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Abstract. Diffusion models have shown promising results in cross-modal
generation tasks involving audio and music, such as text-to-sound and
text-to-music generation. These text-controlled music generation mod-
els typically focus on generating music by capturing global musical at-
tributes like genre and mood. However, music composition is a com-
plex, multilayered task that often involves musical arrangement as an
integral part of the process. This process involves composing each in-
strument to align with existing ones in terms of beat, dynamics, har-
mony, and melody, requiring greater precision and control over tracks
than text prompts usually provide. In this work, we address these chal-
lenges by extending the MusicLDM—a latent diffusion model for mu-
sic—into a multi-track generative model. By learning the joint proba-
bility of tracks sharing a context, our model is capable of generating
music across several tracks that correspond well to each other, either
conditionally or unconditionally. Additionally, our model is capable of ar-
rangement generation, where the model can generate any subset of tracks
given the others (e.g., generating a piano track complementing given bass
and drum tracks). We compared our model with existing multi-track
generative model and demonstrated that our model achieves consider-
able improvements across objective metrics, for both total and arrange-
ment generation tasks. Sound examples can be found at https://mt-
musicldm.github.io

Keywords: Diffusion model · Multi track · Arrangement generation ·
Music generation.

1 Introduction

In recent years, diffusion models [9] have demonstrated their ability to learn
complex distributions, rendering them well-suited for data types such as raw au-
dio. These advancements have significantly impacted the domains of speech and
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general audio generation [12,13,15,19,23–26,44,47–49], as well as the generation
of music directly within the audio domain [2,7,11,29,30,35,42]. User-controlled
neural audio synthesis, particularly in music generation, has the potential to
revolutionize music industry by providing musicians with tools for quick compo-
sitional prototyping, speeding up the creative process. Additionally, these tools
contribute to the democratization of the field by allowing amateur musicians
to leverage generated pieces to compose without extensive knowledge of instru-
ments, music theory and years of musical education.

Most generative music models operate by conditioning music on high-level
ideas expressed as text, such as genre and mood, leading to text-to-music (TTM)
task. However, TTM paradigms have conceptual problems. One challenge is that
music, as an abstract entity, is generally difficult to describe with words. An-
other issue is that text is not an effective medium to convey time-dependent
musical attributes, which are crucial for musical expression. Furthermore, music
is a multilayered art in which many tracks of instruments simultaneously play
their unique roles while being in correspondence with each other on lower-level
attributes like notes, timbre, dynamics, harmony, and rhythm. The essence of
musical composition often boils down to arrangement—structuring the piece,
orchestrating interactions, and determining the overall sonic character by dis-
tributing texture among different instruments or voices, a complexity that is
challenging to convey through text.

To bridge the conceptual gaps in current music generation models, we intro-
duce the Multi-Track MusicLDM, a diffusion-based model that generates coher-
ent music in multiple tracks or stems (terms we use interchangeably), ensuring
they correspond and collectively create a unified musical piece. To achieve this,
we utilized the MusicLDM [2] model, which is an adaptation of AudioLDM [23]
for music, and transformed it into a multi-track audio diffusion model. Taking a
multi-track inspiration from the recent work MSDM [28] and operating on the la-
tent space, our model learns a joint probability distribution for tracks that share
a contextual structure and generates music mixtures in separate tracks, a process
referred to as total generation. Leveraging the text and music conditioning capa-
bilities of the CLAP [43] component, our model provides options for additional
conditioning. Audio conditioning can be applied by using an existing reference
track processed through CLAP’s audio branch to influence the generation. This
track can guide the overall character and content of the generated music, ef-
fectively enabling a transfer that preserves the essence while allowing creative
deviations. Similarly, text conditioning can influence the genre, mood and over-
all character of the generated tracks. Additionally, by employing a well-known
method from diffusion model, inpainting, our model is capable of imputation of
tracks or generating any subset of tracks given others. We refer to this process as
arrangement generation. Arrangement generation enables, for example, the cre-
ation of specific musical parts, like piano or guitar, to accompany existing bass
and drum tracks. The conditioning mentioned above can be used in combination
with arrangement generation, giving our model an additional edge in creative
endeavors. By designing desired instrument combinations and using audio and
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Fig. 1. Multi-Track MusicLDM system overview: a) During training, our model pro-
cesses audio stems that are converted into Mel-spectrograms. A VAE encoder then
compresses these spectrograms into a 3D latent space, where LDM operates. For con-
ditional training, model takes an audio mixture as conditioning thought a CLAP input.
During inference, the model generates audio stems unconditionally, where the gener-
ated latent vector is first up-sampled back to a Mel-spectrogram by VAE decoder and
then converted into audio via HiFi-GAN. b) For arrangement generation, our model
takes as an input a set of given tracks to add (inpaint) the missing ones. In conditional
generation, it takes text or a reference music track as input though CLAP and uses it
to condition the LDM.

