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Conway’s cosmological theorem and automata theory

PIERRE LAIREZ, Inria, Université Paris Saclay, France
ALEKSANDR STOROZHENKO, École polytechnique, France

John Conway proved that every audioactive sequence (a.k.a. look-and-say) decays into a compound of 94 ele-

ments, a statement he termed the cosmological theorem. The underlying audioactive process can be modeled

by a finite-state machine, mapping one sequence of integers to another. Leveraging automata theory, we

propose a new proof of Conway’s theorem based on a few simple machines, using a computer to compose and

minimize them.

1 INTRODUCTION
In 1986, John Conway published his study of integer decay under audioactive derivation [2, 3],

veiled in a brilliant atomic metaphor. The derivation process, now well-known in recreational

mathematics, mimics how we read strings. For instance, the seed “55555”, which we read as “five

fives”, is derived to “55”. In turn, “55" yields “25", iteratively generating the audioactive sequence:

55555 → 55 → 25 → 1215 → 11121115 → 31123115 → . . .

Any string of numbers, or word, such as “55555”, may be the start of an audioactive sequence
1
.

We say that a word splits as the concatenation 𝑢𝑣 of two contiguous subwords 𝑢 and 𝑣 if, for

all 𝑘 ≥ 0, the 𝑘th audioactive derivation of 𝑢𝑣 is equal to the concatenation of the 𝑘th derivations

of the subwords. A nonempty word that does not split is called an atom, and it is clear that

every nonempty word either splits into atoms or is an atom itself. There exist infinitely many

distinct atoms. While most only emerge through the derivation of carefully selected seeds, Conway

identified exactly 92 atoms, termed the common elements, that appear in the derivation sequence

of every word except “22” and the empty word. He further identified two families of atoms, the

transuranic elements, which appear in the derivation of all words containing a digit 𝑑 ≥ 4.

Celebrated by Conway as the finest achievement of “audioactive chemistry”, the cosmological
theorem states that there exists some 𝑁 ≥ 0, such that for every word 𝑥 and all 𝑘 ≥ 𝑁 , the 𝑘th

audioactive derivation of 𝑥 splits into common and transuranic elements. An interesting corollary is

the arithmetical theorem: the length of the 𝑘th derivation of any given nonempty word, other than

“22”, exhibits geometric growth with ratio 𝜆 ≃ 1.303557, an explicit algebraic number (see [2] for

more details). The original proofs of the cosmological theorem, by Conway, Richard Parker, andMike

Guy, claiming a bound 𝑁 = 24, has been lost, but complete proofs have since been given [4, 6, 10].

The audioactive derivation is (almost) described by a type of finite-state machine, called a

transducer. It is beyond question that Conway, and all others who have subsequently studied

audioactive decay, knew about automata theory and the associated formulation of the derivation

process. Yet, none of the published proofs make use of it. We propose to fill this gap, leading to

a very simple proof of the cosmological theorem based on two cornerstone results of automata

theory: first, the composition of two transducers is a transducer; second, there exists an algorithm

to check whether two automata recognize the same language (see Section 2).

Our proof strategy closely follows that of Conway, but with a substantial modernization: whereas

Conway’s method relied on manually “tracking a few hundred cases” [2, p. 14], we harness the

expressive power of automata and transducers, delegating the intricate casework to standard

1
The strings appearing here should be understood as a sequence of numbers, which most of the time are digits. For example,

we note that the audioactive derivation of “2222222222” should really be the two-element sequence (10, 2) , not (1, 0, 2) .
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computational tools. In summary, we begin by constructing an automaton to recognize splittings

(Theorem 3). From this, we derive a transducer capable of extracting the atoms of a given word.

Using this transducer, we generate an automata that recognizes all possible atoms after a specified

number of derivations. Notably, we find that the automata after 24 and 25 derivations are identical

(Theorem 5), indicating a convergence in the atom structure, thereby proving the cosmological

theorem. This approach involves working with automata and transducers that can have several

thousand states.

2 BASICS OF AUTOMATA THEORY
In this section, we present the key elements of automata theory that will be employed to demonstrate

the cosmological theorem. For an in-depth review of automata theory, we refer to [5, 9, 8, 7], for

example.

2.1 Transducers
Let us define an alphabet to be a finite set, calling its elements symbols. A word over an alphabet 𝐴

is a finite sequence of symbols of 𝐴. A subword is a contiguous subsequence of a word. The set

of words over 𝐴 is denoted 𝐴∗
, and a language over an alphabet 𝐴 is a subset of 𝐴∗

. The empty

word is denoted 𝜀, so we make sure that 𝜀 never denotes a symbol of the alphabet. We further

define 𝐴? = 𝐴 ∪ {𝜀}, the alphabet augmented with 𝜀, denoting the absence of a symbol.

A transducer is a finite directed graph whose edges may be labelled by an input and/or an

output symbol, and whose states may be labelled with an initial and/or final tag. More formally, a

transducer is a tuple T = (𝑄,𝐴in, 𝐴out, 𝐸,𝑄initial, 𝑄final) where:

• 𝑄 is the finite set of states;
• 𝐴in and 𝐴out are the input and output alphabets, respectively;
• 𝐸 ⊆ 𝑄 × 𝐴?

in
× 𝐴?

out
×𝑄 is the set of transitions, made of a source state, an input symbol

(or 𝜀), an output symbol (or 𝜀), and a target state;

• 𝑄initial ⊆ 𝑄 and 𝑄final ⊆ 𝑄 are the sets of initial and final states, respectively.

