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THE SUPPORT FUNCTION OF THE HIGH-DIMENSIONAL

POISSON POLYTOPE

PIERRE CALKA AND BENJAMIN DADOUN

Abstract. Let Kd
λ be the convex hull of the intersection of the homogeneous Poisson point process of

intensity λ in Rd, d ≥ 2, with the Euclidean unit ball Bd. In this paper, we study the asymptotic behavior

as d → ∞ of the support function

h
(d)
λ (u) := sup

x∈Kd
λ

⟨u, x⟩

in an arbitrary direction u ∈ Sd−1 of the Poisson polytope Kd
λ. We identify three different regimes (sub-

critical, critical, and supercritical) in terms of the intensity λ := λ(d) and derive in each regime the precise

distributional convergence of h
(d)
λ after suitable scaling. We especially treat this question where the sup-

port function is considered over multiple directions at once. We finally deduce partial counterparts for the

radius-vector function of the polytope.

Keywords. Support function; random convex polytopes; phase transition in high dimension; covering of

the sphere; special functions; extreme value distribution.

1. Introduction

The study of high-dimensional polytopes has attracted recent attention in stochastic geometry [6, 22, 28,

21]. This is due to several factors. First of all, several classical models of random polytopes can be defined

in any dimension and as such, they provide natural examples which might confirm or deny several of the

famous conjectures from high-dimensional convex geometry. For example, the work [23] deals with Poisson

polytopes generated by random hyperplane tessellations in the context of the hyperplane conjecture which

claims that any d-dimensional convex body with volume 1 should have a section by a hyperplane whose (d−
1)-dimensional volume is bounded from below by a constant independent on the dimension d. Similarly,

the Hirsch conjecture which asserts that the edge-vertex graph of the boundary of a d-dimensional convex

polytope with n facets should have a graph-diameter at most n − d was recently denied [33] but since

then, bounds in the form of polynomial functions of n and d have been investigated, in particular in

the context of so-called random spherical polytopes [8]. The second motivation behind the study of

high-dimensional polytopes has an information theory background in the context of Shannon’s channel

coding theory and of the one-bit compression source coding. This involves in particular studying high-

dimensional cells from the Poisson hyperplane tessellation for different regimes connecting the intensity

with the dimension [1, 29]. Lastly, another context in which high-dimensional random polytopes play a

central role is percolation in high dimension. Since Gordon’s breakthrough result on the equivalent of the

critical probability for the percolation on Zd when d→∞ [19], the high-dimensional setting is expected
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to possibly help estimating the phase transition. In particular, Poisson-Voronoi percolation along Voronoi

cells generated by homogeneous Poisson points has attracted interest [2, 14].

In this paper, we consider the Poisson polytope Kd
λ obtained as the convex hull of a Poisson point

process with intensity λ := λ(d) sampled in the Euclidean, d-dimensional unit ball Bd. Together with

its binomial variant obtained when replacing the Poisson point process with a fixed number n of i.i.d.

variables uniformly distributed in Bd, this model of random polytope has proved to be one of the most

intensively studied in the literature. In particular, several non-asymptotic results are known, including

Wendel’s calculation [38] of the probability that the origin belongs to the random polytope, Efron and

Buchta’s mean-value identities [17, 10] and the recent work due to Kabluchko [26, 27] which provides an

explicit formula for the expectation of the f -vector constituted with the number of k-dimensional facets

of Kd
λ. The asymptotic study of Kd

λ, when the dimension is fixed and the intensity or the number of input

points is large, dates back to the seminal work due to Rényi and Sulanke in dimension two [31, 32] and

has been then carried through many subsequent works which have made explicit limit expectations for

several functionals [35, 36, 30], variance bounds and limit variances [4, 12] and functional limit theorems

for the support function and radius-vector function [11].

In the continuation of the early work of Bárány and Füredi [3], who investigated the phase transition

for the probability of having all sampled points in convex position, the high-dimensional study of Kd
λ and

variants has been continued over the last decades [16, 18, 6, 13, 7], with more emphasis on the threshold

for the emergence of significant volumes. Notably, in [7], Bonnet, Kabluchko and Turchi estimated the

asymptotics for different intensity regimes of the mean volume of a more general polytope called the

β-polytope which includes the case of Kd
λ (save for the fact that they consider a binomial version of it). In

particular, they exhibit a critical phase when the logarithm of the number of input points is comparable

to d
2 log d, i.e., they show that the expected normalized volume of the polytope vanishes when the number

of input points increases slower than dd/2, and persists when this number increases faster than dd/2. At

the critical threshold, when the number grows like (d/2x)d/2, they prove a convergence to e−x.