text conditioning, users have the flexibility to generate specific arrangements or
full musical pieces, tailoring the model to their compositional needs.

In our experiments, we demonstrate that our model can generate realistic mu-
sic across various scenarios: total track-by-track music generation, conditional
generations, and arrangement generation with any combination of stems. Fur-
thermore, we compared our model with the existing open source multi-track
generative model, MSDM, and demonstrated that our model, trained on the
same dataset, achieves considerable improvements in the Fréchet Audio Distance
(FAD) [16] score compared to the baseline.

As part of our commitment to reproducibility and open science, the code and
checkpoints of this study will be made available on GitHub upon acceptance of
this paper.

2 Background

Music Generation. Our system, Multi-Track MusicLDM (MT-MusicLDM),
depicted in Figure 1, is an extended version of the MusicLDM model capable of
learning and generating multiple simultaneous music stems. MusicLDM shares
its architecture with AudioLDM, which in turn is based on a Latent Diffu-
sion Model (LDM) [9] framework with a cascaded model structure. The system
comprises a text-audio encoder, an LDM generator, a Variational Autoencoder
(VAE) [17], and a vocoder. The role of text and audio encoding is played by
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CLAP [43], serving as the system’s encoder and mapping audio and text into a
shared embedding space for conditioning. This is followed by an LDM that acts
as the main generator, operating in the latent space (instead of directly on audio
or spectrograms), allowing for training and inference on limited computational
resources while retaining generation quality. This latent space is achieved by a
VAE that manages the data dimensionality, pre-trained to compress and recon-
struct Mel-spectrograms into latent representations. Finally, a HiFi-GAN [18]
vocoder synthesizes the audio output from the generated Mel-spectrograms.

Arrangement generation. The most similar work to ours is the commercial
product JEN-1 Composer [45], a framework that uses a latent diffusion-based
music generation system for versatile multi-track music generation. Different
from our approach, they use a latent space obtained directly from audio with
their own pre-trained autoencoder model for audio reconstruction, following the
Jen-1 architecture proposed in [21]. Additionally, the dataset used is also dif-
ferent from ours, as they used their own private dataset, which is larger and
of higher quality than the publicly available Slakh2100 [27] dataset that we
used. Unfortunately, as it is a commercial product, they do not share code,
datasets, or provide a free API for audio generation, making direct comparison
to our work impossible. Other recently published works have explored music-
to-music and arrangement-like music generation. STEMGEN [32] presented an
alternative paradigm for music generation by introducing a model that can lis-
ten and respond to musical context. Different from ours, STEMGEN uses a
transformer language model-like architecture on hierarchical discrete represen-
tations from VQ-VAEs [41] to model musical tracks. Some other works approach
the arrangement task with a one-to-many or many-to-one paradigm. For ex-
ample, [33] generates bass accompaniment using audio autoencoders. On the
other hand, SingSong [4], utilizing an architecture similar to AudioLM [1], pro-
posed a method for generating instrumental music to accompany input vocals
and demonstrated promising results. However, these works primarily concen-
trate on one instrument, offering limited versatility. Another work that serves
as our baseline, MSDM [28], introduced a novel diffusion-based, multi-source
generative framework trained via denoising score-matching [39, 40]. MSDM is
capable of synthesizing music, creating arrangements, and separating musical
sources while operating in the raw waveform domain. While MSDM is notable
for its flexibility, it exhibits limitations in audio quality and musical coherence.
Interestingly, although our model surpasses MSDM in most tasks, it struggles
with source separation—a limitation we attribute to its operation within a la-
tent space where mixtures and stems do not maintain a linear relationship. This
insight is prompting our future research in this direction.