A transducer T defines a transduction relation; that is, a binary relation between 𝐴∗
and 𝐵∗

,

denoted→T . We say that 𝑢 →T 𝑣 if there is a path in the graph of the transducer T from an initial

state to a final state, such that the concatenation of the input (respectively output) symbols at the

edges along the path is equal to𝑢 (respectively 𝑣). We say that𝑢 is the input word and 𝑣 is the output
word. If we want to interpret the transducer as a machine reading some input—transitioning from

one state to another after each symbol, and producing output on transitions—it is a nondeterministic
machine: for a given input word, there may be zero, one, finitely or infinitely many execution

paths and output words. This nondeterminism will be used extensively. The input language of T ,

denoted 𝐿in (T ), is the set of all 𝑢 ∈ 𝐴∗
in
such that 𝑢 →T 𝑣 for some 𝑣 ∈ 𝐴∗

out
. The output language

of T , denoted 𝐿out (T ), is the set of all 𝑣 ∈ 𝐴∗
out

such that 𝑢 →T 𝑣 for some 𝑢 ∈ 𝐴∗
in
. We say that T

accepts (respectively rejects) a word 𝑥 ∈ 𝐴∗
in
if it belongs (respectively does not belong) to 𝐿in (T ).

Different transducers S and T may induce the same transduction relation. In this case, we say

that they are equivalent and write S ≡ T . Note that the equivalence of transducers is undecidable,

meaning it cannot be verified by any finite-time algorithm [7, §3.5].

2.2 Useful examples of transducers
Figures 1, 2, 3 and 4 show examples of transducers that will be useful in the proof of the cosmological

theorem, and that we describe below. Let 𝐴 be an alphabet not containing the symbol ⋄ , and
let 𝐵 = 𝐴 ∪ {⋄}.
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The “multimark” transducer, denoted Multi (Figure 1), works with the input alphabet 𝐴 and

output alphabet 𝐵. It inserts arbitrarily many ⋄ symbols nondeterministically in the input word.

The relation induced by this transducer is characterized as follows: 𝑢 →Multi 𝑣 if and only if 𝑢 can

be obtained from 𝑣 by deleting the ⋄ symbols. For example, 312 →Multi 3⋄1⋄⋄2⋄⋄ .

initial

∀𝛼 | 𝛼𝜀 | ⋄

Fig. 1. The “multimark”, transducer, denotedMulti. The edges are labelled with the convention “input symbol
| output symbol”. The notation ∀𝛼 for the input symbol means the corresponding edge should be duplicated
for each symbol in the input alphabet. When the output symbol is 𝛼 , it means “copy the input symbol”. The
“initial” arrow marks initial state(s). The double stroke marks final state(s).

The “single mark” transducer, denoted Mark (Figure 2), works with the input alphabet 𝐴 and

the output alphabet 𝐵. It nondeterministically inserts a ⋄ symbol somewhere in the input word,

not before the first symbol, and not after the last one. It also accepts the empty word. The relation

induced by this transducer is characterized as follows: 𝜀 →Mark 𝜀 and 𝑢𝑣 →Mark 𝑢⋄𝑣 for any two

nonempty words 𝑢 and 𝑣 not containing ⋄ .

firstinitial left of ⋄ right of ⋄ last

∀𝛼 | 𝛼 𝜀 | ⋄ ∀𝛼 | 𝛼

∀𝛼 | 𝛼 ∀𝛼 | 𝛼

Fig. 2. The “single mark” transducer, denotedMark.

The “scissors” transducer, denoted Scissors (Figure 3), works with the input alphabet 𝐵 and the

output alphabet 𝐴. It extracts from the input word a substring delimited by ⋄ symbols. The relation

induced by this transducer is characterized by 𝑢⋄𝑣⋄𝑤 →Scissors 𝑣 for all words 𝑢,𝑤 ∈ 𝐵∗
and 𝑣 ∈ 𝐴∗

.

deleteinitial
copy

delete

⋄ | 𝜀 ⋄ | 𝜀

∀𝛼 | 𝜀 ∀𝛼 ≠ ⋄ | 𝛼 ∀𝛼 | 𝜀

Fig. 3. The “scissors” transducer, denoted Scissors.

Lastly, given 𝑎 ∈ 𝐴, the “bounded 𝑎-counter” transducer, denoted Cnt𝑎 , works with the input

alphabet 𝐴 and the output alphabet 𝐴 ∪ {1, 2, 3}. It counts occurrences of 𝑎, up to 3. More precisely,

the relation induced by this transducer is finite and contains only the following ordered pairs:

𝑎 →Cnt𝑎 1𝑎, 𝑎𝑎 →Cnt𝑎 2𝑎, and 𝑎𝑎𝑎 →Cnt𝑎 3𝑎.
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initial

𝑎 | 1

𝑎 | 2

𝑎 | 3

𝜀 | 𝑎

𝑎 | 𝑎

𝑎 | 𝑎 𝑎 | 𝜀

Fig. 4. The “bounded 𝑎-counter” transducer, denoted Cnt𝑎 .

