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Abstract. Anonymization is crucial for the sharing of personal data in
a privacy-aware manner yet it is a complex task that requires to set up
a trade-off between the robustness of anonymization (i.e., the privacy
level provided) and the quality of the analysis that can be expected from
anonymized data (i.e., the resulting utility). Synthetic data has emerged
as a promising solution to overcome the limits of classical anonymiza-
tion methods while achieving similar statistical properties to the original
data. Avatar-based approaches are a specific type of synthetic data gen-
eration that rely on local stochastic simulation modeling to generate an
avatar for each original record. While these approaches have been used in
healthcare, their attack surface is not well documented and understood.
In this paper, we provide an extensive assessment of such approaches and
comparing them against other data synthesis methods. We also propose
an improvement based on conditional sampling in the latent space, which
allows synthetic data to be generated on demand (i.e., of arbitrary size).
Our empirical analysis shows that avatar-generated data are subject to
the same utility and privacy trade-off as other data synthesis methods
with a privacy risk more important on the edge data, which correspond
to records that have the fewest alter egos in the original data.

Keywords: Synthetic data, Avatar-based generation, Privacy, Re-identification

1 Introduction

The collection of personal data has grown to a tremendous proportion and is
done through diverse sources such as credit cards, medical records, digital pho-
tographs, emails, websites, social media, Internet of Things (IoT), smartphones,
wearable technologies, to name a few. All of this data has enormous value for
improving the understanding of human behavior and creating useful societal ap-
plications, but it also raises serious privacy concerns. For instance, healthcare
generates massive amounts of data whose sharing and re-using is essential for
accelerating research and to develop machine learning algorithms methods that
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can be deployed in clinical settings. However, this data is very sensitive and must
be anonymized before it can be used beyond the purpose of its initial collection.

Anonymization is a complex task that requires calibrating a trade-off between
the privacy guarantees and the remaining usefulness of anonymized data, which
is difficult to control and depends on the data and the analysis considered. Thus
in practice, a high privacy protection often results in a limited utility. To over-
come this limitation, the use of synthetic data that resemble the real data (i.e.,
which preserves global statistical properties and task-specific performance) is in-
creasingly recognized as a promising way to enable such reuse while addressing
personal data privacy concerns [5]. For example, some projections predict that
synthetic data will completely eclipse real data in AI models by 20304. However,
there is still no consensus on a standard approach to systematically and quan-
titatively assess the privacy gain and residual utility of synthetic data, which
slow their adoption. Nonetheless, to shed some light on the real guarantees of
synthetic data and help hospitals position themselves on this new technology,
some papers have started to assess the privacy [2] and utility [25] of synthetic
data for medical data analyses.

Recently, new approaches based on avatar data have attracted for generating
synthetic patient-data [14]. For each individual observation, this approach iden-
tifies the k nearest neighbors in a latent space and leverages this neighborhood
to generate an avatar through a local stochastic modeling. While appealing these
avatar-based approaches lack a proper privacy assessment [17]. To overcome this
limitation, in this paper we present an extensive utility and privacy assessment
of avatar data based on a wide variety of metrics. More precisely, we quantify
the privacy of synthetic data through criteria used to evaluate anonymization
schemes according to the GDPR, namely singling-out, linkability and inference.
In addition, we have also implemented a re-identification attack (i.e., mapping a
synthetic data record to a close original data record) and a membership inference
attack (i.e., inferring data records leveraged to generate a synthetic dataset),
and focus on the most vulnerable data. We evaluate the utility and compared
the avatar approach to different synthetic data generation methods as well as
anonymization schemes. Our main objective is to provide a comprehensive as-
sessment of the utility and privacy of avatar data to subsequently facilitate their
use in the medical field under the best conditions. We also propose an improve-
ment is based on conditional sampling in the latent space, which allows synthetic
data to be generated on demand (i.e., of arbitrary size), and which depicts utility
and privacy trade-off aligned with the state-of-the-art.

2 Related Work

Anonymization and synthetic data generation. Historically, the sharing
of personal data was carried out through anonymization, which is the process of
transforming data records or datasets to ensure that the individuals to whom the

4
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data pertains are not identifiable. This risk of isolating or linking data records
comes from the fact that human behavior depicts a strong uniqueness [7]. Com-
mon approaches from the family of k-anonymity [24] (e.g., t-closeness and l-
diversity) include suppressing highly sensitive records and generalizing data to
increase overlap and avoid unique entries. However, these methods, particularly
when applied to medical data, often succeed in protecting privacy at the cost
of degrading data quality to such an extent that their utility is compromised.
Another approach involves perturbation methods, which introduces noise to the
data, with Differential Privacy (DP) [8] being a prominent example that offers
theoretical guarantees on privacy protection. These methods are particularly
successful to protect aggregate queries or statistics but reduces the utility too
much when applied individually on data.

