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Abstract. Generative modeling of natural images has seen signiőcant
progress, but large-scale foundation models raise concerns about environ-
mental impact, privacy, and biases. This motivates investigating more ef-
őcient and interpretable generative models. This work proposes a simple
latent parametric generative model focused on realistic face generation,
a domain that has seen success with neural networks. The model uses
a low-dimensional latent representation from a pre-trained autoencoder,
and proceeds in two stages: (1) modeling the latent distribution as a
mixture of multivariate Gaussians trained on a limited dataset, and (2)
generating low-rank random codes from this prior and remapping them
using nearest neighbor matching. Comparative experiments demonstrate
the advantages of the proposed approach.

Keywords: Generative Modeling · Auto-encoder · Face Generation.

1 Introduction

The field of deep learning-based generative modeling of natural images has wit-
nessed substantial advancements in recent years. Popular methods now achieve
hyper-realistic image synthesis by combining visual and natural language cues,
enabling their use for downstream tasks such as image editing.

These successful generative models rely on a few powerful techniques. The
first is dimensionality reduction. Self-supervised representation learning, primar-
ily built on autoencoding neural networks, allows for the compact representation
of images in a low-dimensional embedding space. Careful architectural design en-
ables an interesting trade-off between the fidelity of image reconstruction and
the compression rate [9].

While dimensionality reduction is mandatory for designing realistic gener-
ative models [16], latent representations offer two main benefits for generative
modeling. First, pre-training a decoder helps reduce the complexity of genera-
tive models, improving training computational time and data requirements, as
demonstrated in various cases [30,9,31]. Additionally, the encoder helps extract
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Fig. 1. Generated samples from a limited dataset of faces with llr-gmm-nn, the pro-
posed method described in Fig. 2. The lr-gmm step consists in estimating a low-rank
latent gaussian mixture model őtted on a limited dataset X (here with only N = 32

training images X̃ showed after decoding by an auto-encoder). The dimensionality is
controlled by a temperature parameter (here 0.3%). An additional nn step adds miss-
ing visual details by matching local features from the training set, captured by latent
patches (with a size of 5). The latent map at the bottom indicates in color code the
corresponding training sample used for each pixel.

perceptually meaningful features that achieve better results than the original
color space for tasks like image comparison [10,18,48] and interpolation [23].

The most successful approaches in recent years have utilized or combined one
of the following key techniques: i) Auto-regressive models, which sequentially
predict masked pixels, either in the color space (as in PixelCNN [28]) or in the
latent space (as in VQ-VAE [30]), often employing decoder-type transformer
architectures [42] for this sequential prediction; ii) Adversarial training, where
feed-forward neural network architectures trained using generative adversarial
networks (GANs) [12,19] can produce highly realistic images; and iii) Diffusion
models, iterative, denoising models that can generate realistic images, either in
the color space [16], in the image latent representation [31], or in a multimodal
representation [29].

The common thread among these successful techniques is their reliance on
massive neural network architectures, often with billions of parameters, to attain
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levels of realism that can deceive human perception. As a result, such large
models require enormous amounts of training data and extensive computational
resources during both training and inference.

However, this level of achievement comes with some remaining challenges.
First, the use of over-parameterized deep neural networks has raised legitimate
concerns about data privacy [46], which have also been shown to occur in gen-
erative modeling, particularly in GANs [14,44]. Some mechanisms, such as dif-
ferential privacy [45], have been derived to mitigate these issues. Additionally,
other generative models based on transformers have been shown to be able to
memorize some training samples [9,27], a concern that has also been scrutinized
for diffusion models [40,6].

Besides, the proliferation of such data-intensive and computationally de-
manding models raises numerous ethical and social concerns [22], including
their environmental impact [3], legal implications concerning training with copy-
righted content [38], and the presence of biases, illegal material [41], or corrupted
samples [39] within the training dataset. These concerns underline the need to
explore alternative approaches that are more resource-efficient, transparent, and
less susceptible to ethical dilemmas.

In this context, this work aims to show that a simple latent generative model,
both in terms of parameters and computing power, can achieve high performance
in comparison to large state-of-the-art auto-regressive and diffusion models. Ad-
ditionally, we further demonstrate that it allows using less data and yields a
more explainable model. Lastly, we show that such a model can address other
downstream tasks, such as image editing.

The proposed approach, illustrated in Figure 1, aims to generate plausible la-
tent representations of images from a limited dataset of portrait examples, which
can then be used to reconstruct the corresponding high-resolution images using
a pre-trained decoder. The generative process is feed-forward and consists of two
steps: i) Modeling the latent distribution of the limited dataset as a Gaussian
mixture model (GMM). Combined with low-rank approximation (LR), this rel-
atively simple model requires only a small number of parameters, thanks to the
compact latent representation of the images, which allows for a limited training
dataset. Yet, this approach still enables the imposition of long-range correlations
in the final high-resolution images. ii) During inference, sparse latent codes are
randomly generated to enforce the sharpness of the generated images. The sec-
ond stage then consists of injecting missing details (high-frequency patterns) by
iteratively projecting the latent pixels onto similar training samples, based on
local comparisons (nearest-neighbor step or NN).

