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This study deals with a multi parameter estimation problem with bounded output errors. It concerns
the swelling of polymer films by a solvent, in the glassy state. Local thermodynamic equilibrium is
no more ensured and the swelling results of two coupled phenomena, the diffusion of solvent on one
hand and the change in solubility due to stress relaxation of the entangled polymer chains on the
other hand. The estimation aims to obtain the parameters that characterise these two phenomena
from gravimetric experiments. A set inversion analysis is used to perform the estimation: this global
estimation method allows to determine all the sets of parameters that give a mass uptake consistent
with the experimental data and the bounded errors. It gives interesting information on the coupling
between the parameters and is well appropriate to analyse this ill-conditioned problem. A systematic
analysis of the estimation performance as a function of the characteristics of the polymer/solvent
system and of the experimental set-up have been performed.

1 Introduction

Diffusion of solvents or low molecular weight species in polymer films or mem-
branes is the determining factor in many processes such as the drying of poly-
mer coatings, membrane formation, drug release, etc. When the polymer film
is rubbery, i.e. when its temperature is well above the glass transition tempera-
ture, solvent sorption (swelling) or desorption (drying) is well known. Swelling
or drying kinetics is much more complex in the glassy domain: indeed local
thermodynamic equilibrium is no more ensured since the relaxation of the
stresses induced by the volume variations involves rearrangements of macro-
molecular chains which are very slow and may be longer than the characteristic
time of diffusion. The swelling of a polymer film then results of two coupled
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phenomena, the diffusion of solvent on one hand and the change in solubility
due to stress relaxation on the other hand [1–5].

One common way to investigate solvent sorption is to perform gravime-
try experiments in a controlled environment: The film is swelled by small
increasing of the solvent vapor pressure above the film and the evolution of
the film mass induced by the variation of the vapor pressure is recorded. In
the same way, desorption experiments are obtained by performing small de-
creasing steps of the solvent vapor pressure above the film. One example of
desorption kinetics, for a copolymer PMMA/PnBMA (polymethylmethacry-
late/polynbutylmethacrylate) swelled by toluene, is given in figure 1 [6]. If the
film were not glassy, the kinetics due to a small pressure step should exhibit
a Fickian behaviour: the absolute value of the mass variation as a function of
the square root of time should be linear at the beginning and should go to an
asymptotic value [7]. The deviation from Fickian behaviour is typical of the
glassy state. In this example ’pseudo Fickian’ kinetics is obtained with a linear
part at short times followed by a slow increase of the absolute value of the
film mass variation. More complex kinetics can be obtained (S shaped curves
or non monotonic mass variations for example) depending on the coupling
between diffusion and relaxation [8].

One important point to underline is that experimental errors in such devices
may be badly characterised: for example in quartz microbalance set-up, be-
sides the usual measurement noise that can be statistically modeled, one can
observe drifts or systematic errors due to pressure or temperature influence
on the quartz behaviour [5, 6, 9]. These errors are not accurately known and
can only be bounded. The estimation problem is then the following: given the
experimental mass evolution and some bounds on the experimental errors, is
it possible to estimate the parameters that characterise solvent sorption in
the glassy state? More generally this study is part of the problem of multi
parameter estimation with bounded experimental errors.

Classical optimization methods based on the minimization of the distance
between experimental and modeled kinetics are not suitable for such an esti-
mation problem. Indeed the minimization selects one solution in the parameter
space and estimates the uncertainty from the errors statistical laws. As seen
later, the estimation problem considered here is badly conditioned in the sense
that very different set of parameters give close kinetics. Then the selection of
one solution is meaningless, especially as the uncertainty cannot be easily de-
termined since measurement errors are only bounded. That is why another
estimation approach has been chosen, a set inversion analysis: this global esti-
mation method aims to determine all the sets of parameters that give a kinetics
consistent with the experimental data and the bounded errors [10–13]. This
kind of approach is very interesting because it gives well defined error intervals
for each parameter. Then, for a given experimental situation, it is possible to
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determine if the different parameters are accurately or only roughly estimated.
Let us note that the diffusion coefficient and the relaxation time vary on sev-
eral decades in the glassy domain [8, 14]. Then, getting at least the order of
magnitude of these parameters is an interesting information.