More recently, the growing demand for extensive datasets has shifted focus
towards generative methods to create large amounts of synthetic data. Synthetic
data generation encompasses a wide range techniques used to create artificial
datasets that mimic the statistical properties of real-world data while breaking
the link to individuals in the real data records. Initially, these techniques were
motivated by overcoming data scarcity in some domains in which there may be
limited amount of real data. For instance, they are particularly interesting in
the context of model training as they permit the construction of additional data
points to help address overfitting or data imbalance [11]. In addition, they also
represent an opportunity for further testing and validation through various sce-
narios. These techniques can also be used to address confidentiality requirements
that some real-world data have, especially in the context in which the opening
of data and the reproducibility of science are essential. In this context, various
techniques have been adapted to address confidentiality and privacy, such as
with autoencoders and GANs. This includes CT-GAN [27], which has extended
conditional GANs to tabular data. Some techniques have been purely based on
characterizing statistics of various features (e.g., the R package SynthPop [21]).

Unfortunately, those techniques opened up the way for privacy attacks. This
limitation has motivated the design of methods that are privacy-preserving
by design. This include training GANs with DP guarantees such as in DP-
CTGAN [10], PATE-Gan [16], and PrivBayes [28]. Finally, another example of
DP synthetic generation method is the Maximum Spanning Tree (MST) [19] that
has won the 2018 NIST differential privacy synthetic data. MST is based on a
marginal estimation approach that produces differentially private data before
using a probabilistic graphical-model [20] to generate synthetic data.

Privacy Assessment. Privacy is a multifaceted concept that depends on the
context and the data considered, resulting in multiple existing metrics [26] and
similarity tests [12]. Among the most significant guidelines for characterizing
anonymization and verifying its success is the opinion from the Article 29 of
the GDPR5, which proposes to quantify the robustness of anonymization tech-

5
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niques by assessing the risks of singling-out, linkability and attribute inference.
Singling-out can be seen as a way to indirectly identify a person in a dataset,
such as recognizing a unique combination of rare attributes in a medical record.
Linkability refers to the ability to map anonymized records to the same individ-
ual, for instance, linking a de-identified hospital visit record with an anonymized
prescription record. And attribute inference deals with the possibility to learn
sensitive information about the individual beyond what is disclosed, such as de-
ducing a patient’s HIV status from their medication regimen and frequent visits
to a specialist. In this context, Anonymeter [13] derived specific attacks for each
privacy criterion mentioned in the above. For singling-out, the objective is to as-
sess how well the predicates that isolate a row in the synthetic data also isolate
a row in the original data. For linkability, the original dataset is divided hori-
zontally, and the assessment measures how much accessing the synthetic data
allows the re-linking of rows. And for attribute inference (AIA), a feature is hid-
den in the original dataset, and the evaluation considers how well the synthetic
data can reveal this hidden attribute. An important safeguard implemented in
Anonymeter is not to evaluate the success of these attacks in an absolute sense
due to the fact that one might perform inferences due to strong correlations be-
tween features (e.g., smoking causes cancer) rather than specific data instances.
Instead, they use a control dataset not seen during the generation of synthetic
data to evaluate how much advantage an adversary gains from accessing the syn-
thetic data (e.g., comparison between identifying the cancer of a patient from
its synthetic data versus identifying this information from the control data).

Another approach to evaluate the privacy of trained models is to rely on a
Membership Inference Attack (MIA) [3]. When a model is trained on a dataset
D, it is possible that an adversary with access to the output of the model (or the
model itself) can learn information about the dataset D. More precisely, an MIA
aims to determine whether a specific data record was used by the model. If an
adversary is not able to detect the usage of a particular data record by the model,
then it will likely not be be able to extract more complex information. Thus,
preventing this form attack could consequently also prevents stronger attacks.
While they are many approaches to perform a MIA, one of the simplest one is to
design a threshold-based attack that exploits the prediction vector to distinguish
between member and non-members (i.e., the model is more confident on data it
has already seen during training).

Although the risk is often reported globally across the entire original dataset,
it is important to note that not all profiles have the same level of risk as some
are more vulnerable than others. To better reflect the privacy risk, recent works
have proposed to focus on the most vulnerable profiles to quantify the upper
bound of the risk for privacy [12, 23, 3].