The rest of the paper is organized as follows: The next section (Section 2)
describes related work in latent generative modeling and exposes their limita-
tions. Section 3 introduces the proposed two-step generative model, consisting
of a combination of a latent low-rank Gaussian mixture (§ 3.2) and a nearest-
neighbor projection (§ 3.3). The experimental section (Section 4) shows qualita-
tive and quantitative results for face generation, demonstrating the advantages
of the proposed method compared to several competitive methods from the lit-
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erature. Finally, we conclude in Section 5 by discussing some perspectives and
future lines of work.

2 Related Work

State-of-the-art in generative modeling of face. Our work focus on face
generation which has been a long standing problem in generative image modeling.
One of the first milestone in realistic portrait generation has been GAN-based ap-
proaches, starting with PG-GAN [20] which introduced a progressive adversarial
training on a curated dataset of 30k registered HD images (CelebA-HQ). With
a different architecture allowing for explicit image stylization, Style-GAN [21]
improved upon this work with 70k high-quality images under permissive licenses
(FFHQ). These generative models, mapping a random latent code to a realistic
image, can be used as priors for image editing by implicitly exploiting the la-
tent pre-image. However, such plug-and-play techniques requires gradient-based
optimization or the posterior training of a dedicated encoder.

As mentioned in the introduction, a popular technique to reduce data di-
mension and model size and training time is the use of a latent generative rep-
resentation [30,9,31]. In a first stage, an auto-encoder is trained on the target
dataset to learn a compact latent representation (i.e. with a very small spatial
resolution) via an encoder that is perceptually well reconstructed by a decoder.
To achieve this result, variational auto-encoders (VAE [23]) have been widely
used [30] and are often combined with some other techniques, such as GANs [9].

In a second stage, a latent generative model is trained on the same dataset.
After training, the parametric model is used to generate a random but plausible
latent code that is decoded to synthesize a realistic image.

Auto-regressive models for images has been popularized with PixelCNN [28]
and combined with quantized latent representation in VQ-VAE [30] to produce
realistic images. With the advent of transformers and attention-based architec-
tures [42], token-based decoder transformers has been successfully combined with
latent representation [9]. A limitation of such methods comes from their sequen-
tial nature, requiring a lot of computations and a large number of parameters
to impose long range correlation in long sequence.

More recently, diffusion and score-based models have been popularized since
the seminal work of [16] and its application for text-to-image generation scaled
to large datasets [29,33], in combination of with auto-encoders [31]. While iter-
ative in nature by requiring thousand of denoising steps, the distillation of such
stochastic models has met some success recently to accelerate the generation by
training a single step generative network [34]. Yet, these models are still large in
nature. The sheer amount of parameters contained in a state-of-the-art model
requires several weeks of training with relatively massive computing power.

Besides these computational requirements and the related environmental con-
siderations, a growing number of ethical issues is related to the use of these large
models as black-boxes (reproduction of copyrighted material, reproduction of
bias from the training data, privacy of the training data, etc). Addressing these
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concerns demand more explainable and transparent generative image models. In
this work, we investigate this line of research in the context of frugal models.

Generative model with limited parameters and data. Child et al. [7]
showed that simple multi-scale yet very deep VAE could compete with much
larger auto-regressive models. While being able to generate high quality portrait,
the proposed model is still limited to small resolution (256 pixels) with hundred
of millions of parameters.

One common practice to avoid re-training large models from scratch is to
finetune their parameters on another target dataset. In particular, [43] notes
its efficiency for generative methods in adversarial networks. A recently more
popular approach has been to train a smaller, low-rank, auxiliary model to adapt
the parameters to the target distribution [17,32,47]. Yet, the auxiliary model
uses the large model even during inference, which still requires huge amount of
memory and computations.

Few-shot generation main goal is to be able to generate images from a limited
dataset, with very scarce information. Training models becomes in principle
more difficult as most architectures are in that case prone to overfitting or mode
collapse. [26] proposes an adversarial network adapted to a low amount of data
points. They introduce skip-layer excitation modules that weight high-resolution
features with the low-resolution ones. This allows them a robust training with
lower parameter count. [2] specializes models to the target distribution thanks to
a quantization codebook that specifically encodes patches of the limited dataset.
They then train an auto-regressive model that can only generate codes from that
constrained codebook. Both approaches however require an entire retraining if
the limited dataset were to change. Even though considerably lower than large
models, the training process can take hours of computing for just a dozen images,
for instance.