The paper is organised as follows: the physical model used to simulate sorp-
tion in glassy films is presented in section 2. Section 3 is devoted to a brief
presentation of the set inversion method. The performance of the estimation
as a function of the coupling level between diffusion and relaxation is analysed
in section 4.

2 Sorption modeling

The glassy state is not well understood yet and several theoretical approaches
have been proposed to model solvent sorption in glassy films, none of them
succeeding in fitting all the observed behaviours. One of these approaches takes
viscoelastic relaxation into account through a constitutive equation, where the
relaxation behavior is approximated by a simple viscoelastic model [1–3, 15].
A second group of models takes the coupling between diffusion and relaxation
into account through the solubility (time dependent solubility model [4, 16–
20]).

In the absence of a well defined description of the glassy state, we opted
for a phenomenological model of the literature, simple enough to be suitable
for the estimation algorithm used in this study, but able to capture the main
features of sorption swelling. In the model proposed by Long and Richman
[16] the relaxation is taken into account at the interface only: each volume
element in the bulk is assumed to be at the local thermodynamical equilibrium
and the classical formulation for Fickian diffusion is employed to describe
the solvent diffusion through the film. In gravimetry experiments considered
here, the film swelling is obtained by increasing the solvent vapor pressure in
the measurement chamber. For each experiment the vapor pressure variation
is very small so that the solvent uptake is very small too and the diffusion
coefficient and film thickness can be assumed constant during one experiment:

∂c(z, t)

∂t
= Dsp

∂2c(z, t)

∂z2
, 0 < z < l (1)

where c(z, t) is the local solvent concentration, Dsp is the mutual diffusion
coefficient and l is the film thickness.

The solvent vapor is the only gas in the measurement chamber so that
changing the vapor pressure leads to a change of the surface concentration
(first kind boundary condition). In the Long and Richman model [16], the
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effect of the relaxation is introduced by making the surface concentration a
function of time with a first order model. Then, assuming a perfect pressure
step of the vapor above the film, the boundary condition at the film/vapor
interface is given by:

c(z = l, t > 0) = c0 + (c∞ − c0)

{
1− exp

(
− t

τr

)}
(2)

where c0 is the instantaneous change of the surface solvent concentration after
a pressure step, c∞ is the equilibrium value corresponding to the thermody-
namical equilibrium and τr is the relaxation characteristic time. Let us notice
that, in the rubbery domain, the rearrangement of macromolecular chains is
very rapid (τr ' 0) and equation (2) amounts to a constant first kind bound-
ary condition, as expected when no inert gas is present. The second term in
equation (2) expresses the slow evolution of the solubility due to the slow
relaxation of stresses in the glassy state.

The boundary condition at the bottom of the film is a condition of non
permeability:

∂c

∂z
(z = 0, t) = 0 (3)

The initial condition is:

c(z, t = 0) = ci (4)

To simplify the notations, the initial concentration, ci, is always set to
zero in the following. This shift of the concentration has no impact on the
model behaviour since equations are linear. The mass uptake by unit area,
∆m (Kg/m2), is noted m in the following.

This model is of course an approximation since, among other things, it as-
sumes thermodynamical equilibrium inside the film and uses a first order model
to represent relaxation. But it was shown to be able to fit experimental kinet-
ics. Moreover a systematic comparison with the model proposed by Petropou-
los [21], in which the relaxation is taken into account everywhere in the film,
was performed. This comparison showed an agreement good enough for esti-
mation purpose [22]. From the numerical point of view, the Long and Richman
model is simpler because the relaxation is introduced through a boundary con-
dition only and not in the equation describing solvent diffusion inside the film.

Four parameters (τr, τd, c0 and c∞) and two dimensionless quantities are
involved in this model: the Deborah number compares the characteristic times
of diffusion and relaxation: Deb = τr/τd, with τd = l2/Dsp; R is the ratio
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between the instantaneous and delayed component of the solvent concentration
uptake: R = c0/c∞. A very small Deb corresponds to the rubbery Fickian case,
when relaxation phenomena are instantaneous on the diffusion time scale so
that the system is in local thermodynamic equilibrium. On the contrary a
very large Deborah leads to two stages kinetics (the two phenomena are well
separated) or even to Fickian kinetics if the second stage is not observed
on the time scale of the experiment. More complex kinetics is obtained for
intermediate values depending on both Deb and R, as illustrated on figure 2.