Associated with the (random) polytope Kd
λ are the random processes h

(d)
λ and ρ

(d)
λ , respectively called

the support function and the radius-vector function, given for any direction u in the unit sphere Sd−1 by

h
(d)
λ (u) := sup

{
⟨u, x⟩ : x ∈ Kd

λ

}
, (1)

and

ρ
(d)
λ (u) := sup

{
t > 0 : tu ∈ Kd

λ

}
. (2)

The support function of Kd
λ corresponds to the radius-vector function of its Voronoi flower, see Figure 1.

Even though h
(d)
λ and ρ

(d)
λ are one-dimensional statistics, they are known to fully characterize the convex

body [34, Theorem 1.7.1], so understanding h
(d)
λ or ρ

(d)
λ as d → ∞ already sheds significant light on the

asymptotic geometry ofKd
λ. To the best of our knowledge, the study of these functionals in high dimension

has so far been largely ignored. It appears however that the analysis of the radius-vector function is more

delicate and we mostly focus on the support function in this work.

The distribution of the random variables h
(d)
λ (u) and ρ

(d)
λ (u) does not depend on u by rotational

invariance; we let h
(d)
λ := h

(d)
λ (u) and ρ

(d)
λ := ρ

(d)
λ (u), and consider that u is either fixed in Sd−1 or
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Figure 1. The support function h
(d)
λ (u) := OB and the radius-vector function ρ

(d)
λ (u) :=

OA of the polytope Kd
λ in dimension d = 3. The Voronoi flower is the union of the closed

balls (x2 + |x|
2 Bd) where x runs over the vertices of Kd

λ.

chosen uniformly at random in Sd−1 (independently of the Poisson process). Given the following technical

assumption on λ,

lim inf
d→∞

λκd
d

> 2, (H)

where κd := |Bd| is the d-dimensional volume of the unit ball, the random variables h
(d)
λ and ρ

(d)
λ will

take values in [0, 1] with high probability as d → ∞ (see Lemma 2.1). This hypothesis means that λκd,

i.e., the mean number of points in Bd of the Poisson process, is asymptotically greater than twice the

dimension d.

Our first result identifies the subcritical, critical, and supercritical regimes where h
(d)
λ tends either to 0,

to a value in (0, 1), or to 1 as d → ∞, depending on whether log λκd grows slower than, comparably to,

or faster than the dimension d.

Theorem 1 (Asymptotic regimes of h
(d)
λ ). Under Assumption (H), suppose that

x := lim
d→∞

1

d
log λκd

exists in [0,∞]. Then the following holds in probability as d→∞:

h
(d)
λ ∼

√
2

d
log λκd, if x = 0,

h
(d)
λ →

√
1− e−2x, if x ∈ (0,∞),

1− h
(d)
λ ∼

1

2
(λκd)

− 2
d+1 , if x =∞.

Note that Assumption (H) is automatically fulfilled in the critical and supercritical regime (x ∈ (0,∞]).

In addition, we determine the distributional fluctuations of h
(d)
λ around its limiting value.
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Theorem 2 (Convergence in distribution of the renormalized support function). Under the assumption

of Theorem 1, the random variable

d

log
1√

1−
(
h
(d)
λ

)2 − 1

d+ 1
log λκd

+ log
√

m(d)

converges towards the standard Gumbel distribution as d→∞, where

m(d) :=


4π log λκd, in the subcritical regime log λκd ≪ d,

2πd(1− e−2x), in the critical regime log λκd ∼ dx with x ∈ (0,∞),

2πd
(
1− (λκd)

− 2
d+1

)
, in the supercritical regime log λκd ≫ d.

Remark. In the critical regime where log λκd = dx + y + o(1) with x ∈ (0,∞) and y ∈ R, Theorem 2

reads

d

log
1√

1−
(
h
(d)
λ

)2 − x

+ log
√

2πd(1− e−2x) ====⇒
d→∞

G+ y − x,

that is,

√
2πd

 e−2x

1−
(
h
(d)
λ

)2
− d

2

====⇒
d→∞

eG+y−x

√
1− e−2x

,

for some standard Gumbel variable G.