Last, our work share some similarities with Latent-Patch [35]. In both case,
a shallow latent generative model is proposed to train from a limited dataset.
However, these generative models are completely different in nature. In Latent-
Patch, a multi-scale non-parametric auto-regressive model is used, inspired from
patch-based texture synthesis algorithms and the PatchMatch approach intro-
duced for image editing. A limitation of this approach is the lack of long-range
correlation by the sequential nature of the synthesis, which can results in global
inconsistencies, such as face asymmetries (different eyes’ color, earring on only
one side, etc), different hair styles depending on the spatial location, or inconsis-
tent background. In contrast, our model requires a few parameters (around 1M,
so 10 to 100 times lower than other methods) to be trained, and only requires
two steps that are parallel and thus faster to infer.

3 Latent lr-gmm-nn Generative Model

Overview. Like many aforementioned state-of-the-art approaches, we propose a
latent generative model which is built on top of a pre-trained auto-encoder. The
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next section 3.1 gives more detail on learning such a latent representation on an
auxiliary dataset A. The following sections then introduce the different steps of
the proposed generative model, coined llr-gmm-nn in this document, that are
summarized in Figure 2.

As exposed in section 3.2 about learning the latent parametric model, latent
representations of the training images of a limited target dataset X are first
collected and compressed using dimensionality reduction operator P0, by means
of a principal component analysis (PCA). A Gaussian Mixture Model (GMM)
is then fitted to the latent distribution of the target dataset X to capture the
desired spatial correlation at coarse resolution. The first stage of inference (LR-

GMM-step) finally consists in generating a latent code, and combines a Gaussian
Mixture Model (GMM) with Low-Rank (LR) samples using sparse operators Pk.

The following NN-step, introduced in section 3.3, stands for Nearest-Neighbor
projection, and consists in injecting details in the generated latent sample by
matching local features (latent patches) from training examples.
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Fig. 2. Overview of the proposed llr-gmm-nn method. A latent representation is ob-
tained by pre-training an auto-encoder (E and D) on an auxiliary dataset A. The
model is őne-tuned on the target distribution of images by training a latent embed-
ding (P0 and P ⋆

0 ) on an limited dataset X which reduce the dimension of the latent
representation. A gaussian mixture model (GMM) is őtted on latent images, from
which a low-rank approximation (LR) is used to generate random samples. A local
Nearest-Neighbor (NN) projection based on patch-similarity is used to modify synthe-
sized samples before decoding.

3.1 Latent Representation

A generic auxiliary dataset A = {aj}Mj=1 is considered to learn an appropriate
latent representation of images. We consider color images of size 3 × H × W ,
where H (height) and W (width) indicates spatial dimension.

Auto-Encoder. To achieve this goal, we follow the paradigm of many state-of-the-
art methods by first training an auto-encoder (AE) composed of an embedding
deep-network E (which is used to learn an appropriate latent generative model
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later on), and a decoder D (used to synthesize color images from random la-
tent codes). As this strategy has been proven to be effective to learn various
generative models (see e.g. VQ-VAE [30], VQ-GAN [9], latent-diffusion [31],
Latent-Patch [35]), we assume that we can use a generic on-the-shelf auto-
encoder providing a latent representation y of images at coarse spatial infor-
mation dlatent = c× h× w (i.e. h ≪ H). The spatial grid is referred to as
Ω := {1, . . . h} × {1, . . . w} in the following.

Finetuning. As proposed in [35], a limited set of N images X = {xi}Ni=1 is used
to fine-tune such a generic auto-encoder to the target distribution of images. In
order to restrict the number of parameters of the generative model to be trained,
an affine projector P0 is learnt from PCA on latent c-dimensional features to
further reduce the dimension to q ≪ c. Note that this is done while keeping
spatial resolution h×w of latent representation yi = E(xi) of images, in such a
way that d0 = qhw is limited to a few thousands dimension. Formally, such an
operator operates on each latent-pixel position p and writes

∀ p ∈ Ω, P0 : y(p) ∈ R
c 7→ diag(

√
s0

−1
)V0(y(p)− ȳ) ∈ R

q (1)

where ȳ is the average of latent pixels and V0 ∈ R
q×c is the q principal eigen-

vectors, normalized using the corresponding eigen-values s0 ∈ R
q. For decoding,

the transpose of V0 is used to reconstruct latent representation at the required
dimension c:

∀ p ∈ Ω, P ⋆
0 : z(p) ∈ R

q 7→ V ⊤
0 diag(

√
s0)z(p) + ȳ ∈ R

c. (2)

3.2 A Low-Rank latent Mixture Model

This first stage aims at learning a parametric model capable of synthesising ran-
dom latent representation that: i) impose correlations across the coarse resolution
of embedded images, and ii) capture the diversity of the target distribution, iii)
with a limited budget, in both required training data, memory and computa-
tion time. To achieve these goals, we combine a gaussian mixture model with
low-rank approximations that is trained on the limited target dataset.