An analytic expression of the solvent mass uptake m(t) can be derived from
the above equations by use of Laplace transforms [6]:

m∗(t) = 1−tan
(

1√
Deb

)√
Deb (1−R) exp

(
− t∗

Deb

)
+ 2

∞∑
k′=π

2

([
1
Deb −Rk

′2

k′2
(
k′2 − 1

Deb

)] exp(−k′2t∗)

)
(5)

with: k
′

= (2k + 1)π2 , m∗(t) = m(t)/m∞, m∞ = c∞ × l, t∗ = Dspt
l2 = t

τd
.

As illustrated in the following, one of the difficulties of this multi parameter
estimation problem arises from the quite similar form of the terms of equation
(5): this is due to the expression of the solution of the diffusion equation, which
is an infinite sum of decreasing exponentials, and the relaxation model which
is a decreasing exponential. The numerical tests described in section 4 analyse
the performance of the estimation of the four parameters (τr, τd, m0 = c0 × l
and R) as a function of Deb, R, the duration of the experiment H and the
measurement error level σ.

3 Set inversion analysis

3.1 Method

This section gives a brief presentation of the global optimization method,
applied to the estimation problem considered in this paper. A more general
presentation and rigorous demonstrations of the mathematical properties can
be found in [10–13]. As said previously, the set inversion analysis aims to
characterize the set of all the values of the parameters that are consistent
with the data in the sense that the differences between the experimental data
and model outputs fall within prior bounds.

A key stage in the set inversion analysis is the definition of the bounded
errors. These errors are defined a priori, i.e. before the estimation, and must
take into account all the uncertainties of the experimental set-up. One exam-
ple of errors definition in the case of a gravimetry set-up based on a quartz
microbalance can be found in [5]. In the analysis performed here we have cho-
sen to simulate experimental errors by a constant value, σ, since a detailed
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description of σ strongly depends on the experimental set-up. (However let us
note that using a non constant σ is straightforward). That means that at each
experiment time tk, the true mass is assumed to lie between (mk

exp − σ) and

(mk
exp + σ) where mk

exp is the measured mass at tk. Then we are interested to
find all the quadruplets p = {τd, τr, m0 = c0 × l, R} for which the output of
the model m(t = tk) (c.f. equation (5)) lies between (mk

exp−σ) and (mk
exp+σ)

at all measurement times tk.
First we introduce some definitions used in the set inversion analysis. Con-

sidering a given quadruplet p = {τd, τr, m0, R} and the corresponding model
output m(p, t), p is said admissible if:

∀k ∈ N | 1 ≤ k ≤ n, (mk
exp − σ) ≤ m(p, tk) ≤ (mk

exp + σ) (6)

with n the number of measurements, m(p, tk) the model output at tk obtained
with the quadruplet p.

If for some times tk the distance between the model output and the data is
greater than σ, the quadruplet is rejected and said non admissible:

∃k ∈ N | 1 ≤ k ≤ n, m(p, tk) < (mk
exp−σ) or m(p, tk) > (mk

exp+σ) (7)

In the parameter space (dim=4), a box P is defined by the following inequal-
ities:

τdmin ≤ τd ≤ τdmax
τrmin ≤ τr ≤ τrmax
m0min ≤ m0 ≤ m0max

R
min
≤ R ≤ R

max

A box is said admissible if all the quadruplets contained in the box are admis-
sible, and on the contrary non admissible if all the quadruplets of the box are
non admissible. A box that contains admissible and non admissible quadru-
plets is said ambiguous. At least, a box that cannot be put in one of these three
categories due to incomplete information is said indeterminate. Indeed, as will
be seen later, usually only sufficient conditions of admissibility are available.
When these conditions are not fulfilled, the box is indeterminate.

It is of course not possible to perform this classification directly because
each box contains an infinite number of quadruplets. The image of the box,
m(P, t), is the set of the outputs of the model for all the quadruplets of the box.
It is generally difficult to obtain this image directly. To obtain the partition
of the parameters space into the admissible domain and the non admissible
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one, the authors of set inversion methods introduce the notion of inclusion
function. Details are given in [11, 13]. Qualitatively it can be introduced in
the following way: the inclusion function M is used to determine an including
envelope for the images of the boxes: M(P, t) must include the image of the
box, m(P, t), and its size must go to zero if the size of the box P goes to
zero. The determination of an inclusion function is a key preliminary step in
the set inversion analysis. A schematic illustration of an inclusion function is
given in figure 3 for a simple example where the dimension of the parameter
space as well as the dimension of the image space are two [11]. (This would
correspond to the estimation of 2 parameters, for example τd and τr, using the
mass measurement at only two times, t1 and t2).