We now state analogous versions of the previous theorems when the support function is considered over

several directions at once. Namely, for a fixed integer m ≥ 2, we define

h
(d,m)
λ := inf

u∈Sd−1∩Rm
h
(d)
λ (u).

Again, by rotational invariance, the distribution of this infimum does not depend on the direction of the

linear m-dimensional section of Sd−1. In particular, we expect h
(d,m)
λ to behave like h

(d)
λ , i.e., satisfy the

exact same conclusions as Theorem 1 with the same threshold. This is confirmed by Theorem 3 below

which provides a Gumbel limit distribution when log λκd belongs to the asymptotic range
(
log d, d

3
2

)
.

Theorem 3 (Distributional limit). Let m ≥ 2 be a fixed integer, and let λ := λ(d) > 0 satisfy either

one of the three assumptions (Asub), (Acrit), or (Asup) given in Lemma 4.4. Then there exist two explicit

sequences a(d;m) and b(d;m) (given at (43) and (44)) such that

a(d;m)− b(d;m) log
1√

1−
(
h
(d,m)
λ

)2
converges in law as d→∞ towards the standard Gumbel distribution.

The proof of Theorem 3 relies essentially on the ad hoc application of a remarkable result due to

S. Janson on random coverings of a set [24]. As a corollary, we extend Theorem 1 to h
(d,m)
λ .
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Corollary 4 (Asymptotic regimes of h
(d,m)
λ ). Under the assumptions of Theorem 3, let

x := lim
d→∞

1

d
log λκd ∈ [0,∞].

Then the following holds in probability as d→∞:

h
(d,m)
λ ∼

√
2

d
log λκd, if x = 0,

h
(d,m)
λ →

√
1− e−2x, if x ∈ (0,∞),

1− h
(d,m)
λ ∼ 1

2
(λκd)

− 2
d+1 , if x =∞.

Though the idea is quite natural, the study of the asymptotics of the support function as a tool

for describing the geometry of high-dimensional random polytopes seems original. We provide here an

extensive analysis of its minimum on a subspace of fixed dimension with the help of essentially two

ingredients: on one hand, a careful application of known estimates of the incomplete beta function and on

the other hand, a reformulation of the problem in terms of the probability to cover the sphere with random

spherical caps. The latter requires in particular a slight extension of a precise estimate due to Janson [24]

of the covering probability with i.i.d. rescaled random spherical caps when the common distribution of

the geodesic radii of the caps is allowed to depend on the scaling parameter. This result is interesting

on its own and is deduced by a coupling technique which avoids rewriting the details of Janson’s original

proof in our context. Besides, our work is a possible first step towards a more systematic study of the

whole support function process along the d-dimensional sphere, see the discussion below. The radius-

vector function process is certainly worthy of investigation as well and we state a minor first result in this

direction deduced from Wendel’s probability calculation [38].

Theorem 1 and Corollary 4 are clearly reminiscent of [7, Theorem 3.1]. If λ is taken so that log λκd

belongs to the asymptotic range [d, d log d), then the expected volume ratio E |Kd
λ|/κd vanishes as observed

in [7], while according to Theorem 1 and Corollary 4, Kd
λ still has long ‘arms’ in any finite number of

independent directions. This confirms the well-known picture of a high-dimensional convex body which

was popularized by Vitali Milman and which looks like a ‘star-shaped body with a lot of points very

far from the origin and lot of points very close to the origin’ [20, Section 2]. Studying the minimum of

the support function over a section of Kd
λ may provide a way of quantifying the size of the ‘holes’, i.e.,

estimating the critical dimension under which the support function is close to one in every direction of

the section of Kd
λ and above which we expect to see directions almost unoccupied by the section of Kd

λ.

Unsurprisingly, Corollary 4 suggests that as soon as we reach the threshold for the one-dimensional section

given in Theorem 1, we expect every section with fixed dimension m to look like the m-dimensional unit

ball. The rest of the study should then lead us to consider m tend to infinity with d in the supercritical

case of Theorem 1 in order to decide when exactly the function h
(d,m)
λ switches from being almost equal

to 1 to being almost equal to 0. This requires a serious revision of the covering methods used in the proof

of Theorem 3 that we leave for further work.

