then, the ARM processor
configures the DMA to send the 512-bit blocks to the accelerator, which controls the cryptography process. Table IV
presents the execution time for encrypting 1MB of data.

TABLE IV
Execution time to cipher 1MByte.

Implementation Execution time (ms) Acceleration
Software (ARM) 140.13 -
ChaCha20 STD 25.28 5.54
ChaCha20 OPT 5.87 23.87
ChaCha20 FT 8.02 17.47

The standard and optimized solutions show an acceleration of approximately 5.5× and 23× compared to the
application entirely in software, and the hardened version shows an acceleration of 17×. The acceleration differs
due to the lower maximum frequency reported in the hardened version compared to the optimized one.

C. Reliability analysis
The reliability evaluation consisted of ModelSim simulations executed on a computer with an Intel Core i7-12700

processor and 16 GB of RAM, running a Linux operating system. We conducted 1000 simulations for the optimized and
hardened solutions, consuming about 62 hours to validate both configurations. Table V shows the simulation results
for the fault injection campaign.

TABLE V
Reliability results.

Implementation Runs Errors Sim. Time
ChaCha20 OPT 1000 918 9h17min
ChaCha20 FT 1000 0 52h35min

TABLE VI
Cost and performance results of the accelerator in comparison with related works.

Work Implementation Device LUTs FFs Fmax (MHz) Power (mW) Throughput (MB/s)
[8] - Virtex-7 XC7VX485T 2,369 2,152 362.50 - 270.00
[9] Verilog Cyclone V 1,440 1,094 50.00 - 126.25
[10] - Virtex-7 XC7VX485T 2,288 1,050 - - -

This work STD VHDL Zynq-7000 1,562 1,044 81.80 167 51.25
This work OPT VHDL Zynq-7000 2,676 522 52.64 202 281.25
This work FT VHDL Zynq-7000 4,086 538 35.09 212 187.50

The simulation results from the optimized version showed 918 errors in 1000 performed simulations. We observed
that most of the errors were caused by faults injected into the RegPP component, which represents the most significant
part of the memory elements in the circuit.
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In the hardened version, the implementation detected and corrected all the faults. This demonstrates that the applied
Hamming ECC and TMR techniques can protect the circuit against SEUs consisting of single-bit flips.

D. Discussion
The comparison with related works is presented in Table VI. Compared to [8], our optimized solution achieves higher

throughput, utilizing only 8% more LUTs and consuming 4× fewer FFs, despite operating at a frequency 7× lower.
When compared to [9], our optimized version achieves a throughput 2.2× higher while using half the FFs. Addi-

tionally, the authors emphasize that two accelerator units were required to achieve the reported throughput, and [9]
employs software for a portion of the cipher, resulting in a lower LUT count.
The work [10] utilizes a comparable number of LUTs and roughly double the FFs compared to our optimized version,

but they do not provide any performance metrics. It is important to mention that the related works do not present
hardened solutions.
Despite a decrease in throughput compared to the optimized version, our hardened solution achieves a 1.5× higher

throughput than [9] even with a lower frequency. In addition, it is important to mention that the related works do not
present hardened solutions.
Regarding resource utilization, our hardened implementation uses 4× fewer FFs than [8] and half the FFs compared

to [9], [10]. This resource reduction in FFs represents a valuable result regarding reliability facing SEUs, since memory
elements are considered one of the most sensitive parts of circuits in the space environment [14]. Moreover, unlike
Single Event Transients (SETs), in FFs, the bit-flips remain stored and potentially create problems up to the FF update.
Our optimized implementation achieves the highest throughput compared to related works implemented in FPGA,

even when utilizing a mid-range FPGA device. Additionally, the lower resource utilization of FFs in optimized and
hardened solutions sets our approach apart from all other related works.

IV. Conclusion
This paper presented the implementation of a standard and an optimized encryption accelerator for the ChaCha20

stream cipher. We also applied reliability techniques such as Hamming ECC and TMR to generate a fault-tolerant
accelerator version.
We performed a fault injection campaign to evaluate the reliability of the accelerator. We observed that the techniques

applied were sufficient to protect from SEUs affecting a single bit. We also compared the cost and performance
achieved with the related works. Our optimized solution presented higher throughput with a good trade-off between
resource utilization.
For future work, we plan to perform a reliability analysis of the accelerator through particle accelerator tests and inte-

grate it into a reliable SoC solution for space applications. Finally, implementing the Poly1305 message authentication
code (MAC) would increase the applicability of the accelerator.
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