3 Generate Avatar Data on Demand

The Avatar method [14] has been designed for biomedical analysis from tab-
ular data. The original dataset is composed of n entries of p variables. Each
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entry represents an individual and each variable can be continuous, categorical,
Boolean or represent a date. The Avatar method aims to create a new dataset
of n synthetic observations and p variables with consistent yet different values
compared with those of the original dataset. To achieve this, Avatar relies on
three main steps: 1) the profile of each individual is projected into a latent space
using a factor analysis technique (e.g., PCA) ; 2) using the first d dimensions of
this space, pairwise distances are calculated between all projections associated
with the individuals’ data to find the k nearest neighbors ; 3) for each individ-
ual, a single avatar is created by pseudo-stochastically weighting the attributes
of its k nearest neighbors using all of the dimensions of the latent space. Syn-
thetic data are then shuffled to change the order between the original individuals
and the avatars. Avatar is not the only method exploiting the neighborhood as
for instance the Local Linear Embedding (LLE) [4] first computes the nearest
neighbors before doing the projection in an embedding.

Although the Avatar method depicts an interesting trade-off between utility
and privacy, several issues remain. More specifically, the evaluation of privacy is
carried out globally and with ad-hoc metrics, which does not make it possible to
properly capture the real risk for certain atypical and vulnerable individuals. To
improve the utility and privacy trade-off, the value of k could also be dynamically
defined according to the context of each data point to adapt the utility and
privacy trade-off for each of them and thus limit the degradation for profiles
which are already well protected because they are located in a dense area. The
most limiting aspect of Avatar is the fact that the input data has the same size
as the output data and that each avatar comes from a single original data and its
neighborhood. This bijective nature opens up the risk of re-identification (i.e.,
mapping an avatar to an original data), which is not the case when a model is
build and then exploited to generate synthetic data of arbitrary size.

To overcome this limitation, we propose M-Avatar an alternative method
which builds a global model that makes it possible to generate synthetic data
on demand, while removing the constrains of producing one avatar data for each
original profile. To achieve this goal, we first construct the data distribution
of the projections in the first d dimensions of the latent space. Afterwards to
generate synthetic data, we first sample a value in the distribution of the first
dimension of the latent space before building the conditional distribution to this
sample in the second dimension (we consider a bucket gathering 10% of data
around the sample) and sample again a value in this distribution. This opera-
tion is then repeated for the first d dimensions. This conditional construction of
the distribution makes it possible to preserve the neighborhood information in
the first dimensions that contain the most information by sampling in dimension
di a value consistent with the sample chosen in dimension di−1. For dimensions
greater than d, the quantity of data respecting the constraints of previous sam-
pling being considerably reduced, sampling from a distribution that is too sparse
would reduce the utility too much. To avoid this, we randomly choose a value
among the projection values of the original data at the considered dimension.
This random choice makes it also possible to mix the influence of different data
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while maintaining a good level of utility. The closest state-of-the-art method is
Local Resampler [18], which samples locally from the original data distribution
(compared to M-Avatar which conditionally samples from each dimension of the
latent space) to create an avatar data.

4 Evaluation

Dataset. We consider a real-world dataset covering Acquired Immunodeficiency
Syndrome (AIDS). This dataset gathers 2,139 patients and 26 variables for HIV-
infected patients who participated in a clinical trial published in 1996 in the New
England Journal of Medicine [15].
Evaluation metrics. There are numerous ways to evaluate synthetic data [9,
6, 1] such as utility metrics that measure the quality of synthetic data and its
ability to faithfully reproduce the original data as well as privacy measures,
which quantifies the leakage of personal information. More precisely, to evaluate
the utility, we considered the SDV quality score [22], which captures the overall
assessment of synthetic data’s quality, combining various aspects like statistical
similarity, data characteristics, and correlations between pairs of attributes. We
also considered the prediction accuracy of the synthetic data by examining the
performance of a learning model trained with original data or trained with the
synthetic data (i.e., the task accuracy to predict if HIV has progressed to AIDS.).
In addition, we considered the survival curve, a healthcare metric adapted for
this dataset. To assess the privacy guarantees, we leverage on Anonymeter [13]
(cf. Section 2) for singlingo out, linkability and inference. For all these three
attacks, the risk assessment quantifies whether an adversary has an advantage
in attacking a person that participated in the construction of the synthetic data
(i.e., leads to a leak of personal information) compared to attacking a person
from the general population (i.e., control dataset). Finally, we have also imple-
mented a re-identification and a membership inference attack. For each avatar
data, a re-identification is inferred with the original data whose projection in
the latent space is closest to the avatar’s projection. Similarly, the c original
data whose projections are closest to an avatar’s projection are inferred as mem-
bers. The value of c varies depending on the data density from 1 (i.e., as for
re-identification) for dense data, to 20 for edge data. As for MIA, we perform a
PCA on the synthetic data, reducing it to five dimensions, and project both the
real data (members and non-members) and the synthetic data. For each syn-
thetic data point, we identify its k nearest real data points (k varying from 1 to
20 based on distance quantiles to the barycenter) and increment their MIA risk
scores by +1. Finally, the attack predicts the top 50% as members.
Comparative baselines. We evaluate the avatar data against the following al-
ternatives. SAIPH6: First, we consider a solution that projects the original point
into a low-dimensional latent space ( like the one used by Avatar, with a di-
mension limited to 20) and reconstruct the data point in the original space from