We expect that our results can be depoissonized and that, as long as the asymptotics of the measure

of a spherical cap is accessible, our methods should extend to other models with rotationally-invariant
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points, such as the β-polytope studied in [6] which covers our model when β = 0 and the case of the convex

hull of points uniformly distributed on the unit sphere when β = −1. In the latter setting, Bonnet and

O’Reilly [9] have recently studied the typical height of a facet, which, incidentally, is proved to have the

same first-order asymptotics as the support function in a fixed direction, as can be seen from a comparison

between Theorem 4 therein and our Theorem 1.

The paper is structured as follows. We start in Section 2 with some asymptotic preliminaries, notably

for the incomplete beta function to which the tail probabilities of h
(d)
λ and h

(d,m)
λ are related. As a warm-

up, in Section 3, we establish Theorems 1 and 2 by elementary means. Section 4 is devoted to the use of

Janson’s covering techniques for proving Theorem 3 and Corollary 4. Finally, in Section 5, we transfer

some of our results to the radius-vector function ρ
(d)
λ of Kd

λ.

Notation. Unless otherwise specified, all asymptotic estimates are w.r.t. d → ∞. The relation g ≫ f

(or f ≪ g, or f = o(g)) for nonnegative f := f(d) and g := g(d) means that f(d) ≤ εg(d) holds for all d

sufficiently large and any ε > 0, while f = O(g) or f ≲ g indicate that f(d) ≤ Cg(d) holds for all d ≥ 1

and some constant C > 0. We also write f ∼ g if |f − g| ≪ g, and f ≍ g if both f ≲ g and g ≲ f hold.

2. Preliminaries

This section aims at providing an explicit formula for the distribution function of h
(d)
λ in terms of the

incomplete beta function. It also paves the way for the asymptotic study of the tail probability of h
(d)
λ

and h
(d,m)
λ , which is the focus of Sections 3 and 4.

Let Pd
λ, d ≥ 2, be Poisson point processes (embedded in a common abstract probability space (Ω,A,P))

with intensities λ := λ(d) > 0 in Rd. The polytope Kd
λ is defined as the convex hull of Pd

λ ∩ Bd, where

Bd := {x ∈ Rd : |x| ≤ 1} is the Euclidean unit ball of (Rd, ∥ · ∥), with the Euclidean norm ∥ · ∥ derived

from the usual inner product ⟨·, ·⟩. We recall that | · | denotes the d-dimensional Lebesgue measure of Rd.

In both notations ∥ · ∥ and | · |, the dependency on d is implicit.

A priori, the support function h
(d)
λ introduced in (1) takes values in {−∞} ∪ (−1, 1), but if λ is not

chosen too small, then the polytope Kd
λ will likely contain the origin, which means that h

(d)
λ ≥ 0.

Lemma 2.1 (Containing the origin). If Assumption (H) holds, then P(0 ∈ Kd
λ)→ 1 as d→∞.

If however lim supd→∞
λκd
d < 2, then P(0 ∈ Kd

λ)→ 0 as d→∞.

Proof of Lemma 2.1. The number N := N(d) of points in Kd
λ has a Poisson distribution with mean λκd.

Further, conditional on N , those points have a symmetric distribution in Rd. It follows from Wendel’s

formula [38] that

P
(
0 /∈ Kd

λ

∣∣ N) = 1{N≤d}+1{N>d} 2
−(N−1)

d−1∑
k=0

(
N − 1

k

)

= 1− 1{N>d} 2
−(N−1)

N−1∑
k=d

(
N − 1

k

)
= 1− P(SN−1 ≥ d | N),
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where Sn, n ≥ 0, are Binomial(n, 12) random variables independent of N . Hence

P
(
0 ∈ Kd

λ) = P(SN−1 ≥ d).

By the law of large numbers, P(SN−1 ≥ d)→ 1 as d→∞ if

lim inf
d→∞

1

d
E[SN−1] > 1,

that is (since E[SN−1] =
λκd−1

2 ), if λκd ≥ (2 + ε)d holds for some ε > 0 and all d sufficiently large;

similarly, P(SN−1 ≥ d)→ 0 if λκd ≤ (2− ε)d holds for some ε > 0 and all d sufficiently large. (In fact, by

classical large deviation theory, these two convergences occur exponentially fast.) □

Taking Assumption (H) for granted, we thus have 0 ≤ h
(d)
λ ≤ 1 w.h.p. as d→∞. Now,