Arrangement generation was extensively studied in the symbolic music do-
main. Using the audio-to-MIDI generation paradigm, these works typically focus
on generating harmonization for a given melody, such as in [31, 46], or extract-
ing pitch information from input vocals and generating chords suitable for the
melody, as seen in the commercial product Microsoft Songsmith, inspired by [36].
Other significant contributions include the works by [20] and [8], which explored
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generating kick drum and bass accompaniments, respectively, in the MIDI do-
main. The multi-track MIDI music generation paradigm was also employed in
systems like MuseGAN [5], MIDI-Sandwich [22], Multitrack Music Machine [6],
and MTMG [14]. Additionally, MIDI accompaniment generation based on audio
conditioning was suggested in [3].

3 Method

We introduce MT-MusicLDM, depicted in Figure 1, as an integration of Musi-
cLDM and MSDM. In section 1, we expand the LDM latent space to adopt Mu-
sicLDM for multi-stem music generation. This expansion enhances our control
and versatility over the music generation process. Next, in section 2, we create
musical arrangements for a given subset of tracks. Section 3 explores the use of
CLAP encoders to control the style of music with text and musical prompts.

3.1 Multi-Track LDM

Following AudioLDM and MusicLDM work, we employ denoising diffusion prob-
abilistic models (DDPMs) [9,37] for audio/music generation. DDPMs belong to
a category of latent generative variable models. Given two mappings between a
time-domain sample x and its corresponding latent space representation xlatent,
i.e. x↔ xlatent, the generation problem is to model q(xlatent) instead of q(x). We
first describe the mappings to and from the latent-space for multi-track music
and then explain the training and inference of the LDM.

Let xmix be a mixture composed of S stems xs with a duration of Tmix for
s ∈ {1, . . . , S} such that xmix =

∑S
s=1 xs. Also, denote the stack of stems as x

with dimensions S×Tmix. As shown in Figure 1, the individual stack of stems x
is transformed into a Mel-spectrogram xMel, using short-time Fourier transform
(STFT) and Mel operations, with dimensions S×T×F where T and F show the
time and frequency dimensions of Mel-spectrogram, respectively. Subsequently,
the VAE encoder translates xMel into a latent, compressed representation xlatent

with dimensions S×C× T
r ×

F
r , where r indicates the VAE’s compression ratio,

and C denotes the number of channels in the latent space. Following this, the
VAE decoder converts the latent, compressed representation, xlatent, to the Mel-
spectrogram domain as x̂Mel, which is then transformed to the time-domain x̂
by the HiFi-GAN vocoder. Therefore, the time-domain to latent space mapping,
x → xlatent, is composed of STFT, Mel, and VAE encoder, while the reverse
mapping xlatent → x, employs VAE decoder and HiFi-GAN vocoder.