In the problem considered here, the image of a box can be quite eas-
ily bounded. Indeed, when R < 1, the model output is a monotonic func-
tion of the four parameters τd, τr, m0 and R: it is an increasing function
of m0 and a decreasing function of τd, τr and R (cf. Appendix A). The
model output for any quadruplet of the box is then included between the
kinetics obtained by the quadruplets plow = {τdmax , τrmax , m0min , Rmax} and
pup = {τdmin , τrmin , m0max , Rmin}.

The case R > 1 is a little more complex but it is also possible to define two
quadruplets plow and pup and two bounds, mlow and mup including the image
of the box, as detailed in Appendix A.

Then the partition of the boxes can be made in the following way: For a
box P to be admissible, it is sufficient that the two extreme quadruplets are
admissible. On the contrary, if for at least one time tk the output mlow is
greater than (mk

exp + σ) or the output mup is smaller than (mk
exp − σ), the

box is non admissible. Otherwise it is indeterminate. Indeed the two previous
conditions are sufficient but not necessary.

3.2 Algorithm SIVIA (“Set Inversion Via Interval Analysis”)

Once the inclusion function is obtained, the numerical algorithm is quite simple
to implement. SIVIA uses a stack of boxes [11, 13]. First an initial box in
the parameter space, large enough to contain all the possible solutions, is
specified. This initial box, P0, is indeterminate. The required accuracy for the
final paving, ε, is also specified. This box is put on top of the stack and bisect
into two smaller boxes. Each sub-box is tested by computing mlow and mup.
An admissible sub-box is stored in the ’solution file’, a non admissible box is
deleted and an indeterminate one is put on top of the stack, if its size is greater
than ε. If not, it is stored in the ’indeterminate file’. Then the procedure is
repeated till the stack is empty. Convergence properties of the algorithm are
analysed in [13].

At the end of the calculation, one obtains the domain in the parameter
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space containing the admissible quadruplets, KA, and the frontier between
the admissible and non admissible domains corresponding to the indeterminate
boxes, KI . The solution of the estimation problem is made of the union of the
two domains, (KA ∪KI). The thickness of the indeterminate domain depends
on ε, so that decreasing ε decreases the size of KI . But on the other hand the
computing time is very sensitive to ε and the choice of ε then is a compromise.
For each of the four parameters p = {τd, τr, m0, R}, the 1D projection of the
solution on the four axes of the parameter domain gives all the values that are
consistent with the experimental kinetics and the bounded errors. Of course
all the combinations are not possible and the projections of the solutions in
3 or 2 dimensions give interesting information on the coupling between the
parameters.

As other non linear optimisation algorithm, SIVIA requires the calculation
of m(t) a great amount of times so that it is computer time consuming, though
the calculus of the output m(t) itself is very rapid. But it can be very easily
parallelized because the boxes on the stack can be analysed independently (cf.
numerical subsection in the following). Let us recall that, despite the great
computing time required by SIVIA, the advantage of this global optimization
method is to give all the sets of parameters that give a kinetics consistent with
the experimental data and the bounded errors, while a classical optimisation
method would select only one solution.

4 Estimation results

The tests of the estimation method have been performed in the following way:

For a given set of parameters, pref = {τ refd , τ refr , mref
0 , Rref}, the output is

calculated for 0 ≤ t ≤ H. Then this output is used as experimental kinetics,
mexp. The SIVIA algorithm is then performed to determine all the quadruplets
p = {τd, τr, m0, R} that give kinetics m(t) such that (mk

exp − σ) < m(tk) <

(mk
exp + σ).

The diffusion time τ refd and the mass at equilibrium, mref
∞ , are set to one

in all the simulations. The time sampling, tk+1 − tk, is very small compared
to the two characteristic times τd and τr. We have studied the influence of
Deb, R, the experiment duration H and the error level σ on the estimation
performance.