gmm. The training dataset X is embedded as N latent vectors Y = {yi =
P0(E(xi)) ∈ R

d0}Ni=1. An expectation-maximization (EM) algorithm is used to
fit the Gaussian Mixture Model (GMM) into K components, so that the training
samples Y are split into K clusters {Ck}Kk=1. Each component is indexed by k

and is parameterized with a multinomial probability πk and with a multi-variate
gaussian N (ck, Σk). Mean ck ∈ R

d0 and covariance Σk ∈ R
d0×d0 are empirically

estimated from the training data from Ck. Due to the limited amount of data
and the reduced dimension (i.e. N d0-dimensional vectors), this training step is
quite fast (a few seconds for small dataset such as N = 100), with the additional
acceleration from GPU-parallelization (see e.g. [25]).

Recall that drawing a random sample from this GMM consists in
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1. randomly choosing the index k ∈ {1..K} using the multinomial probability
law π = (πk)

K
k=1,

2. sampling a random sample z using

ε ∼ N (0, Id0
) 7→ z = Pkε+ ck ∈ R

d0 , (3)

where ε is a random latent variable drawn from a standard normal distribu-
tion, and Pk is a lower triangular matrix from the Cholesky decomposition
of the covariance matrix, such that Σk = PkP

⊤
k .

lr sampling. While using a large number K of clusters allows to fit arbitrarily
well the latent distribution, the number of parameters grows linearly with K.
As a result, and in addition to restricting K to avoid overfitting, we propose
to further reduce the number of parameters required to encode each Gaussian
component by performing a supplementary dimensionality reduction. Relying
again on PCA, a low-rank (LR) approximation of the covariance matrix Σk is
used to limit the latent dimension of each component k to dk. We have found
that adapting dk to the probability πk give better visual results, as shown in
experiments. In practice, we substitute the matrix Pk ∈ R

d0×dk in (3) which is
defined, similarly to (1), from the matrix Vk of dk principal eigenvectors of Σk

as follows: ∀ k = 1..K,

Pk : ε ∈ R
dk 7→ z = diag(

√
sk

−1
)Vkε+ ck ∈ R

d0 (4)

As studied in experiments, this dimension reduction offers some control over the
quality versus the diversity of generated samples.

3.3 Refinement step with iterated nn-projection

The second step of the generative process is non-parametric. In our setting,
for each spatial position p ∈ {1, . . . h} × {1, . . . w}, the random latent feature
z(p) ∈ R

q generated from cluster indexed by k (as in (3)) is substituted with
the nearest-neighbor (nn) latent feature yj(p) at the same position p and in the
same cluster k. To define a relevant comparison of latent feature while taking into
account the context, we consider the local ω×ω square neighborhood around p,
that is ∀ p ∈ Ω

nn : z(p) ∈ R
q 7→ yj(p) with j = argmin

i=1..N s.t. yi∈Ck

∥Φz(p)− Φyi(p)∥2 (5)

where Φ is the patch-extractor defined as, ∀ p ∈ {ρ, . . . h− ρ} × {ρ, . . . w − ρ}

Φ : z(p) ∈ R
q 7→ (z(p+ h))h∈{−ρ..ρ}2 ∈ R

q×ω2

, (6)

considering patches with a discrete radius ρ, such that ω = 2ρ+1. Some special
care is required at the boundary of the domain for which zero-padding may be
used for efficiency. Observe as well that only training patches in the same cluster
as the query and at the same location p are involved in the nn search (5).
When considering non-registered data, such restriction can be like discarded but
increase complexity, similarly to attention modules.
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Comparison with path-based synthesis. Last, note that this nn projection builds
upon the observation from [36,35] that plausible latent code can be obtained by
sampling directly local neighborhoods (or patches) of spatial resolution ω × ω

from the training data. These approaches have been motivated by earlier patch-
based techniques, such as the seminal work of [8] for texture synthesis, and the
efficient algorithm of [1] for image editing.

However, contrarily to [35] where large patches from the training set are
sequentially copied to generate a new latent representation similar to a patch-
work, and to some extent to auto-regressive models [30,9] or diffusion models
with attention mechanisms [31], the proposed nearest-neighbor projection only
copies a latent feature yj(p) and is independent for each spatial position, and
thus can be performed in parallel. This allows some significant speed-up of the
latent synthesis and avoids overfitting the training set as shown in experiments.

Some links with non-local mean filtering and attention mechanism are further
discussed in the appendix.

4 Experiments and Applications

In this section, we first describe the experimental setting (§ 4.1). Then, we show
some quantitative and qualitative results of the proposed approach for face gen-
eration in section 4.2. A comparative analysis with other methods is also carried
out. Additional results, including an ablation study demonstrating the role of
each generative step together with the impact of some hyper-parameters are
proposed the supplementary material.