The generative model for xlatent via the diffusion process is defined as pθ(z0) =∫
pθ(z0:N )dx1:N where z0 = xlatent is the latent representation and θ corre-

sponds to the parameters of the LDM model. Within the DDPM framework,
the LDM generator operates in the latent space to generate a latent represen-
tation z0 ∼ q(z0), either conditionally or unconditionally, from Gaussian noise
zN ∼ N (0, σ2

NI). The variable n in zn, where n ∈ [1, . . . , N ], represents the
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step number in the diffusion model’s forward or reverse process, and N de-
notes the number of total steps. The forward pass gradually introduces Gaus-
sian noise, ϵ ∼ N (0, I), to z0 = xlatent, i.e. zn = z0 + σnϵ ultimately resulting in
isotropic Gaussian noise zN with a distribution N (0, I) over N steps. Conversely,
the reverse process aims to eliminate noise by estimating the injected noise, ϵ,
at every step and obtaining zn−1 from zn, thereby incrementally reconstruct-
ing z0 = x̂latent. The DDPM parameterizes the reverse Gaussian distribution
p(zn−1|zn) with a neural network ϵθ(zn, n):

p(zn−1|zn)=N (zn−1|µθ(zn, n), σ
2
n) (1)

µθ(zn, n)=((σ2
n − σ2

n−1)ϵθ(zn, n) + σ2
n−1zn)/σ

2
n. (2)

Optimizing the evidence lower bound on the log-likelihood q(z0) simplifies to
minimizing the mean squared error between the predicted noise ϵθ and the Gaus-
sian noise ϵ, at each step, as follows:

L(θ) = Ez0,ϵ,n∥ϵ− ϵθ(zn, n, [ccond])∥2 (3)

where [ccond] denotes the optional use of conditioning, which we will touch upon
in more detail later in the section. Therefore, having the time-domain mapping,
x→ xlatent, one can estimate the LDM θ by minimizing the loss function L(θ),
presented in Eq. 3. For inference, the generation begins with the Gaussian noise
prior zN , followed by an iterative backward sampling process from p(zn−1|zn)
for each n ∈ {N, . . . , 1}, as outlined in Eq. 1. The final step involves mapping the
generated latent representation, x̂latent = z0, to the time-domain using xlatent →
x. To form the mixture of tracks, one can simply add all the rows of x̂, i.e.
x̂mix =

∑S
s=1 x̂s, with each x̂s being the s-th row of x̂.

For high-quality reconstructions using DDPM, a large number of steps, typ-
ically N = 1000, are traditionally necessary. However, to streamline the pro-
cess and reduce computational demands, denoising diffusion implicit models
(DDIM) [38] offer a compelling alternative. In this study, we utilize the DDIM
protocol, which allows for a substantial reduction in the number of required
steps, down to approximately N = 200 during inference, while still preserving
the generative quality.

As Audio/MusicLDM frameworks for audio and music generation are heavily
inspired by methods originally used in image generation, their network architec-
ture is borrowed from this domain. Like in image generation, a large UNet [34]
architecture is a common choice for diffusion models in audio and music do-
main. The UNet architecture consists of two symmetrical halves: an encoder
and a decoder, both enhanced with skip connections that bridge corresponding
layers. To accommodate zn with an additional dimension compared to typical
image or single-channel audio representations, S×C× T

r ×
F
r vs ×C× T

r ×
F
r in

Audio/MusicLDM, we extend the UNet architecture by using 3D convolutional
operations. We effectively enhance the operational dimensionality of UNet by in-
terpreting the channel dimension of zn as an additional spatial dimension. This
adjustment leads to the stems’ dimension now serving as the channel dimension.
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3.2 Conditional Generation

To have control over the generation pθ(z0), one can introduce some condition c
to the diffusion process, resulting in pθ(z0|c). The conditional diffusion process
is defined similarly to the unconditional process pθ(z0:N ) as follows:

pθ(z0:N |c) = p(zN )

N∏
n=1

pθ(zn−1|zn, c). (4)

Additionally, to enable more controllable generation, LDM models often em-
ploy classifier-free guidance (CFG) [10]. CFG is a technique in diffusion models
that enhances control over the adherence to conditioning information during
inference. This is achieved by randomly dropping the conditioning information
during training, thereby simultaneously training both conditional and uncondi-
tional versions of the LDM model. In the inference time, the strength of the
conditioning can be modulated by the CFG weight ϵ̂ = wϵu + (1− w)ϵc, where
w is the guidance scale weight that balances the model’s unconditional ϵu and
conditional ϵc predictions.