4.1 Influence of Deb

In a first step the error level is set to 0.01, that is 1% of the mass variation at
equilibrium. The duration H is large compared to the characteristic times τd
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and τr.
Let us first analyse the influence of the Deborah number for a given R

value: Rref is set to 0.5 (the instantaneous change of the concentration at the
interface film/vapor is half the total variation) and tests are performed for

Debref = τ refr /τ refd from 0.1 to 100.
1D projections for the four parameters are given in figure 4. The repre-

sentation is given for τd, τr, R and m∞ = m0/R. Vertical bars correspond
to the values of the parameters that are consistent with experimental data,
corresponding to (KA ∪ KI). Let us note that in all the results presented in
the paper ε (the required accuracy for the final paving) is small, so that the
frontier KI is thin. Figure 4 shows that the quality of the estimation strongly
depends of the Deborah number. For Deb greater than about three estimation
with good accuracy is obtained for the four parameters. For small Deborah
the parameters may vary on large intervals, except for the mass at equilib-
rium which is always obtained with a good accuracy because the experiment
duration H is large. Indeed, the mass variation induced by diffusion and re-
laxation can be simulated by a great number of parameter combinations. As
said previously, this is due to the quite similar form of the solution of the
diffusion equation, and the relaxation term. The kinetics can then be obtained
numerically by several parameters sets if Deb is close to one, when the two
phenomena are strongly coupled, or if Deb is small, when the kinetics is not
sensitive to relaxation in the real problem. Figure 5 gives an illustration of the
ill conditioned character of the estimation problem for small Deb: kinetics are
very close with quite different parameters. On the contrary for Deb greater
than three diffusion and relaxation are less coupled and the shape of the kinet-
ics depends on the two phenomena sufficiently to get small variation domains
for the four parameters.

This is confirmed by the observation of 2D projections (figure 6). The size
of the admissible domain in the ’τr/Deb

ref , τd’ space increases when Deb
decreases. In the ’m0,R’ space the admissible domain is close to the bisectrix
because the equilibrium value is accurately estimated. But the length of the
domain increases when Deb decreases.

These first tests show the advantage of this global optimization method to
thoroughly characterise the accuracy of the estimation. Let us notice that, in
such a situation, estimation performance improvement is possible by decreas-
ing the film thickness. Indeed the diffusion time varies as the square of the
film thickness while the relaxation time does not depend on it. As long as it is
compatible with the specificity of the gravimetric set-up (sensitivity, minimal
sampling times...), it is possible to choose experimental conditions suitable for
accurate estimation.
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4.2 Influence of R

To study the influence of R we now use a great Deb number, Debref = 10.
Tests have been performed for Rref from 0 to 1.9. As previously the error
level is set to 0.01 and the experiment duration H is large compared to the
characteristic times τd and τr. 1D projections are given in figure 7 as a function
of R. There are two critical zones, when R is small and when R is close to
one. This may be explained when looking at equation (2). When R = 1, c0 =
c∞ and the instantaneous change in the boundary condition is equal to the
equilibrium value, i.e. the stress relaxation does not induce a delayed swelling
of the film. Then the relaxation term in the boundary condition disappears
and the estimation of τr is no more possible. As shown in the previous section,
the similar form of the diffusion equation solution and the relaxation model
implies that numerically a great number of parameters combinations are able
to give kinetics in the error bounds. Then none of the parameters except m∞
are accurately estimated.
The second critical domain, R < 0.3, corresponds to a situation where the
major part of the film swelling is due to the slow delayed component due
to relaxation. As can be seen on the τr and R 1D projections, the solution
for R < 0.3 is composed of two disconnected domains which corresponds
to two families of solutions, the mass uptake being numerically ensured in
major part by diffusion or relaxation. The estimation performance is good for
0.3 < R < 0.8.
R > 1 corresponds to overshoot kinetics (cf figure 2): the mass uptake due
to diffusion at the beginning of the experiment decreases later, due to the
long time behavior of the sample [23, 24]. When R is greater than about 1.2,
the delayed swelling is large enough to ensure accurate estimation of the four
parameters.

Unlike for the Deborah number that can be increased by decreasing the film
thickness, R cannot be changed for a given sample. These results highlights
the bad conditioning of this estimation problem and the great care needed
when analysing gravimetric experiments.