2.3 Composition of transducers
Let 𝐴, 𝐵, and 𝐶 be alphabets. Let U be a transducer from the alphabet 𝐴 to 𝐵, and let V be a

transducer from 𝐵 to 𝐶 . We define, up to equivalence ≡, a composed transducerW, such that for

all 𝑥 ∈ 𝐴∗
and 𝑦 ∈ 𝐶∗

,

𝑥 →W 𝑦 ⇔ ∃ 𝑧 ∈ 𝐵∗, 𝑥 →U 𝑧 and 𝑧 →V 𝑦,

see [7, Theorem 3.2.2]. We denoteW asV ◦U. IfU andV induce partial functions (meaning that

there is at most one output word for a given input word), the compositionV ◦U also induces a

partial function which is the composition of the previous ones. The powering notationU𝑛
denotes

the 𝑛-fold composition U ◦ · · · ◦ U. A detailed description of the construction is, subsequently,

given in the implementation section [4].

2.4 Generators, recognizers, and filters
Let T be a transducer with an input alphabet 𝐴 and an output alphabet 𝐵. If the input alphabet

𝐴 is empty, we call T a generator. It is easy to see that the input language of T corresponds to

the singleton {𝜀}. Consequently, on the unique input 𝜀, the transducer generates the complete

output language. An example of a generator is the “source” transducer Src, producing 𝐵∗
(Figure 5).

Similarly, an empty output alphabet 𝐵 implies the only possible output word is 𝜀. In this case, we

call T a recognizer : on every input 𝑢 ∈ 𝐴∗
, T either rejects 𝑢, or accepts it with output word 𝜀. An

example is given by the “sink” transducer Sink, recognizing 𝐴∗
. Finally, if 𝐴 = 𝐵, and if on each

transition of T the input matches the output symbols, we say that T is a filter : on input 𝑢, T either

rejects 𝑢, or accepts it with output word 𝑢.

initial

∀𝛼 | 𝜀

initial

𝜀 | ∀𝛼

Fig. 5. The “sink” Sink and “source” Src transducers.

We can convert a recognizer or generator into a filter, and vice versa. For example, if T is a

recognizer, its transitions have the form (𝑞1, 𝑎, 𝜀, 𝑞2), which replaced by (𝑞1, 𝑎, 𝑎, 𝑞2) turn T into a
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filter with the same input language. Furthermore, the composition Sink ◦ T “deletes” the output

of T , turning it into a recognizer for 𝐿in (T ); similarly, the composition T ◦ Src has the effect of
feeding T all possible inputs, yielding a generator for 𝐿out (T ).

The transduction relation of generators (respectively recognizers and filters) is entirely character-

ized by the output (respectively input) language. These kinds of transducers are essentially the same

concept: the concept of automata. (In the terminology of [5], our automata are “nondeterministic

finite automata with 𝜀-transitions”, or 𝜀-NFA). Contrary to general transducers, the equivalence of

automata is decidable (see below). This is a key property of our proof.

2.5 Minimal deterministic recognizers
A recognizer T is deterministic if:

• it has a single initial state;

• it has no 𝜀-input transitions;

• for a given state 𝑠 and a given symbol 𝑎, there is at most one transition from 𝑠 with the

input symbol 𝑎.

This corresponds to the usual definition of the deterministic finite automaton (DFA). Every recognizer
is equivalent (in the sense of ≡) to a deterministic recognizer through the power set construction

[5, §2.3.5]. Moreover, among all deterministic recognizers of a given language 𝐿 ⊆ 𝐴∗
, there exists a

unique one with the minimal number of states, up to state relabeling [5, §4.4.4]. Given a recognizer

for 𝐿, there exist various algorithms to compute the associated minimal recognizer. We implemented

Brzozowski’s algorithm [1] [7, Chapter 10] because of its simplicity. Due to the uniqueness of

minimal automata, we can decide the equivalence of two recognizers, T and T ′
, by checking the

equivalence of their corresponding minimal recognizers.

3 THE COSMOLOGICAL THEOREM
The first step in proving the cosmological theorem is the formulation of the audioactive derivation, in

terms of a transducer. Through the subsequent study of splittings, the proof becomes a low-hanging

fruit.

3.1 The audioactive transducer
Let N> denote the set of positive integers and let N∗

> be the set of all finite sequences over N>.

Audioactive derivation is then a map 𝐶 : N∗
> → N∗

> . A sequence obtained after 𝑛 applications of 𝐶 ,

denoted as 𝑥 ∈ 𝐶𝑛 (N∗
>), is called a day-𝑛 sequence.

The map 𝐶 cannot be induced by a transducer, as the associated input and output alphabets,

N>, are not finite. Besides this trivial reason, a transducer has a finite number of states, and thus

cannot count to arbitrarily large values. We remark, however, that we can make use of the “one-day

theorem” [2, p. 10].

Theorem 1 (One-Day Theorem). No day-𝑜𝑛𝑒 sequence 𝑥 ∈ 𝐶 (N∗
>) contains four consecutive equal

symbols, that is no “aaaa” subword.

Proof. By definition of the map 𝐶 , all pairwise consecutive odd positions in 𝑥 , indexed from

0, must differ. A subword of length four, however, would contain two consecutive equal odd

positions. □

After the first audioactive derivation, all subsequent derivations will only need to count up to

three. We still have the problem of an infinite alphabet, but it is only apparent. Indeed, we have

seen that a day-one word 𝑥 contains no 𝑎𝑎𝑎𝑎 subword, so its derivation contains no 44, 55, or 𝑎𝑎

subwords with 𝑎 ≥ 4, as one of the two symbols comes from counting consecutive occurrences of
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the same symbol in 𝑥 . Therefore, symbols 𝑑 ≥ 4 never mutually interact past the first derivation

and are simply carried over. As such, we simply denote them 𝑑 .