In this study, we employ CLAP to convert text prompts and musical tracks
into embeddings, which serve as the basis for conditioning the LDM. For exam-
ple, users can specify the type of guitar by conditioning on the CLAP embedding
of a reference track. Additionally, the strength of the conditioning can be ad-
justed using the CFG weight, increasing their creative options.

3.3 Arrangement generation

From a musical perspective, arrangement composition refers to the task of cre-
ating plausible musical accompaniments for a particular subset of given tracks.
In a broader machine learning literature setting, the task of filling a partially
observed the data is commonly referred to as imputation (inpainting in the im-
age domain) and aims to fill out the missing segments of variable. Learning the
joint distribution of musical tracks offers us a clear path to explore this task in
the latent space.

For a given subset of tracks, xI = {xs|s ∈ I}, arrangement generation task
is to find xĪ = {xs|s ∈ Ī}, as follows

argmax
xĪ

pθ(xĪ |xI), (5)

where Ī = {1, . . . , S}−I. Given the LDM, the search for xĪ happens in the latent
space, i.e. zĪ given zI . Note that given I, one can find the latent representation
of xI and xĪ as follows:

xI → m⊙ z0, (6)

xĪ → (1−m)⊙ z0, (7)

where m is a binary mask in the latent space with the same dimension as z0 and
ms = 1 if s ∈ I and ms = 0 otherwise.
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The generation of xĪ starts with sampling a Gaussian noise p(zN ) ∼ N(0, I)
as the total generation, but each denoising step in the reverse process if followed
by

zn−1 ← (1−m) · zn−1 +m · z′n−1. (8)

where z′n−1 ∼ N (zn−1|z0, σ2
n−1) is obtained by adding n − 1 noise steps to z0

through the forward process.
In essence, arrangement generation becomes a generation problem where, at

every step, parts of the latent space corresponding to the given tracks are masked
and replaced with their noise-added version. This approach compels the model to
perform generation under constraints, ensuring that the generated arrangement
tracks align well with the given ones.

4 Experimental Setup

4.1 Dataset

Following a similar research path as MSDM and to facilitate direct compari-
son, we used Slakh2100 [27], a dataset widely recognized as a benchmark in the
domain of music source separation. Although source separation was not our pri-
mary focus, the choice of Slakh2100 was motivated by our need for clean and
high-quality multi-track audio data for learning multi-track generation. Synthe-
sized from MIDI files using premium virtual instruments, the dataset consists
of 2100 individual tracks into subsets of 1500 for training, 375 for validation,
and 225 for testing. While the original Slakh compilation offers up to 31 distinct
instrumental classes, our experiment and subsequent analyses were limited to
S = 4 most prevalent classes: Bass, Drums, Guitar, and Piano. These classes
were selected due to their dominant presence in the dataset, ensuring a robust
and consistent basis for our evaluations.

In our experiments, we performed preprocessing steps on the dataset. We
downsampled the audio from its original 22.05 kHz to 16 kHz to align with the
specifications of our model. We read audio from the original tracks, creating
audio segments of 10.24 seconds with an additional random shift for training
samples. To convert the audio clips into a suitable feature representation, we
utilized a window length of 1024 and a hop size of 160 samples to generate
Mel-spectrograms with dimensions F ×T = 64×1024. For the creation of mixed
audio samples, individual tracks were combined to form mixtures. Differing from
the original MusicLDM, we abstained from normalizing the separate tracks or
their mixtures to prevent any potential peaking in the audio signals.

4.2 Model, Training and Evaluation Specifics

Our parameter configuration closely mirrors that of MusicLDM [2], with only
minimal adjustments. We extended the LDM model to accommodate the stem
dimension of S = 4, transforming it into a 3D LDM model. For our new 3D
LDM model, we employed a UNet architecture comprising 2 encoder blocks, a
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middle block transof, and 2 decoder blocks. We maintained the settings consis-
tent with previous configurations of MusicLDM, with the sole modification being
the adaptation to 3D convolutional layers. Additionally, we switched from the
”spatial transformer” used by MusicLDM and AudioLDM to a generic attention
block transformer, as the former was tailored for 2D, picture-like data, which
did not align with our model’s 3D data processing requirements.