4.3 Influence of H and σ

To complete the characterization of this estimation problem, we have analysed
the influence of the experiment duration H that may be an important limiting
factor. Indeed relaxation time in polymer systems may be very long and it may
be not possible to extend the experiment till the equilibrium mass is reached.
For the test case Debref = 10 and Rref = 0.5, the influence of the experiment
duration is given in figure 8, for H varying from 1 to 1000. As can be seen,
a duration at least two times the relaxation time is needed to get accurate
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results. If not, the obtained results once again show that close kinetics may be
obtained by very different sets of parameters.

The last point concerns the influence of the error level σ. Tests were per-
formed with Debref = 10, Rref = 0.5, a large experiment duration, and σ
from 0.001 to 0.1. The performance of the estimation decreases strongly when
the error level reaches 0.1 as shown in figure 9.

4.4 Numerical

The computations were performed with a PC Pentium IV on one hand and
with an IBM RS6000 (eight processors by node - Centre de Calcul Recherche
et Enseignement of the University Pierre et Marie Curie-Paris6) on the other
hand. The computing time strongly depends on ε, the required accuracy of
the final paving. For the test case Deb = 10, R = 0.5, σ = 0.01 and H = 100
and for a mono-processor computer (Pentium IV 3GHz), table 1 and figure 10
shows the influence of ε on the CPU and on the partition of the admissible and
indeterminate domains. ε is defined relatively to the initial box. The algorithm
is stopped when the size of all the indeterminate boxes is smaller than ε in
the four directions of the parameter space. Let us note that the calculation of
the model output itself, m(t), is very rapid, about 100 ms. The initial box was
the following:

0.1 ≤ τd ≤ 10

1 ≤ τr ≤ 100

0.1 ≤ m0 ≤ 1

0.1 ≤ R ≤ 1

The algorithm rapidly succeeds to estimate the order of magnitude of the
parameters: 33 s are needed for ε = 8 × 10−3. Even if no admissible domain
is obtained, the indeterminate domain is much smaller than the initial box.
Increasing the accuracy of the solution is time consuming: almost one hour is
needed with ε = 10−3, that already gives a well defined solution domain, and
about eight hours with ε = 5× 10−4.

This numerical comparison was made on a well-conditioned test case. The
CPU also strongly depends on the more or less ill conditioned character of the
problem and may increases up to 100 hours, with Deb smaller than one or R
close to one for example.

With such an algorithm the parallelization is very efficient, because the boxes
can be analyse independently. With an eight processors computer (RS 6000,
OpenMP library) the CPU times is divided by about seven compared to the
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Table 1. Numerical comparison: paving accuracy (ε), CPU, ratio of the volume of the admissible domain

on the volume of the admissible plus indeterminate domain (VKA
/(VKA

+ VKI
)).

ε CPU VKA
/(VKA

+ VKI
)

8× 10−3 33s 0
4× 10−3 112s 0.0019
2× 10−3 528s 0.08
1× 10−3 1h 6mn 0.283
5× 10−4 7h 25mn 0.529

non parallelized version.

5 Conclusion

A set inversion analysis has been used for the estimation of the four parameters
involved in the swelling of polymer films: the characteristic times of diffusion
and relaxation and the instantaneous and delayed components of the solubility.
This global optimization method is very interesting in such a multi parame-
ter estimation problems with bounded errors. Indeed it gives an overview of
the domain where the estimation would lead to accurate results, the domain
where only the order of magnitude of the parameters would be obtained and
the domain where the problem is too ill conditioned to allow a meaningful
estimation. Qualitatively, in the problem presented here, accurate estimation
is possible only if the two phenomena are both observable on the kinetics. If
not (Deb or R close to one or very small, H too small ...), the size of the
admissible domain increases very rapidly. This study highlights the difficulty
of gravimetric experiments interpretation in the glassy state, due to the cou-
pling between relaxation and diffusion. In the present study the analysis was
limited to the influence of experimental errors. As an improvement, it would
be interesting to take into account the modeling errors due to the simplifying
assumptions used in the model, as far as is it possible to estimate a bound of
this modeling errors.
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Figure 1. Experimental kinetics obtained for a decreasing pressure step (5.5 to 5.3 mbar) with a
65/35 PMMA/PnBMA copolymer. The ordinate is the absolute value of the mass variation per

unit area.
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∞ = 1, Rref = 0.5, large H, σ = 0.01 - 1D

projection - The dotted line is the exact solution.
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different ε. Same test case as in Figure 4 - 2D projections: ’τr/Debref -τd’ space (a) ε = 8× 10−3,
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Appendix A: Inclusion function