4.1 Experimental setting

Auto-encoder. We use the VQ-GAN auto-encoder [9], an architecture originally
conceived for transformer-based generation. It notably combines an adversarial
loss with a quantization codebook, learning a both compressed and meaningful
latent representation. The auxiliary dataset A in our setting is FFHQ [21], a
large dataset of faces high-quality faces.

The auto-encoder is trained using color images at resolution H = W = 256
pixels (i.e. for a total dimension 3HW = 196, 608). The latent representation of
an image has a h = w = 16 pixels resolution with c = 256 channels (i.e. for a
total dimension dlatent = 65, 536).

Fine-tuning The feature dimension reduction of the auto-encoder using PCA
(as detailed in § 3.1) is performed on latent pixels of the limited target encoded
dataset E(X ), in which X is a random subset of N images from CelebA-HQ [20],
to learn the projector P0 (1). Doing so allows us to reduce the channel dimension
of pixels from c = 256 to q = 8 with minimal information loss. In the following,
the default size of this limited dataset is set to N = 1024, but experiments will
show that the model is sufficiently robust for N to range from as low as N = 32
(as in the few-shot regime shown in Figure 1) to the full dataset with N = 28k.
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Fitting the generative model. During the training phase of the proposed genera-
tive model (lr-gmm), several hyper-parameters need to be set. By default, we fit
K = 8 components with dimensions dk = ⌊λπkd0⌋ where temperature parameter
λ = 0.12. Optimization is performed using standard EM algorithm (here we rely
on the non-parallel implementation of sklearn.mixture.GaussianMixture).

Memory and computations. Additional details about memory footprint and com-
putation time are provided in the supplementary material. In a nutshell, the
proposed model is both fast to train (few seconds for N = 1000 images) and to
sample from (few milliseconds on a GPU).

4.2 Face Generation

In this section, we discuss quantitative and qualitative results of the proposed
method for portrait generation in two regimes (limited or large dataset), and we
provide comparisons with relevant methods.

Fine-tuning on a small dataset. Figure 1 illustrates the two steps of proposed
generative model when resorting to only N = 32 random training images from
CelebAHQ. In this setting, only K = 1 component is used. Random samples ob-
tained from the lr-gmm step alone synthesize the appropriate main face features
(eyes, nose and mouth) with plausible spatial correlation. However, some other
regions is the image may be unrealistic, such as the face contour and the hair,
the lack of details, the existence of artificial high-frequency patterns, etc. The
nn projection step (here with only one iteration) aims at improving this aspect
by replacing local features with examples from the training images. This obser-
vation is confirmed by several metrics reported later on. in Table 1. The “Latent
map” (at the bottom of Fig. 1 with an arbitrary colormap) corresponds to the
index of the nearest neighbor; in addition to the visual comparison with the
training images (top of Fig. 1), it demonstrates that the model is not overfitting
training samples, even locally.

Quantitative analysis. Now we consider a large dataset in order to compute ob-
jective metrics such as FID [15] and IPR [24]. Recall that the Fréchet Inception
Distance measures the dissimilarity between empirical distributions of real and
synthesized samples, and that Improved Precision-Recall aims at measuring the
tradeoff between quality and diversity of synthetic images. For this purpose,
a total of 10k images are generated with several methods. Results reported in
Table 1 for N = 1024 and N = 28k first show that both steps (lr-gmm and
nn) of the proposed method are required to improve the quality of samples.
The comparison with LatentPatch demonstrates that the proposed method can
achieve similar performance without overfitting the training set (which is not
penalized by these metrics). Besides, comparisons with two larger parametric
models (fastgan [26] and vq-gan [9]) that requires hours of training show that
our method is competitive. Extensive visual comparisons in supplementary ma-
terial corroborate these results: the proposed method yields high quality samples
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(high precision) but lacks some diversity (lower recall). In particular, the pro-
posed method struggles to create realistic hair pattern, which is penalized by
the FID.

N
=

2
8
k

vq-gan LatentPatch FastGan lr-gmm-nn

Datasize |X | Method FID (↓) Precision (↑) Recall (↑)

N = 1024

LatentPatch [35] 58.4 0.55 0.01

lr-gmm 73.8 0.47 0.03

lr-gmm-nn 58.1 0.52 0.07

N = 28k

vq-gan∗ [9] 10.5 0.52 0.51

LatentPatch [35] 35.1 0.54 0.19

FastGan [26] 31.8 0.50 0.04

lr-gmm 84.1 0.53 0.01

lr-gmm-nn 45.0 0.68 0.06

Table 1. FID [15] and Precision-Recall [24] metrics for different methods. Our method
(lr-gmm-nn) is tested in two settings: N = 1024 and N = 28, 000 images. lr-gmm

indicates the proposed method without the reőnement nn step, demonstrating its in-
terest. See the supplementary material for more visual samples. ∗Note that both the
transformer and auto-encoder of VQ-GAN have been trained on X rather than A.