To obtain a latent representation of Mel-spectrograms, we employed a mono-
track VAE from the MusicLDM model, which boasts a compression ratio r = 4,
effectively encoding stacks of Mel-spectrograms of size S×T ×F = 4×1024×64
into a 3D LDM latent vector with dimensions S×C× T

r ×
F
r = 4×8×256×16,

which respectively represent stems, channels, time, and frequency. The compo-
nents of MusicLDM—including the CLAP encoder, VAE, and the HiFi-GAN
vocoder—were taken from the pre-trained, publicly released checkpoint of Mu-
sicLDM4. This checkpoint was trained on an extensive collection of music audio
data. However, it is worth mentioning that these components were not trained
or fine-tuned for processing separate tracks, which imposes certain limitations
on the final audio quality of our model. These components remained unchanged
during the training phase of the 3D LDM generator, as illustrated in Figure 1. We
utilized pre-trained weights for MusicLDM components from publicly available
checkpoints.

We trained our model, MT-MusicLDM, with a dropout rate of 0.1 applied
during conditional generation, effectively resulting in training both unconditional
and conditional models. Training was conducted using the Adam optimizer with
a learning rate of 3× 10−5 for a duration of up to 1000 epochs. The number of
denoising steps for the LDM is set at N = 1000 during training and reduced to
N = 200 for DDIM sampling during inference.

We evaluated our models using the Frechet Audio Distance (FAD) [16] metric,
a widely recognized benchmark in music quality assessment. This metric was
employed across all our experiments, including total generation, arrangement
generation, and both audio- and text-conditioned tasks.

Table 1. FAD score comparison for total music generation tasks. Two variants of our
MT-MusicLDM model—unconditional and conditional with audio conditioning—are
compared with a baseline, along with a standard MusicLDM model. Note: The asterisk
(*) for MusicLDM indicates that evaluations were conducted on different datasets,
suggesting that direct comparisons may not fully reflect performance.

Model FAD ↓

MSDM (Baseline) 6.55
MT-MusicLDM (Uncond) 1.36
MT-MusicLDM (Audio Cond) 1.13
MusicLDM* 1.68

4 https://github.com/RetroCirce/MusicLDM

https://github.com/RetroCirce/MusicLDM


10 T. Karchkhadze et al.

5 Experiments and Results

5.1 Total Generation

We evaluated our MT-MusicLDM model in unconditional mode on the total
music generation task using the Slakh test dataset. For this evaluation, we gen-
erated audio stems, mixed them to create mixtures, and then calculated the FAD
between these generated mixtures and the mixtures from the test set. Given that
MSDM was the first and only open source model capable of generating music in
individual parts, we selected it as our baseline for comparison. Table 1 shows
the performance of our model, reported as ”MT-MusicLDM (Uncond)”, com-
pared to MSDM on the same dataset. We observed that our model significantly
outperforms MSDM, with a dramatic reduction in FAD scores from 6.55 to 1.36.
This substantial improvement highlights our model’s capability to generate high-
quality and coherent music audio track-by-track.

For broader context, we also incorporated the benchmark MusicLDM scores
from [2] in the table. We took the highest-performing variant, ”MusicLDM w/
BLM Text-Finetune.” This model underwent specialized training with beat-
synchronous latent mixup and was further enhanced through fine-tuning on text
prompts. We denote MusicLDM with an asterisk in the table to indicate that
evaluations were performed on distinct datasets: Audiostock [2] for MusicLDM
and Slakh for our model. Given the significant differences in dataset character-
istics these comparisons should be viewed as contextual rather than direct.