We, hence, consider the alphabet 𝐴 = {1, 2, 3, 𝑑}. Let𝑊day-one ⊂ 𝐴∗
be the set of words not con-

taining any subword of the form 𝑎𝑎𝑎𝑎. Audioactive derivation, then, induces a map 𝐶 :𝑊day-one →
𝑊day-one, entirely described by a transducer (Figure 6) that uses 𝐴 as both the input and output

alphabet. By virtue of the one-day theorem, it is enough to study the iterations of 𝐶 on𝑊day-one to

establish the cosmological theorem.

1 | 11 11 | 21 111 | 31

Cnt1

Cnt2
2 | 12 22 | 22 222 | 32

Cnt3
3 | 13 33 | 23 333 | 33

Cnt𝑑
𝑑 | 1𝑑 𝑑𝑑 | 2𝑑 𝑑𝑑𝑑 | 3𝑑

initial

initial

Fig. 6. The “audioactive” transducer, denoted Audio, with 28 states. The dotted edges, labelled by a “bounded
counter”, should be substituted accordingly, identifying the source state with the initial state of the transducer,
and the target state with its final state. All other edges have the 𝜀 input and output symbols, omitted for
legibility. The choice of layout—with a group for the symbols 1 and 2, and another for 3 and 𝑑—is only cosmetic,
reducing edge crossings.

3.2 Splittings
Let 𝐶𝑛 (𝑥) denote the 𝑛th audioactive derivation of a word 𝑥 ∈𝑊day-one. A word 𝑥 ∈𝑊day-one splits
into 𝑢1 · · ·𝑢𝑟 if 𝐶𝑛 (𝑥) = 𝐶𝑛 (𝑢1) · · ·𝐶𝑛 (𝑢𝑟 ) for all 𝑛 ≥ 0, meaning that the 𝑢𝑖 do not interact. This

happens exactly when the last digit of𝐶𝑛 (𝑢1 · · ·𝑢𝑖 ) is different from the first digit of𝐶𝑛 (𝑢𝑖+1 · · ·𝑢𝑟 )
for all 𝑛 ≥ 0 and all 1 ≤ 𝑖 < 𝑟 . We say that each 𝑢𝑖 is a splitting factor of 𝑥 . A nonempty word which

admits a single nontrivial splitting factor is an atom. A splitting factor which is an atom is called

an atomic factor. It is easy to check that every nonempty word admits a unique splitting into atoms.

For example:

• 32212 splits into 3 · 2212,2
• 32213 splits into 3 · 2213,
• 3221𝑑 splits into 3 · 221𝑑 ,
• 32211 is an atom,

3

2
This is not trivial! This follows from the observation that all the derivations of 3 end with 3, while all the derivations

of 2212 start with 2, see Conway’s Starting Theorem [2]. We can also check that the word “3⋄2212” is accepted by the

recognizer Splitting introduced below.

3
The only possible splittings would be 3 · 2211, which does not work after two derivations, and 322 · 11, which does not

work after one derivation.
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• for all 𝑛 ≥ 1, the 𝑛-time concatenation of 332 is an atom, showing that there are infinitely

many atoms.
4

(The first three assertions can be checked with the Splitting automaton, while the last two can be

checked with the Atom automaton, both introduced below.)

Splitting is subtle. At first glance, there may seem to be infinitely many conditions to check.

Yet, we will see that splittings can be recognized by an automaton. To this end, we consider the

augmented alphabet 𝐵 = {1, 2, 3, 𝑑, ⋄}. A word 𝑢1⋄ · · · ⋄𝑢𝑟 over 𝐵 is a splitting if 𝑢1 · · ·𝑢𝑟 ∈𝑊day-one

and 𝐶𝑛 (𝑢1 · · ·𝑢𝑟 ) = 𝐶𝑛 (𝑢1) · · ·𝐶𝑛 (𝑢𝑟 ) for all 𝑛 ≥ 0. The set of splittings forms a language over 𝐵,

and we now construct its associated recognizer, Splitting.
The “augmented audioactive” transducer, denoted Audio+ (Figure 7), extends Audio by using 𝐵

as both the input and output alphabet. Reading ⋄ in an accept state, the Audio+ transducer outputs

the same symbol and remains in the same state. Conversely, when ⋄ is read in a non-accepting

state, the entire input word is rejected. For example, 22⋄22 is rejected, but 22⋄33 →Audio+ 22⋄23.
The input language of Audio+ is the set of words with no 𝑎𝑎𝑎𝑎 subword (with 𝑎 ∈ 𝐴), and no 𝑎⋄+𝑎
subword (with 𝑎 ∈ 𝐴, where ⋄+

means one or more ⋄).

1 | 11 11 | 21 111 | 31

Cnt1

Cnt2
2 | 12 22 | 22 222 | 32

Cnt3
3 | 13 33 | 23 333 | 33

Cnt𝑑
𝑑 | 1𝑑 𝑑𝑑 | 2𝑑 𝑑𝑑𝑑 | 3𝑑

initial

initial

⋄ | ⋄

⋄ | ⋄

⋄ | ⋄

⋄ | ⋄

Fig. 7. The augmented audioactive transducer Audio+.