Comparison with LatentPatch. Figure 3 offers a comparison of both ap-
proaches when considering the same dataset of N = 1024 images. We already
reported some methodological difference with LatentPatch [35] in section 3.3,
completed with numerical (computation time) in the supplementary material
where our approach is reported to yield a 30× speed-up. Recall that Latent-

Patch is a non-parametric patch-based generative model that does not require
any training, and that aims at being explainable. To do so, similarly to other
patch-based generative models such as [13], it explicitly synthesizes new image
samples by copying local regions from examples images. This can be seen from
the Nearest-Neighbor index, as defined by (5) and referred to the “latent map”
(in this case, the colormap is cluster-dependant). In contrast with LatentPatch

which copies large regions of latent features to achieve realistic portrait gener-
ation, the proposed method combines only latent pixels from training samples,
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thus with more variety without overfitting some training samples. As a result,
thanks to the randomness of samples from the gmm, we only make use of the
nearest feature for the refinement, rather than sampling randomly from the top
k-nn as in LatentPatch or in VQ-GAN. For all methods, the use of a latent
representation then allows for a nice blending of the selected features.

Fig. 3. Comparisons between llr-gmm-nn on the left, and LatentPatch [35] on the
right, both őtted on the same N = 1024 dataset. The proposed approach beneőts from
training a small parametric model to impose spatial coherence.

4.3 Ablation study

The supplementary material includes an ablation analysis that offers extensive
visual comparisons, corroborating and complementing the performance scores re-
ported in earlier experiments. This is supplemented with additional experiments
that discuss the significance of each stage of the proposed generative model, the
role of various hyperparameters, and the computation time.

5 Discussion and perspectives

Summary. A new approach has been presented for face-generation from limited
dataset. Rather than training a large auto-regressive model such as VQ-VAE or
VQ-GAN, our approach shows that in this context a simpler parametric model
can be efficiently learned from a few samples. The proposed latent generative
model mainly consists in two stages. The first one fits a gaussian mixture model
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from the limited dataset. This model is then reduced in dimension to accelerate
training and inference, but also improve quality results. This simplistic model
provides random samples with the desired spatial correlations. The final stage
consists in improving the quality of the synthesized samples by local nearest-
neighbor projections. Experimental analysis demonstrates the speed-up of the
proposed method in comparison with some previous work from the literature,
while still providing similar or better visual quality.

It is noteworthy that previous works, such as [11,37], have already demon-
strated the benefits of combining regularized deterministic auto-encoders with
Gaussian Mixture Models to enhance vanilla Variational auto-encoder models.
Our approach differs from [37], where latent dimensions are assumed to be inde-
pendent, enabling the estimation of univariate GMMs during training. Similar to
[11], we demonstrate that a multivariate GMM can be post-estimated to capture
correlations between latent variables and improve sample quality. However, our
work also diverges from [11] in several key ways. First, we employ dimensionality
reduction to enhance sample quality, as shown in the ablation study in the sup-
plementary material. Additionally, our method leverages the spatial information
in the latent representation to refine local statistics using NN projections. Fur-
thermore, instead of utilizing the entire training dataset used for the regularized
AE, we demonstrate that a limited sample is sufficient to fit the latent model of
an AE-GAN to produce realistic samples.

Limitations and perspectives. The proposed method however suffers from a few
shortcomings when compared to some previous methods. The first one is re-
lated to the resolution of synthesized images that is same as training samples,
like most generative models. This is yet not the case with auto-regressive mod-
els that can generate latent codes of arbitrary size, which is handy for other
tasks such as generating landscapes. An interesting line of research in such con-
text would be to extend our model by considering GMM with limited range
for spatial correlations. In comparison with latentPatch, another current limita-
tion of the proposed model is its extension to conditional generation. With an
auto-regressive model, a latent code can be easily provided as a context. In our
setting, this is also achievable but not as straightforward as one need to train
a conditional gaussian noise, which is an interesting perspective left for future
work.

Acknowledgements This work is funded by the project ANR-19-CHIA-0017.
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This appendix is composed of the following sections:

– Section 1 shows additional visual results from training the model on a large
dataset and comparisons with three generative models;

– Section 2 discusses the relationship between the proposed refinement step
and some related filtering methods (non-local means and attention-based
mechanism);

– Section 3 reports the number of parameters of the model and compare com-
putation time for training and inference with an other generative model:

– Section 4 discusses the interest of each stage of the generative model and the
role of some major hyper-parameters.

1 Additional visual results

Figures 1 and 2 show high quality generated samples from training the proposed
lr-gmm-nn model with the full training set of CelebA-HQ (N = 28k). In this
experiment, K = 64 components are used to fit the GMM.