5.2 Audio Conditional Generation

In the audio-conditioned experiment, we explored the MT-MusicLDM condi-
tioned through CLAP audio branch, focusing on total audio generation with
existing audios used for conditioning. We utilized audio stems mixed from the
Slakh test dataset as inputs for our model’s CLAP encoder and generated audio
by conditioning our model with a CFG weight of w = 2.0. Subsequently, these
generated stems were summed to form new audio mixtures. We then calculated
the FAD score between these mixtures and the Slakh test set to evaluate the
model’s performance in generating coherent audio outputs. In the Table 1, we
reported our result as ”MT-MusicLDM (Audio Cond).” It is evident that au-
dio conditioning with CLAP noticeably steers generation towards the test set,
resulting in further improvement in FAD score. This validates our hypothesis
and underscores the potential of our model for audio content adaptation with
CLAP conditioning, leveraging a user-selected reference track as a dynamic cat-
alyst for creativity, opening new avenues for personalized and expressive music
generation.

5.3 Text Conditional Generation

To elucidate the impact of text prompts on the generation capabilities of our
model, we employed the MT-MusicLDM conditioned through CLAP’s text en-
coder branch and used the Audiostock [2] dataset as a validation set. We searched
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Table 2. Comparison of FAD scores for text-prompted audio generation against tar-
get audios (The lower FAD, the better). Audio generated under the text prompts ’Soft
Music’ and ’Energetic Music’ is compared against an evaluation set from the Audios-
tock dataset labeled with corresponding tags. This comparison demonstrates how text
prompts influence the model’s audio generation toward desired perceptual qualities.

Text Prompt Target Category

Soft Music Energetic Music

Soft Music 4.32 6.50
Energetic Music 6.82 3.99

for tag words ”energetic” and ”soft” within the dataset, creating subsets of cor-
responding audio files. Then, we generated audio files conditioning our model
with text prompts ”soft music” and ”energetic music” through CLAP text en-
coder, with CFG weight w = 2.0. We calculated FAD score across generated and
target audios. Table 2 presents the results of this experiment. Notably, the cross-
prompt and target folders yielded higher FAD scores, suggesting that the model
successfully follows the text prompts. It is worth mentioning that the model was
neither trained nor fine-tuned on text, nor on the Audiostock dataset. These
results underscore the potential of the model being effectively conditioned on
text prompts to influence the perceptual quality of generated music, aligning
with our statement that the model represents a step forward towards a versatile
audio model.

Table 3. FAD Scores for instrument stems (B: Bass, D: Drums, G: Guitar, P: Piano)
and their combinations in arrangement generation tasks on the Slakh2100 dataset (The
lower FAD, the better). The performance of our model is compared to the MSDM
baseline across various configurations, using two different FAD calculation protocols—
(upper) one for mixtures of generated and provided stems against target mixtures, and
(lower) one for generated stems against target stems.

Model Protocol B D G P BD BG BP DG DP GP BDG BDP BGP DGP

MSDM (Baseline) FAD 0.45 1.09 0.11 0.76 2.09 1.00 2.32 1.45 1.82 1.65 2.93 3.30 4.90 3.10
MT-MusicLDM Mixture [4] 0.16 0.79 0.35 0.34 0.81 0.54 0.68 1.29 1.03 1.00 1.18 0.89 1.03 1.42

MSDM (Baseline) FAD 6.88 5.48 4.25 6.45 4.47 6.69 6.16 4.24 4.76 6.80 4.16 4.06 5.80 4.55
MT-MusicLDM Standard 0.76 1.07 2.76 1.80 0.89 1.82 1.67 1.40 1.18 2.53 1.30 1.01 2.11 1.42

5.4 Arrangement Generation

In our arrangement generation experiment, we provided the model with a subset
of stems and tasked it with generating the remaining stems unconditionally. We
conducted 14 distinct experiments, each focused on generating a specific stem,
starting from a singles and expanding to include all possible combinations of
them. To assess the model’s performance, we calculated the FAD scores for each
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combination by comparing the generated stems to their corresponding targets
from the test dataset.