To determine the inclusion function needed in the set inversion analysis, let us
consider the model described in section 2. The two boundary conditions are
the flux at the bottom interface and the concentration at the top interface. The
output is the mass uptake, m(t), i.e. the integral of the concentration uptake
on the film thickness. The state equation is given by equation (1). With the
assumption of constant thickness and constant diffusion coefficient this model
is linear. The output can be deduced from Laplace transform and is given
by equation (5). This expression is however too complex to direct deduce the
direction of variation of m(t) with each parameter τd, τr, m0 and R.

To overcome this difficulty, the output is expressed as the convolution prod-
uct of the impulse response function and the input. The flux at the bottom
being always equal to zero, one obtains:

m(t) =

∫ t

0
y(t

′
)× c(l, t− t′)dt′ (A1)

where y(t) is the mass uptake when the input is a Dirac unit impulse, δ(t),
and where c(l, t) is given by equation (2).
y(t) can be calculated by use of Laplace transform and is given by:

y(t) = 2× l
∞∑
k=0

1

τd
exp

[
−k′2t/τd

]
(A2)

where k
′

= (2k+ 1)π2 . y(t) is always positive; c(l, t) is an increasing function
of m0 and a decreasing function of R and τr. Then, from equation (A1), the
mass uptake m(t) is also an increasing function of m0 and a decreasing function
of R and τr.

The derivative of y(t) with respect to τd does not allow to conclude on the
direction of variation of m(t) with τd. To overcome this difficulty equation
(A1) is integrated by parts, that leads to the following expression (where Y (t)
is the response to the Heaviside function H(t)):

m(t) = c0 × Y (t)−
∫ t

0
Y (t

′
)× d[c(l, t− t′)]

dt′
dt

′
(A3)
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with

Y (t) = l ×

(
1 − 2

∞∑
k=0

1

k′2
exp

[
−k′2t/τd

])
(A4)

Three cases have to be considered according to the value of R:

A.1 R < 1

When R < 1, the derivative d[c(l, t − t
′
)]/dt

′
is negative so that c0 and

−d[c(l, t − t′ ]/dt′ are both positive. The derivative of Y (t) with respect to τd
being negative, Y (t) is a decreasing function of τd and then the mass uptake
m(t) is also a decreasing function of τd if R < 1.

As a conclusion, when R < 1, the model output is a monotonic func-
tion of the four parameters τd, τr, m0 and R: it is an increasing function
of m0 and a decreasing function of τd, τr and R. The model output for
any quadruplet of a box is then included between the outputs mlow and
mup obtained by the quadruplets plow = {τdmax , τrmax , m0min , Rmax} and
pup = {τdmin , τrmin , m0max , Rmin}.

A.2 R = 1

When R = 1 the boundary condition is reduced to c0 and the output does not
depend on τr. It is an increasing function of m0 and a decreasing function of
τd so that the same values of mlow and mup than previously can be used.

A.3 R > 1

When R > 1, c0 and −d[c(l, t− t′)]/dt′ have unlike signs. Due to the linearity
of the model, it is possible to consider the two terms of the boundary condition
independently and to divide the initial problem in two sub-problems.

The boundary condition of the first sub-problem is the first term of equation
(2): c1(l, t) = c0 × H(t). The corresponding output m1(t) = c0 × Y (t) is a
decreasing function of τd as Y (t).

The boundary condition of the second sub-problem is the second term of

equation (2): c2(l, t) = (c∞ − c0)
{

1− exp
(
− t
τr

)}
. The derivative d[c2(l, t −

t
′
)]/dt

′
is positive when R > 1 so that the output of this sub-problem, m2(t),

is an increasing function of τd.
To determine the inclusion function in the case R > 1, one overestimation of

the output, mup, can be obtained by adding the maximal value of the output
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for each of the sub-problem:
mup = m1(τdmin , τrmin ,m0max , Rmin) +m2(τdmax , τrmin ,m0max , Rmin)

In the same way, one underestimation of the output, mlow, is obtained by
adding the minimal value of the output for each of the sub-problem:
mlow = m1(τdmax , τrmax ,m0min , Rmax) +m2(τdmin , τrmax ,m0min , Rmax)