Lemma 2. A word 𝑥 ∈ 𝐵∗ is a splitting if and only if Audio𝑛+ accepts 𝑥 for all 𝑛 ≥ 0.

Proof. The condition that 𝑥 ∈ 𝐿in (Audio𝑛+) for all 𝑛 ≥ 0 means that the ⋄ symbols (or groups of

consecutive ⋄ symbols) will never lie between two copies of a symbol of 𝐴 after any number of

audioactive derivations. This is exactly the definition of a splitting. □

Theorem 3 (Splitting Theorem). The set of splittings is the input language of Audio9+.
4
This follows from the cycle formed by the states w, n, and d in the atom recognizer that we will construct below (Table 3).
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Proof. Let 𝐿𝑛 denote the input language of Audio𝑛+, which is the language recognized by Sink ◦
Audio𝑛+. By Lemma 2, the set of splittings is the intersection of all 𝐿𝑛 with 𝑛 ≥ 1. Since Audio𝑛+1+ ≡
Audio+ ◦ Audio𝑛+, it follows that 𝐿𝑛+1 ⊆ 𝐿𝑛 for all 𝑛 ≥ 0.

We compute Sink◦Audio9+ and Sink◦Audio10+ and verify computationally that they are equivalent.

Thus, Sink ◦ Audio𝑛+ ≡ Sink ◦ Audio9+ for all 𝑛 ≥ 9, leading to the conclusion that ∩𝑛≥1𝐿𝑛 = 𝐿9. □

In terms of computation, we compute Sink ◦ Audio𝑛+ using the recurrence relation

Sink ◦ Audio𝑛+1+ =
(
Sink ◦ Audio𝑛+

)
◦ Audio+,

minimizing the automata at each step. Given that Audio+ has 28 states, a naive computation

of Sink ◦ Audio10+ could lead to an automaton with 28
10
states, likely exhausting the memory of

a laptop. However, through iterative minimization, the number of states in Sink ◦ Audio𝑛+ never

exceeds 40 (see Table 1), and the computation time is below 10ms on a standard laptop.

Table 1. Number of states of of Sink ◦ Audio𝑛+ after determinization and minimization.

𝑛 1 2 3 4 5 6 7 8 ≥ 9

# states 13 25 37 40 37 29 28 27 21

Following Theorem 3, we define Splitting ≡ Sink ◦ Audio9+, a recognizer for the language of all
splittings. After determinization and minimization, Splitting consists of 21 states (see Table 2).

Table 2. The splitting recognizer Splitting, after determinization and minimization. The set of states is 𝑄 =

{S, a, . . . , t}, the input alphabet is {1, 2, 3, 𝑑, ⋄}.

state S a b c d e f g h i j k l m n o p q r s t
initial •
final • • • • • • • • • • • • • • • • •

input 1 a b c a a a a a a a a a p q c b a
input 2 d d d d e f d d d d d d n o f e d
input 3 g g g g g g g h i g g g r i g
input 𝑑 j j j j j j j j j j k l s l k t l
input ⋄ S m m m o o o m m m l l l m o m l

Conway also provided an explicit description of splittings, which offers an intriguing comparison

to our own. Below, we reproduce Conway’s splitting theorem [2, p. 11] verbatim, intentionally

omitting the details of the intricate notations. As Conway himself noted, “this heap of conventions

makes it hard to check the proofs, since they cover many more cases than one naively expects.”

Nevertheless, we offer some insight into how this statement relates to our 21-state automaton,

Splitting.
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The exponent 9 in Theorem 3 is optimal, as shown by the word 3⋄133 which has the following

sequence of derivations:

3⋄133
13⋄1123

1113⋄211213
3113⋄1221121113

132113⋄112221123113
1113122113⋄21322112132113

311311222113⋄1211132221121113122113
13211321322113⋄11123113322112311311222113

1113122113121113222113⋄311213212322211213211321322113.

So this word is accepted by Audio8+ but not Audio
9

+.

We briefly outline the structure of the splitting recognizer (Table 2). The states S, a, . . . , l form a

recognizer for the language𝑊day-one. This component of the automaton counts consecutive identical

symbols, up to a maximum of three, and rejects all words, containing four or more consecutive

equal symbols. For instance, the state c, reached after reading three consecutive 1s, does not accept

an additional 1, as it has no transition for the input 1. When Splitting encounters the symbol ⋄ , it
transitions to the second part of the automaton, comprised of states l, . . . , t. This part has three
entry points:

• The state l is reached from the states j, k, or l, where the last input received is 𝑑 . This state
corresponds to the first line of Conway’s statement and only accepts a digit 1, 2, or 3.

• The state o is reached from the states d, e, or f, where the last input received is 2. This state
corresponds to the second line of Conway’s statement.

• The state m is reached from the states where the last input received is 1 or 3. It corresponds

to the third line of Conway’s statement. This state only accepts the input 22 and transitions

to the state o, reflecting the similarities in the structure of the second and third lines of

Conway’s statement.