P
(
h
(d)
λ ≤ r

)
= P

(
h
(d)
λ (u) ≤ r

)
, 0 ≤ r ≤ 1,

for, e.g., u := (1, 0, . . .) ∈ Sd−1; we compute this probability as

P
(
Pd
λ ∩ Cd(r;u) = ∅

)
= e−λ|Cd(r;u)|,

where the spherical cap Cd(r;u) := {x ∈ Bd : ⟨u, x⟩ > r} has volume

|Cd(r;u)| = κd−1

ˆ 1

r
(1− t2)

d−1
2 dt =

κd−1

2

ˆ 1−r2

0
v

d−1
2 (1− v)−

1
2 dv, (3)

with the last integral resulting from the change of variable v ← 1− t2. Hence

P
(
h
(d)
λ ≤ r

)
= exp

(
−λκd−1

2
B
(
1− r2; d+1

2 , 12
))

, (4)

where

B(x; p, q) :=

ˆ x

0
vp−1(1− v)q−1 dv, x ∈ [0, 1], p, q > 0,

is the lower incomplete beta function (the complete beta function is B(p, q) := B(1; p, q)). We will see

in Section 4 that when considering the support function over m ≥ 2 directions at once, the distribution

function of the infimum h
(d,m)
λ also involves this special function (with the third parameter q = 1

2 replaced

by q = m
2 ) as well as the volume of unit balls. Thus, the asymptotic behavior of h

(d)
λ and of h

(d,m)
λ

will depend on the interplay between the intensity λ := λ(d) and the two quantities κn and B(x; p, q),

where n, x and p may depend on the dimension d.

Regarding κd, we will essentially use the asymptotic relation

κd−1 = κd

√
d

2π

[
1 +O

(
1

d

)]
, (5)

which is easily derived from the well-known formula

κd =
π

d
2

Γ
(
1 + d

2

) (6)

and Stirling’s formula for Euler’s gamma function Γ (see, e.g., [37, (3.24)]). As for the incomplete beta

function, we can derive basic first-order estimates:
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Lemma 2.2 (Estimates of the incomplete beta function). Let p, q > 0. Then for any x ∈ (0, 1) such that

(p+ q)x < p+ 1,

the ratio B(x; p, q)
/ xp(1− x)q−1

p
lies between 1 and

1

1− q−1
p+1 ·

x
1−x

.

In particular, when x ∈ (0, 1) and p, q > 0 are three sequences indexed by d:

1. If p≫ |q − 1|x
1− x

, then

B(x; p, q) =
xp(1− x)q−1

p

[
1 +O

(
|q − 1|x
p(1− x)

)]
.

2. If p≫ |q − 1|
1− x

, then

B(x; p, q)

B(p, q)
=

xp[(1− x)p]q−1

Γ(q)

[
1 +O

(
|q − 1|
p(1− x)

)]
.

Proof. For x ∈ (0, 1) we have from [37, (11.33)] the series representation

B(x; p, q) =
xp(1− x)q

p

∞∑
n=0

(p+ q)n
(p+ 1)n

xn,

where the ratio of Pochhammer symbols

(p+ q)n
(p+ 1)n

:=
p+ q

p+ 1
· p+ q + 1

p+ 2
· · · p+ q + n− 1

p+ n

belongs to
[
1, ( p+q

p+1)
n
]
if q ≥ 1, and to

[
(p+q
p+1)

n
, 1
]
if 0 < q < 1. Now if (p+ q)x < p+ 1, then

∞∑
n=0

(
p+ q

p+ 1

)n
xn =

1

1− p+q
p+1x

=
1

1− x
· 1

1− q−1
p+1 ·

x
1−x

,

hence the lower and upper bounds on B(x; p, q)/xp(1−x)q−1

p . The first stated asymptotic estimate is an

immediate consequence of these bounds, while the second one follows from the first one combined with

B(p, q) = Γ(q) · Γ(p)

Γ(p+ q)
=

Γ(q)

pq

[
1 +O

(
|q − 1|

p

)]
,

see, e.g., [37, (3.31)]. □

3. The support function in one direction

We are now ready to establish Theorems 1 and 2: we do so by recalling the distribution function (4)

of the support function h
(d)
λ , then plug in asymptotics for the incomplete beta function (Lemma 2.2) and

for the volume of the Euclidean unit balls (5).

To start with, we identify the limit of h
(d)
λ in probability.