We chose MSDM as our baseline for the arrangement generation task, as it
is the only other open source model known to us capable of generating arrange-
ments in a similar manner. For direct comparisons, we adopted the performance
evaluation approach used by MSDM, which in turn utilized a generalized version
of the FAD protocol from [4], designed for arrangement generation involving mul-
tiple tracks. According to this protocol, generated tracks are mixed with existing
originals, and the FAD score is calculated for the resultant mixtures, providing
a robust measure of the model’s performance in producing coherent total audio
outputs. Additionally, to gain a comprehensive picture, we utilized a publicly
available implementation of MSDM to generate arrangements for all combina-
tions for direct comparison of FAD scores between solely generated stems rather
than just mixtures. We pursued this approach because we believe that mixing
with given stems can mask a model’s performance details, thus not allowing for
a detailed analysis of the model’s capacity to generate each stem subset.

In the Table 3, we report the FAD score for all instrument stems (B: Bass,
D: Drums, G: Guitar, P: Piano) and their combinations. The upper two rows of
table present a comparison of FAD scores for mixes following the protocol de-
scribed above, while the lower two rows detail the FAD scores between generated
tracks and their targets. Our model significantly outperforms MSDM in every
combination except for guitar stem generation. By analyzing the values in the
bottom row and reflecting on our listening experiences during experiments, we
noticed that our model demonstrates notably stronger performance on drums
and bass compared to guitar and piano outputs, which are occasionally slightly
inferior, as evidenced by the scores (0.76 and 1.07 versus 2.76 and 1.80), and at
times exhibit similarities with each other. This observation is further supported,
notably by the GP combination, which refers to guitar and piano pair generation
and registers as the highest FAD score among all combination categories. Addi-
tionally, we observed that when drums are not provided and the model lacks clear
rhythmic cues, it often struggles to maintain rhythmic coherence of generated
tracks with the given ones. This limitation is reflected by slightly higher FAD
scores for the combinations where drums are not included in provided stems. Ad-
dressing these limitations and achieving balanced performance across all stems
poses an interesting challenge for future research.

6 Conclusion and Future Work

We proposed the MT-MusicLDM model, a versatile framework designed to em-
power creators to generate and compose music in a variety of modes. This in-
cludes total track-by-track generation, conditioning generation with reference
music tracks or textual inputs, and creating arrangements using any combina-
tion of given and generated instrument tracks. Our experiments and evaluations
demonstrate that our model produces high-quality sounds across these generative
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tasks, achieving musical coherence and significantly outperforming the baseline.
This work opens several promising avenues for future research.

Although our generative modeling MT-MusicLDM model has shown signif-
icant results, limitations remain. These limitations stem from the fact that our
model relies on pre-trained components from MusicLDM, such as the VAE and
HiFi-GAN vocoder, which are not fine-tuned and specialized in processing indi-
vidual stems but were trained on music mixes. Additionally, the use of the Mel-
spectrogram domain further limits our model’s capacity to yield high-fidelity
state-of-the-art audio compared to commercial counterparts. Another source of
limitation is the choice of dataset, as Slakh2100 is very small considering the
data-extensive nature of diffusion models and the task of audio generation. Fur-
thermore, the Slakh dataset doesn’t contain any tags or textual descriptions for
genre or any other contextual information about its musical pieces.

Looking ahead, we aim to enhance the musical and rhythmic coherence of our
model and increase its versatility by expanding the list of available instruments,
potentially allowing for user-specified combinations. We intend to extend our
investigations by moving away from the Mel-spectrogram domain and possibly
shifting to higher sample rates. We plan to incorporate more state-of-the-art
VAEs and move to larger datasets beyond Slakh, including large text-to-music
datasets, as demonstrated in [4]. Additionally, we will explore incorporating dif-
ferent methods of conditioning for source separation to achieve truly versatile
music generation—a comprehensive music generation framework that supports
a wide range of creative expressions, including generation, arrangement, and
separation.
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