6
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this projection. Indeed, passing through this subspace compresses the informa-
tion and induces a loss of utility. Unlike Avatar, it does not exploit the nearest
neighbors nor the full latent dimensions to generate synthetic points.

The MST [19] algorithm came first in the 2018 NIST Differential Privacy
Synthetic Data Competition7. It consists of three steps: (1) select a collection
of low-dimensional marginals, (2) measure these marginals with an additional
noise (we considered for our experiments ϵ = 3) and (3) generate synthetic data
that preserve well the noisy marginals. SynthPop [21] synthetizes data from the
conditional distributions. Variables are synthesised one-by-one using sequential
regression modelling and are conditioned on the original variables that are earlier
in the synthesis sequence. CT-GAN [27] uses a conditional generative adversarial
network to generate synthetic tabular data that contains a mix of discrete and
continuous columns. K-anonymity [24] is not a data generation scheme but rather
a data anonymization technique that is used to protect individuals’ privacy in
a dataset. A dataset is considered k-anonymous when, for every combination of
identifying attributes in a dataset, there are at least k− 1 other people with the
same attributes (i.e., k = 20 here).
Methodology. To conduct the experiments, we followed the protocol outlined
below. First, we have split the data into two equal-sized sets (50-50). The first
set, referred to as “original data”, is used to generate a synthetic dataset of the
same size while the second set, the “control data” is kept aside to compute the
baseline metrics. Thus, the creation of synthetic data is not influenced by the
control data. For both utility and privacy, the control data is used to ensure that
we are exclusively evaluating the impact of the synthetic data generation method.
The cross-validation has been performed over 25 iterations. Thus, each metric
result represents the average of 25 evaluations on different original/control splits
for a given generation method of synthetic data. We used the API of Octopize
to generate avatar data8 with k = 20 and d = 5.

4.1 Understanding the data topology

In this section, we first aim at analyzing the topology and the relationship be-
tween both the original and the avatar data. To achieve this, we measure the
distance of each original and avatar data to the barycenter of the data, focus-
ing in particular our attention on the edge data. We consider the Gower and
the Euclidean distance for the original and the latent space, respectively. Not
reported due to space limitation, we observe that the distributions of the data
centroid (i.e., the barycenter) of the original data as well as the avatar data are
similar and contain a long tail showing that only a few data that are far from the
barycenter. By analysing these distributions, we also observe that the data at
the edge in the original data tends to remain at the edge in the avatar data, and
vice versa. As these edge data are easily distinguishable and in small numbers,
that makes them more vulnerable to re-identification (Section 4.3).

7
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/
2018-differential-privacy-synthetic

8
https://www.octopize.io/
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Avatar SAIPH M-Avatar CT-GAN SynthPop MST K-anonymity Orig. Data

SDV Score 0.917 0.789 0.850 0.830 0.935 0.836 0.584 1.000
Task Acc. 0.820 0.640 0.734 0.501 0.637 0.930 0.533 0.997

Linkability 0.306 0.036 0.018 0.010 0.027 0.024 0.015 0.987
Singling-out 0.020 0.007 0.009 0.017 0.032 0.009 0.006 0.992
MIA 0.593 0.551 0.492 0.492 0.498 0.502 0.501 0.751
AIA 0.295 0.075 0.050 0.023 0.074 0.042 0.043 0.957

Table 1. Utility and privacy metrics comparison between the different baselines.

4.2 Quantifying the utility loss

First, we assess the impact of the size of the latent space for SAIPH on the
utility. As described in Section 4, SAIPH only involves projecting the original
data point into a latent space and then projecting back to its original space.
The survival curve (not reported here for space reason) according to a growing
size of the latent space, from 2 to 20 over the 26 dimensions of the original
data. As expected, the larger the size of the latent space, the closer the survival
curve is to the one from the original data. We notice that to reconstruct the
curve properly, we need at least 20 out 26 dimensions. Meaning, that the AIDS
dataset does not contain too many redundant dimensions.