For example, consider the input word 3⋄22123. This matches what Conway denotes as “≠

2] [2211𝑋 1
.” On this input, Splitting will transition through the states S, g, m, n, o, p, f, or g. The

final state is accepting, indicating that 3⋄22123 constitutes a valid splitting. Next, consider the

input word 3⋄22122. This sequence does not match “≠ 2] [2211𝑋 1
” because the final 2 cannot be

ignored, as it is repeated. (The conventions are truly subtle.) On this input, Splitting will follow
the same sequence of states as before, except at state f, which will reject the final input symbol 2.
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Therefore, 3⋄22122 is not a valid splitting. We can explicitly verify the derivation sequence:

3⋄22122 → 13⋄221122 → 1113⋄222122 → 3113⋄321122,
where we observe the digits before and after the ⋄ are identical, thus violating the splitting condition.

From the Splitting recognizer, we can now construct a recognizer for the set of irreducible

words. Consider the recognizer Splitting ◦Mark (where Mark is the “single mark” transducer in

Figure 2), it accepts exactly the empty word, and words 𝑢𝑣 , such that 𝑢⋄𝑣 is a splitting, with 𝑢 and 𝑣

nonempty words over 𝐴. Put differently, this recognizer rejects the irreducible words in𝑊day-one,

accepting all others. Let Splitting ◦Mark denote the complement recognizer, easily computable

after determinization [5, §4.2]. It accepts exactly the words rejected by Splitting ◦Mark, recognizing
the set of atoms in𝑊day-one union the set of words not in𝑊day-one. Finally, we want to also reject

the words not in𝑊day-one, which are exactly the words rejected by Sink ◦ Audio. We, thus, define

the irreducible word recognizer

Atom = Splitting ◦Mark ◦ (Sink ◦ Audio)filter,
where the subscript “filter” indicates that we turn a recognizer into a filter. This 26-state automaton

is shown in Table 3. By construction, we obtain the following statement.

Lemma 4. The automaton Atom recognizes exactly the set of all atoms in𝑊day-one.

Table 3. The atom recognizer Atom, after determinization and minimization.

state S a b c d e f g h i j k l m n o p q r s t u v w x y
initial •
final • • • • • • • • • • • • • •

input 1 a b c e c e e j k c a a a e e
input 2 x d d d g f g h l m h d d d y h
input 3 w w w w i u i i n o n n i i
input 𝑑 p p p p t v t t s p p q r t r q p t t

3.3 Cosmological Theorem
The introduced notions enable us to formulate a precise statement about audioactive decay. Let 𝐸

denote the set of all common and transuranic elements. It is a set of 94 atoms of which elements

are given in the appendix.

Theorem 5 (Cosmological Theorem). For every word 𝑥 over 𝐴 without “𝑎𝑎𝑎𝑎” subwords, and
all 𝑛 ≥ 24, the 𝑛th audioactive derivation of 𝑥 splits into atoms belonging to 𝐸.

Let 𝐸𝑛 denote the set of all atomic factors of all the words in 𝐿out (Audio𝑛). Our goal is to show

that 𝐸𝑛 stabilizes for 𝑛 ≥ 24. We further aim to explicitly describe the ultimate value of 𝐸𝑛 . The

proof rests upon the recognizers Splitting and Atom.

Let us construct a transducer AtomicF, for “atomic factor”, over the alphabet 𝐴 for both input

and output, such that 𝑢 →AtomicF 𝑣 if and only if 𝑣 is an atomic factor of 𝑢. This transducer is simply

AtomicF = Atomfilter ◦ Scissors ◦ Splittingfilter ◦Multi,

where the subscript “filter” indicates the conversion of a recognizer into a filter. More explicitly,

the transducer inputs a word over 𝐴, and then:

• the multimark transducer Multi nondeterministically inserts ⋄ symbols;
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• the splitting recognizer Splitting exclusively retains the splittings;

• the transducer Scissors nondeterministically extracts a splitting factor of a given splitting;

• the atom recognizer Atom only retains the atomic factors.

Proof of Theorem 5. We compute—see Figure 8 and the subsequent discussion—that

AtomicF ◦ Audio25 ◦ Src ≡ AtomicF ◦ Audio24 ◦ Src, (1)

so 𝐸25 = 𝐸24. Since the atomic factors of the derivation of a word 𝑥 are exactly the atomic factors of

the derivations of the atomic factors of 𝑥 , it follows that the elements of 𝐸𝑛+1 are the atomic factors

of the derivation of the elements of 𝐸𝑛 . Therefore, 𝐸25 = 𝐸24 implies 𝐸𝑛 = 𝐸24 for all 𝑛 ≥ 24.

It remains to enumerate all the elements of 𝐸24, which boils down to the enumeration of all the

paths from any of the initial states to any of the final states in AtomicF ◦ Audio24 ◦ Src. □

It is possible to check the equivalence in (1) directly, but it is difficult because Audio25 ◦ Src is a
large automaton, with 194,625 states, after minimization. Instead, we observe thatAtomicF◦Audio ≡
AtomicF ◦ Audio ◦ AtomicF, because, as noted in the proof of Theorem 5, the irreducible splitting

factors of the derivation of a word 𝑥 are exactly the irreducible splitting factors of the derivations

of the irreducible splitting factors of 𝑥 . It follows that for any 𝑛 ≥ 1,

AtomicF ◦ Audio𝑛 ◦ Src = AtomicF ◦ Audio ◦
(
AtomicF ◦ Audio𝑛−1 ◦ Src

)
.