A visual comparison with other methods (LatentPatch [35], FastGAN [26]
and vq-gan [9]) is provided in Figures 3 and 4. Some additional technical details
about this experiment:

– all generative models are trained on the full training set of CelebA-HQ
(dataset X ) at a resolution of 256 pixels;

– we have trained FastGAN from scratch on X using the official code1 with
default parameters (with a total of more than 29M trainable parameters,
requiring 1 hour of training);

– LatentPatch and lr-gmm-nn use the auto-encoder architecture of vq-

gan that is pre-trained on FFHQ (auxilliary dataset A). The generative
model of LatentPatch is parameter-free, and lr-gmm-nn uses approxi-
mately 1M parameters.

– we have used an official trained version of the generative model from vq-

gan2, meaning that both the auto-encoder and the transformers are trained
on CelebA-HQ (dataset X ); the latent generator itself has more than 800M
training parameters and requires several days of training.

1 https://github.com/odegeasslbc/FastGAN-pytorch
2 https://github.com/CompVis/taming-transformers

https://github.com/odegeasslbc/FastGAN-pytorch
https://github.com/CompVis/taming-transformers
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Fig. 1. Generated samples after the őrst (lr-gmm) and second (nn) stage of the pro-
posed latent model.
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Fig. 2. Generated samples after the őrst (lr-gmm) and second (nn) stage of the pro-
posed latent model.
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Fig. 3. Visual comparison of generated samples from our method (lr-gmm-nn), La-

tentPatch [35], FastGAN [26] and vq-gan [9], using the same training dataset as
in Figs. 1 and 2.



18 B. Samuth et al.

l
r
-g

m
m
-n

n
L
a
t
e
n
t
P
a
t
c
h

fa
s
t
g
a
n

v
q
-g

a
n

l
r
-g

m
m
-n

n
L
a
t
e
n
t
P
a
t
c
h

fa
s
t
g
a
n

v
q
-g

a
n

Fig. 4. Visual comparison of generated samples from our method (lr-gmm-nn), La-

tentPatch [35], FastGAN [26] and vq-gan [9].
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2 nn-projection and latent image filtering

In this section, we compare the proposed nn-projection stage with non-local
filtering and attention mechanisms.

Link to Non-local filtering. The proposed nn-step is actually closely related to
the Non-Local-Means filter [5] (nlm) which would writes in our setting as:

nlm : z(p) ∈ R
q 7→ 1

C(p)

∑

q

z(q)w(p, q) with w(p, q) = e−
∥Φz(p)−Φz(q)∥2

h2 ,

where C(p) =
∑

q w(p, q). In our pipeline, the nn projection (Eq. 5 in the paper)
is first obtained by setting the scaling parameter h (which acts as a temperature)
to 0, and the averaged “noisy” samples z(q) are replaced “clean” samples yi from
the same cluster and spatial location.

Link to Attention. Note that, by extension, the nn-projection is also related to
attention mechanisms, where queries and keys correspond to patches, and values
correspond to training local features, again restricted to a subset of values to
speed-up computations. In the popular softmax-attention formulation, negative
distances are replaced by scalar product. Besides, our approach is analogous
to transformers in [9] in the fact that local features are copied: the key differ-
ence here is that VQ-GAN transformers implicitly copy features from a limited
codebook (which is shared across all spatial location), while our approach use a
limited set of features that is however different in each spatial location. Learning
a limited set of key patches to reduce memory footprint is an interesting research
direction that we did not explore in this work.

Iterated filtering. As such, this step can be iterated to improve prediction, sim-
ilarly to nlm [4] or attention modules in transformers [42]. However, only one
iteration has been used in all experiments, as the improvement is not worth the
overhead.

3 Model Scale and Computational Efficiency

Number of parameters and memory footprint. Recall that the model is composed
of three main parts that requires training data. Two of them necessitates to fit
some parameters:

– fine-tuning the auto-encoder with P0 (and P ⋆
0 ) requires (c+1)d0 parameters,

where with d0 = hwq = 2048, to store the mean and normalized eigen-
vectors; using default values from experimental section § 4, this amounts to
a total of approximately 526k parameters;

– fitting a latent gmm with K components requires to store K(dk+1)d0 values;
using K = 10 and a constant dimension dk = 48 amounts approximately to
1M parameters;
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Last, the iterated nn-projections (in Eq. 5) do not involve training param-
eters, but some memorization of latent patches. Considering a limited dataset
of N = 1000 images, this represents a total of Nd0 ≈ 2M floating values to
store. This figure can be however drastically reduced by taking advantage of the
quantized latent space from VQ-GAN: using a codebook with n = 1024 vectors
only requires hwN = 256k integers to store. Although we did not use the code-
book in any of the experiments of this work, in practice we did not notice any
significant loss in quality by visual inspection when introducing this quantiza-
tion. An additional benefit from using a codebook would be to accelerate the
computation of the nn-projection, although it would necessitate the storage and

pre-computation of the n(n+1)
2 distances between quantized features.