We have also compared the survival curve from the avatar data against the
data from other comparative baselines (Figure 1). The results obtained show
that both SynthPop and M-Avatar produce a survival curve that closely matches
the one from the original data. Conversely, the results show that the data from
CT-GAN and K-anonymity provide survival indicators that are not usable. Sim-
ilarly, MST also strongly deteriorates the survival rate. The survival curve from
the avatar data and from the SAIPH latent space is slightly impacted with the
difference between these two curves coming from the exploitation of local neigh-
bors for the generation of avatar data. Taking advantage of this neighborhood
improves the fidelity of the survival curve compared to the original data.

To evaluate the impact on statistical properties (e.g., statistical similarity,
data characteristics and correlations between attributes), we then compute the
SDV average quality score. Table 1 reports this quality score for the avatar
data and for the other comparative baselines. The results show that apart from
K-anonymity, which clearly deteriorates the statistical properties of the data, all
other approaches maintain an SDV quality score close to 0.7, in which a score
of 0.95 is achieved with data close to the original data.

Finally, to evaluate the impact on predictive tasks, we compare the accu-
racy of the classification of a Random Forests model trained from original data
compared to one trained on synthetic data. Table 1 displays the balanced accu-
racy of the classifier trained from all the considered synthetic data generation
schemes. Results show that the balanced accuracy provided by MST is close to
the accuracy from the original data. The Avatar approach is just behind with a
balanced accuracy slightly higher than 0.8, followed by the other methods.
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4.3 Measuring the privacy gain

In this section, we evaluate the privacy gain brought by synthetic data methods.
Specifically, we quantify the privacy risk associated with the disclosure of syn-
thetic data against a singling-out, linkage, attribute inference, re-identification
and membership inference attack. Table 1 depicts the risk of inference for AIDS.
We notice that the solution that displays the highest risk is the Avatar ap-
proach (privacy risk around 0.3), followed by the K-anonymity solution (privacy
risk close to 0.2). We believe that the high risk for the avatar data comes from
the fact that both Avatar and the implementation of the attack exploit neigh-
borhood information. The other baselines and M-Avatar display an inference
risk level below 0.1.

Table 1 displays the risk of singling-out and the risk of linkability. Results
show that the risk of singling-out remains very low for all baselines and M-Avatar,
which means that all these baselines significantly reduce the uniqueness of syn-
thetic data compared to the original data which are highly unique. The results
also show that the risk of linkability remains very limited for all baselines except
for Avatar. The high risk for this approach comes from the fact that this attack
(as Avatar) leverages the closest neighbors to infer the linkability.

Then, we evaluate the risk of re-identification according to the distance of the
avatar data to the barycenter (Figure 2). As explained in Section 4.1, the original
data which is at the edge tends to remain at the edge also in the avatar data.
The results show that the avatar’s edge data is more likely to be re-identified
than the data in the center of the point cloud. More precisely, the edge data
in the last quantile (i.e., more distinguishable) exhibits a risk close to 30%
while data belonging to the densest part (i.e., less distinguishable) displays a
re-identification risk of 8%. As it is more easy to identify edge data, an average
risk of re-identification (here the dotted line close to 10%) does not sufficiently
reflect the real risk of re-identification. However, it should be noted that this risk
is an average, a data re-identified on a run, will not necessarily be re-identified on
another run due to the stochasticity nature of the neighborhood. For instance, in
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the last quantile, a data is re-identified 1 time out of 10 (results not depicted for
space reason). Finally, Tabular 1 reports the risk of membership inference for all
synthetic data generation methods. The results demonstrate that only Avatar

and SAIPH introduce a risk, while the others including M-Avatar significantly
reduce this risk.

5 Conclusion

In this paper, we have conducted an in-depth utility and privacy assessment of
the avatar based approaches. We have found that edge data in the original data
tends to remain at the edge in the avatar data, which favors the probability of
being re-identified compared to data that is less distinguishable. We also propose
an alternative method (called M-Avatar) based on conditional sampling in the
latent space, which allows synthetic data to be generated on demand. Specifi-
cally, by removing the bijective nature of avatar data (i.e., a raw data produces
an avatar, a constraint that only concerns certain use cases), M-Avatar can gen-
erated synthetic data of arbitrary size. Finally, in terms of utility and privacy
compromise, MST, SynthPop, and the proposed M-Avatar solution comes out on
top in our comparison.
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