Lemma 3.1 (Limit in probability of the support function). Under the assumption of Theorem 1,

lim
d→∞

h
(d)
λ =

√
1− e−2x, in probability

(with the convention e−∞ = 0).
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Proof. We start by applying Lemma 2.2 with only the second argument of the incomplete beta function

depending on d: for any fixed r ∈ (0, 1),

B
(
1− r2; d+1

2 , 12
)
=

2(1− r2)
d+1
2

rd

[
1 +O

(
1

d

)]
. (7)

Inserting this and the other estimate (5) into (4) then yields

−logP
(
h
(d)
λ ≤ r

)
=

λκd(1− r2)
d+1
2

r
√
2πd

[
1 +O

(
1

d

)]

= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+O

(
1

d

)}
(8)

= exp

{
d

(
log λκd

d
+ log

√
1− r2 + o(1)

)}
.

Since log λκd
d → x ∈ [0,∞] as d→∞, the change of sign in this exponent provides the required threshold,

i.e.,

lim
d→∞

P
(
h
(d)
λ ≤ r

)
=

0 if r <
√
1− e−2x,

1 if r >
√
1− e−2x.

This proves the convergence in distribution of h
(d)
λ towards the constant

√
1− e−2x, which is equivalent

to the convergence in probability to the same limit. □

By also letting the first argument of the incomplete beta function depend on d, a deeper application

of Lemma 2.2 enables us to complete the proof of Theorems 1 and 2.

Proof of Theorem 2. We apply Lemma 2.2 again by letting r ∈ (0, 1) in the previous proof depend on d.

Whenever dr2 ≫ 1 holds, we may still write (instead of (7))

B
(
1− r2; d+1

2 , 12
)
∼ 2(1− r2)

d+1
2

rd
,

which leads to the following weakening of (8):

−logP
(
h
(d)
λ ≤ r

)
= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+ o(1)

}
. (9)

Fix τ ∈ R and choose r := r(d; τ) as the unique solution to the equation

log λκd +
d+ 1

2
log(1− r2)− log r

√
2πd = −τ, namely

(1− r2)
d+1
2

r
=

√
2πd

λκd
e−τ . (10)

In particular, under Assumption (H),

−d+ 1

2
log(1− r2) ≥ log

λκd√
2πd

+ τ →∞,

so that, indeed, dr2 ≫ 1 and (9) is true. Inserting (10) there then yields

lim
d→∞

P
(
h
(d)
λ ≤ r

)
= e− e−τ

,
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which is the c.d.f. of the standard Gumbel distribution. Now, on the one hand, we observe that

P
(
h
(d)
λ ≤ r

)
= P

[
−d+ 1

2
log

(
1−

(
h
(d)
λ

)2)
− log

λκd

r
√
2πd

≤ τ

]

= P

d
log

1√
1−

(
h
(d)
λ

)2 − 1

d+ 1
log λκd

+
log r
√
2πd

1 +O
(
1
d

) ≤ τ +O

(
1

d

).
On the other hand, we have from (10),

1− r2 = r
2

d+1 (λκd)
− 2

d+1

[
1 +O

(
log d

d

)]
,

and

1

d
log r =

1

d
log λκd +O

(
−log

(
1− r2

))
,

from which it follows that
r2 ∼ 2

d
log λκd, if log λκd ≪ d,

r2 → 1− e−2x, if log λκd ∼ dx with x ∈ (0,∞),

1− r2 ∼ (λκd)
− 2

d+1 , if log λκd ≫ d.

This allows us to conclude that

P

d
log

1√
1−

(
h
(d)
λ

)2 − 1

d+ 1
log λκd

+ log
√

m(d) ≤ τ

 −−−→
d→∞

e− e−τ
,

with m(d) as stated. □

Proof of Theorem 1. It follows from Theorem 2 that

d

log
1√

1−
(
h
(d)
λ

)2 − 1

d+ 1
log λκd

+ log
√

m(d) = OP(1),

where X(d) = OP(1) means that limA→∞ lim supd→∞ P(|X(d)| > A) = 0. Multiplying this equation

by −2
d and taking the exponential function, we deduce that

(λκd)
2

d+1

(
1−

(
h
(d)
λ

)2)
= 1 +

1

log d
·OP(1),

where we discarded the m(d)−
1
d term because m(d) = O(d). In the subcritical regime log λκd ≪ d, we

obtain that in probability as d→∞,

h
(d)
λ ∼

√
2

d
log λκd

(because then 1− (λκd)
2

d+1 ∼ −2
d log λκd). In the supercritical regime log λκd ≫ d, we get instead

1− h
(d)
λ ∼

1

2
(λκd)