Operation LatentPatch [35] lr-gmm-nn

P0 Compute 0.127 ms

Encoding X 4.363 s

Training N/A 9.051 s

Total (Setup) 4.490 s 13.541 s

Sampling (/image) 581 ms 0.338 ms

Reőning (/image) N/A 11 ms

Decoding (/image) 11 ms

Total (Generation) 592 ms 22.338 ms

Table 1. Computation time of our method, compared to Latent-Patch [35]. In this
test, we encode a limited dataset X of size N = 1024. For an additional training time,
we are able to make the generation process roughly 30 times faster.

Computational Time. Table 1 reports computational time for training the pro-
posed model from a dataset with N = 1024 images and generating one random
sample. Note that all operations are performed on GPU, except fitting the gmm

which is done on CPU.
As a reference, a comparison with the sequential non-parametric approach

of LatenPatch [35] is provided. As expected, our parametric model requires a
few more seconds for setting up, as we need to fit the parametric model, but is
also much faster to sample from.

4 Ablation study

Latent representation of the auto-encoder. Figure 5 shows that even a small ran-
dom perturbation ε ∼ N (0, Id0

) of the latent representation of an encoded image
P0E(z) generates completely out-of-distribution images. This demonstrates the
necessity of training a parametric model to learn a useful prior to define a gen-
erative model, as further discussed in the following paragraph.
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Besides, the comparison of Figs. 5 (a) and (b) validates the fact that the
dimension reduction on features with P0 does not degrade image quality, even
if some noticeable difference occurs (such as eyes or skin color, high frequency
pattern in hairs, or slight pose change).

a) x b) D(P ∗

0 (P0E(x))) c) D(P ∗

0 (P0E(x) + ε))

Fig. 5. Manipulation in the latent space of the auto-encoder. (a) image from the train-
ing set X (b) decoded image from the auto-encoder (encoder E and decoder D) using
the dimension reduction operators (P0 and P ∗

0 ). (c) synthesized image from a small
gaussian perturbation ε ∼ N (0, Id0).

Role of the GMM for latent modeling. The encoder being trained using a vari-
ational auto-encoder, one could expect the latent distribution to be close to
the standard gaussian distribution prescribed in the training loss derived from
ELBO [23]. Figure 6(a) invalidates this assumption as random latent samples us-
ing this prior does not yield realistic synthesis of portraits. In addition, we found
using other simple priors such as random codes from the codebook of VQ-GAN
(Fig. 6(b)) does not improve the quality. Figure 6(c) shows the result of sam-
pling directly latent pixels from the training set, and is somehow equivalent to
our model with only the nn projection from a random initialization (rather than
using lr-gmm). In contrast, using a prior on the complete latent representation
(Fig. 6(d)) allows to get plausible spatial correlation.

Centroids Figure 7’s top row shows the decoded centroids D(P ⋆
0 ck) obtained

from the EM algorithm in the latent space for K = 8 and N = 1024 images. As
expected, each average component of the GMM captures main and sharp facial
features, such as pose, gender, skin or hair color. On the contrary, parts of the
image that have the most variability (background, ears, hair, etc) are blurry and
can exhibit high frequency patterns due to the dimension reduction from P0. The
bottom row of Fig. 7 displays directly the latent code, using a colormap based
on the three first channels among q = 8 (recall that these channels correspond
to normalized eigen-vectors defined from P0).

Impact of low-rank sampling. The experiment in Fig. 8 scrutinizes the role of
the dimension reduction parameter dk. Using (4), random gaussian samples are
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a) z(p) ∼ N (0, Id0) b) z(p) ∼ U(C) c) z(p) ∼ U({yi(p)}i) d) z ∼ N (µk, Σk)

Fig. 6. Decoded image from random latent samples using different priors: (a) corre-
sponds to sampling each latent pixel from a standard gaussian; (b) corresponds to
uniformly sampling each latent pixel from the codebook; (c) corresponds to uniformly
sampling each latent pixel from training samples (i.e. nn step alone); (d) corresponds
to sampling a latent code from a component of a gmm (i.e. lr-gmm step alone).

Fig. 7. Decoded means of the K components estimated from N = 1024 images of
CelebA-HQ.

drawn using the same random seed but with different matrices Pk obtained for
different values of the parameter dk in the range [1, d0]. Decoded latent samples
shows that dk offers a tradeoff between quality and the diversity of the generated
faces.
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Fig. 8. Illustration of low-rank sampling. Limiting the dimension dk of the GMM com-
ponents accelerates and reduces the memory footprint of the model while also offering
a tradeoff between diversity and quality.
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