This gives a much more efficient recursive way of computing AtomicF ◦ Audio𝑛 ◦ Src. Naturally,
we minimize the automata after each composition. The maximum number of states for AtomicF ◦
Audio𝑛 ◦ Src is 592, when 𝑛 = 6. The total computation time is 150ms on a laptop.
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Fig. 8. Number of states of AtomicF ◦ Audio𝑛 ◦ Src, after determinization and minimization.

4 IMPLEMENTATION
For readers interested in consulting the code or reproducing the results, we present a brief comment

on our C++ implementation. The code is available at

https://github.com/AleksandrStorozhenko/ConwayTransducer.

https://github.com/AleksandrStorozhenko/ConwayTransducer
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4.1 Data structure
It is convenient to index the symbols in the input and output alphabets, so that we can assume

that they are {0, . . . , 𝑛 − 1} and {0, . . . ,𝑚 − 1}, respectively. We can represent the transitions of a

transducer T as a 2d array𝑇 of arrays of pairs such that𝑇 [𝑠] [𝑎] contains the array of all transitions
with source state 𝑠 and input symbol 𝑎. In C++, this gives the following unsophisticated data

structure for manipulating transducers.

#include <set>
#include <vector>
using namespace std;

struct Transducer {
using symbol = int;
using state = int;

int inputSymbols, outputSymbols;
set<state> startNodes, finalNodes;
vector<vector<vector<pair<symbol, state>>>> table;

};

The chosen representation does not, however, lend itself to an effectivemanipulation of generators

(with an empty input language), as we cannot efficiently query transitions by output symbol. Instead,

we transpose generators into recognizers, swapping input and output symbols for each transition.

4.2 Composition
Given two finite state transducersU andV , such that the output alphabet ofU matches the input

alphabet of V , we want to compute a transducer W realizing the composionV ◦U.

We choose the set of states 𝑄W to be 𝑄U ×𝑄V . The initial states ofW are pairs of initial states

of U and V respectively, and similarly for final states. For each state (𝑞𝑢, 𝑞𝑣) ∈ 𝑄U × 𝑄V , we

declare the following transitions in W:

• ((𝑞𝑢, 𝑞𝑣), 𝑎, 𝜀, (𝑞′𝑢, 𝑞𝑣)) whenever there is a transition (𝑞𝑢, 𝑎, 𝜀, 𝑞′𝑢) inU;

• ((𝑞𝑢, 𝑞𝑣), 𝜀, 𝑐, (𝑞𝑢, 𝑞′𝑣)) for any transition (𝑞𝑣, 𝜀, 𝑐, 𝑞′𝑣) inV; and

• ((𝑞𝑢, 𝑞𝑣), 𝑎, 𝑐, (𝑞′𝑢, 𝑞′𝑣)) whenever there exists transitions (𝑞𝑢, 𝑎, 𝑏, 𝑞′𝑢) and (𝑞𝑣, 𝑏, 𝑐, 𝑞′𝑣) inU
andV respectively for some 𝑏 ∈ 𝐵.

In practice, only a fraction of the constructed states is reachable, so it is worthwhile to construct

the state set by a traversal from the initial states to avoid the unreachable sets.

4.3 Determinization
A recognizer T admits an equivalent deterministic recognizer D with the associated set of states

equal to the set of subsets of 𝑄T (the set of states of T ). The initial state of D corresponds to

the set of initial states of T . For 𝑈 ∈ 𝑄D and a symbol 𝑎, there exists a transition (𝑈 , 𝑎, 𝜀,𝑉 )
in D for 𝑉 ∈ 𝑄D , the set of all states, reachable by a transition in T from a state in 𝑈 with

an input symbol 𝑎. In practice, only a fraction of these states is reachable. We, thus, perform the

determinization by a traversal from the initial state. In the worst case, the deterministic recognizerD
admits exponentially many states in the size of QT .
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4.4 Minimization
Within the context of this paper, minimization of deterministic recognizers (and generators via
transposition) satisfies two principal aims: computational efficiency via reduction of states; and

language equivalence verification.

For minimizing recognizers, we resorted to Brzozowski’s algorithm [1] [7, Chapter 10]: Given a

recognizer T , swap the source and target states of each transitions (reversal), determinize, reverse

again, determinize again. The algorithm has a worst-case exponential complexity, due to the

potential of exponential growth in the number of states at the first determinization, but it was

enough for our purposes.

Algorithms for transducers (minimization, equivalence) are more subtle, with many undecidabil-

ity results [7, Chapter 3]. Yet, we found it useful to have a heuristic size-reduction procedure by

interpreting a transducer over input alphabet 𝐴 and output alphabet 𝐵 as a recognizer over the

alphabet𝐴?×𝐵?
, simply considering the input-output pair of each transition as an input symbol, and

minimizing it. For example, the size of the transducer AtomicF◦Audio reduces from 977 states to 82.

This makes the computation of (AtomicF ◦ Audio)𝑘 ◦ Src much faster in the proof of Theorem 5.

4.5 Equivalence of recognizers
To check that two recognizers T and T ′

are equivalent, it is enough to check that the minimization

of T and T ′
[5, §4.4] are equal, up to a bijection 𝑄T → QT′ . We can construct this bijection, or

prove that it does not exist, by a traversal from the initial states of T and T ′
.