− 2
d+1

because, by Lemma 3.1, 1 + h
(d)
λ → 2 in probability. This completes the proof of Theorem 1. □
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4. The infimum of the support function over multiple directions

In this section, we extend the study of the asymptotic behavior of the support function when considered

over several directions simultaneously. Namely, we consider

h
(d,m)
λ := inf

u∈Sd−1∩Rm
h
(d)
λ (u),

where m ≥ 2 is a fixed integer. Section 4.1 consists in reinterpreting the distribution of h
(d,m)
λ in terms of

a covering probability. We then present in Section 4.2 a remarkable covering technique due to Janson [24]

which we specialize to our setting. This finally allows us to prove Theorem 3.

4.1. Reduction to a covering problem. We start by relating the tail event h
(d,m)
λ ≥ r to the event

of covering the sphere Sm−1 := {y ∈ Rm : ∥y∥ = 1} with i.i.d. geodesic balls. In this direction, we write

vSm−1(dx) for the (m− 1)-dimensional surface measure on Sm−1 (so that vSm−1(Sm−1) = mκm), and

BSm−1(x, θ) :=
{
y ∈ Rm : ∥y∥ = 1 and ⟨x, y⟩ > cos θ

}
for the geodesic ball in Sm−1 with center x ∈ Sm−1 and radius θ ∈ (0, π].

Lemma 4.1 (Covering the sphere). For every r ∈ (0, 1), we have

h
(d,m)
λ ≥ r ⇐⇒ Sm−1 =

⋃
i

BSm−1(xi, aρi), (11)

where

a :=
1√
d

√
1− r2

r
, (12)

and the centers and radii (xi, ρi) arise as the atoms of a Poisson point process on Sm−1 × (0,∞) whose

intensity measure Λ
(d,m)
r vSm−1(dx)⊗ P(R(d,m)

r ∈ dρ) is given by

Λ(d,m)
r := λκd ·

B
(
1− r2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
) , (13)

and, for every ρ > 0,

P(R(d,m)
r > ρ) :=

B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }. (14)

Proof. Indeed, h
(d,m)
λ ≥ r if and only the sphere rSm−1 is entirely covered by the Voronoi flower associated

with the projection of Kd
λ onto Rm, that is, by the spherical patches(

X ′

2
+
∥X ′∥
2

Bm

)
∩ rSm−1 = rBSm−1

(
X ′

∥X ′∥
, RX′

)
,

where RX′ := arccos( r
∥X′∥) and the points X ′ are the orthogonal projections of the points in Pd

λ ∩ R
d,m
r ,

with

Rd,m
r :=

{
x ∈ Bd : x21 + · · ·+ x2m ≥ r2

}
;

see Figure 2. Considering a point X ∈ Pd
λ ∩R

d,m
r , the square of the norm of its orthogonal projection X ′
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×O

Bd ∩ Rm

r∥X ′∥

• X ′

θ

Figure 2. Projection onto Rm. We have h
(d,m)
λ ≥ r if and only if the sphere rSm−1

(dashed) is covered by the union of its intersection with each petal (in red) of the Voronoi

flower whose corresponding vertex lies in Rd,m
r . Each projected vertex X ′ yields a geodesic

ball of Sm−1 (hatched) of radius θ := arccos(r/|X ′|).

onto Rm has a law given by

E
[
g
(
|X ′|2

)]
=

´ 1
r2 t

m
2
−1(1− t)

d−m
2 g(t) dt

B
(
1− r2; 1 + d−m

2 , m2
) , (15)

for any measurable function g : [0,∞) → [0,∞). We further note that the projections X ′ are identically

distributed, with X ′/∥X ′∥ uniform on Sm−1 (by rotational invariance). We let R
(d,m)
r denote a random

variable with law

R(d,m)
r

(d)
=

1

a
RX′ =

1

a
arccos

r

∥X ′∥
, where a :=

1√
d

√
1− r2

r
(16)

(this rescaling with the quantity a may seem arbitrary for the time being but is in fact designed for the

future convergence in distribution in Lemma 4.2 and for the use of Janson’s covering result in Section 4.2).