CONCLUSION
The study of audioactive decay, from Conway’s discovery to the four known computational proofs,

including this one, is an outstanding illustration of the principles of experimental mathematics. It
was, of course, experimentation that led to the formulation of the cosmological theorem, before any

proof could be provided. But the experimental approach in mathematics extends far beyond mere

data accumulation for conjecture formation. Our entire automaton-based proof is experimental in

nature. It is not a proof by computation, but a proof by experimentation. While there is an algorithm

that proves that 3× 19 = 57, for instance, we do not have an algorithm that proves the cosmological

theorem. Computation serves as a microscope or spectrometer, enabling us to observe and analyze

mathematical phenomena without prior knowledge of their nature. The nature of the cosmological

theorem is not a consequence of the formulation of the audioactive derivation by a transducer

(choose a different transducer, and you might not observe a splitting theorem or a cosmological

theorem), but experimentation and computation uncover this structure.
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APPENDIX: PERIODIC TABLE

name derivation element

1H 1H 22

2He 72Hf 91Pa 1H 20Ca 3Li 13112221133211322112211213322112

3Li 2He 312211322212221121123222112

4Be 32Ge 20Ca 3Li 111312211312113221133211322112211213322112

5B 4Be 1321132122211322212221121123222112

6C 5B 3113112211322112211213322112

7N 6C 111312212221121123222112

8O 7N 132112211213322112

9F 8O 31121123222112

10Ne 9F 111213322112

11Na 10Ne 123222112

12Mg 61Pm 11Na 3113322112

13Al 12Mg 1113222112

14Si 13Al 1322112

15P 67Ho 14Si 311311222112

16S 15P 1113122112

17Cl 16S 132112

18Ar 17Cl 3112

19K 18Ar 1112

20Ca 19K 12

21Sc 67Ho 91Pa 1H 20Ca 27Co 3113112221133112

22Ti 21Sc 11131221131112

23V 22Ti 13211312

24Cr 23V 31132

25Mn 24Cr 14Si 111311222112

26Fe 25Mn 13122112

27Co 26Fe 32112

28Ni 30Zn 27Co 11133112

29Cu 28Ni 131112

30Zn 29Cu 312

31Ga 63Eu 20Ca 89Ac 1H 20Ca 30Zn 13221133122211332

32Ge 67Ho 31Ga 31131122211311122113222

33As 32Ge 11Na 11131221131211322113322112

34Se 33As 13211321222113222112

35Br 34Se 3113112211322112

https://doi.org/10/d4n7zp
https://oeis.org/A005150/a005150_3.pdf
https://www.cs.cmu.edu/~kw/pubs/conway.pdf
https://www.cs.cmu.edu/~kw/pubs/conway.pdf
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36Kr 35Br 11131221222112

37Rb 36Kr 1321122112

38Sr 37Rb 3112112

39Y 38Sr 92U 1112133

40Zr 39Y 1H 20Ca 43Tc 12322211331222113112211

41Nb 68Er 40Zr 1113122113322113111221131221

42Mo 41Nb 13211322211312113211

43Tc 42Mo 311322113212221

44Ru 63Eu 20Ca 43Tc 132211331222113112211

45Rh 67Ho 44Ru 311311222113111221131221

46Pd 45Rh 111312211312113211

47Ag 46Pd 132113212221

48Cd 47Ag 3113112211

49In 48Cd 11131221

50Sn 49In 13211

51Sb 61Pm 50Sn 3112221

52Te 63Eu 20Ca 51Sb 1322113312211

53I 67Ho 52Te 311311222113111221

54Xe 53I 11131221131211

55Cs 54Xe 13211321

56Ba 55Cs 311311

57La 56Ba 11131

58Ce 57La 1H 20Ca 27Co 1321133112

59Pr 58Ce 31131112

60Nd 59Pr 111312

61Pm 60Nd 132

62Sm 61Pm 20Ca 30Zn 311332

63Eu 62Sm 1113222

64Gd 63Eu 20Ca 27Co 13221133112

65Tb 67Ho 64Gd 3113112221131112

66Dy 65Tb 111312211312

67Ho 66Dy 1321132

68Er 67Ho 61Pm 311311222

69Tm 68Er 20Ca 27Co 11131221133112

70Yb 69Tm 1321131112

71Lu 70Yb 311312

72Hf 71Lu 11132

73Ta 72Hf 91Pa 1H 20Ca 74W 13112221133211322112211213322113

74W 73Ta 312211322212221121123222113

75Re 32Ge 20Ca 74W 111312211312113221133211322112211213322113

76Os 75Re 1321132122211322212221121123222113

77Ir 76Os 3113112211322112211213322113

78Pt 77Ir 111312212221121123222113

79Au 78Pt 132112211213322113

80Hg 79Au 31121123222113

81Tl 80Hg 111213322113

82Pb 81Tl 123222113

83Bi 61Pm 82Pb 3113322113
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84Po 83Bi 1113222113

85At 84Po 1322113

86Rn 67Ho 85At 311311222113

87Fr 86Rn 1113122113

88Ra 87Fr 132113

89Ac 88Ra 3113

90Th 89Ac 1113

91Pa 90Th 13

92U 91Pa 3

(transuranic elements)
93Np 72Hf 91Pa 1H 20Ca 94Pu 1311222113321132211221121332211𝑑

94Pu 93Np 31221132221222112112322211𝑑
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