We deduce that h
(d,m)
λ ≥ r if and only if Sm−1 is covered by the geodesic balls BSm−1(x, aρ), whose

centers and radii (x, ρ) arise from a Poisson point process on Sm−1 × (0,∞) with intensity measure

λ · |Rd,m
r |vSm−1(dx)⊗ P(R(d,m)

r ∈ dρ).
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Now, the stated distribution function (14) of R
(d,m)
r easily follows from (15) and (16):

P(R(d,m)
r > ρ) = P

(
∥X ′∥2 > r2 cos−2(aρ)

)
=

´ 1
r2 t

m
2
−1(1− t)

d−m
2 1{t>r2 cos−2(aρ)} dt

B
(
1− r2; 1 + d−m

2 , m2
)

=
B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }.

Furthermore,

λ · |Rd,m
r | = λ

˙
1{x2

1+···+x2
m≥r2} κd−m

(
1− x21 − · · · − x2m

)d−m
2 dx1 · · · dxm

=
1

2
λmκmκd−m

ˆ 1

r2
t
m
2
−1(1− t)

d−m
2 dt

= λκd ·
B
(
1− r2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
)

=: Λ(d,m)
r ,

where the second equality comes from the use of spherical coordinates, and the third equality is due to the

expression (6) for the volume of Euclidean balls and to the relation B(a, b) = Γ(a)Γ(b)/Γ(a+ b) between

the beta and gamma functions. □

We are therefore reduced to understanding the probability as d→∞ of the covering event (11). As we

will see in the next section, it turns out that Janson [24] derived precise estimates for the probability of

covering a manifold of fixed dimension using a Poisson process of i.i.d. patches whose intensity Λ increases

to infinity as the scale parameter a decreases to 0. We conclude this section by showing that the random

radii R
(d,m)
r , r ∈ (0, 1), have a common limit distribution as d → ∞. This convergence will hold with

respect to the Monge-Kantorovitch-Wasserstein metric W1, which for two real random variables X and Y

is given by

W1(X,Y ) =

ˆ
R

∣∣P(X > t)− P(Y > t)
∣∣ dt

(see [15, Problem 2 p. 425]). We recall that the W1-convergence amounts to the convergence in distribution

together with the convergence of the first moment.

Lemma 4.2 (Convergence of the patch radii). Let m ≥ 2 be a fixed integer, let r := r(d) ∈ (0, 1) and

let a as in (12). Suppose that

d≫ 1

r2
+ log

1

1− r
, or equivalently, a+

1

d
log

1

a
→ 0. (17)

Then

W1

(
logR(d,m)

r , logR
)
= O

(
1

dr2
log2(dr2)

)
, (18)
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where R is a standard Rayleigh random variable, with Lebesgue density ρ 7→ ρ e−ρ2/2 on (0,∞) and

moments

ERk = 2
k
2 Γ

(
1 +

k

2

)
, k ∈ Z+. (19)

Moreover, the convergence holds with the following upper bound: for every w > 0 and all d sufficiently

large,

sup
ρ>0

P(R(d,m)
r > ρ)

P
([

1 + w
log 1

a

]
R > ρ

) ≤ 1. (20)

Proof. We observe from (14) that

P(R(d,m)
r > ρ) =

B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }

is a positive and continuously differentiable function of x := tan−2(aρ) = cos−2(aρ) − 1 on (0, r−2 − 1).

Letting F (x) := log B(1− r2 − r2 x; 1 + d−m
2 , m2 ) allows us to write logP(R(d,m)

r > ρ) = F (x) − F (0), so

that by the mean value theorem there exists x̄ ∈ (0, x) with

logP(R(d,m)
r > ρ) = xF ′(x̄)

= −r2 x
(
1− r2 − r2x̄

) d−m
2 rm−2(1 + x̄)

m
2
−1

B(1− r2 − r2 x̄; 1 + d−m
2 , m2 )

.

Applying Lemma 2.2, part 1., for the denominator thanks to the assumption (17), we get (introducing

r−2 − 1 = da2)

logP(R(d,m)
r > ρ) = −

(
1 +

d−m

2

)
r2 x

1− r2 − r2 x̄

[
1 +O

(
1− r2 − r2 x̄

dr2(1 + x̄)

)]

= − x

2a2

(
1− x̄

da2

)−1
[
1 +O

(
1

dr2

)]
,

where the error term is uniform in x ∈ (0, r−2 − 1). Recalling x̄ < x = tan2(aρ) and using the inequality

y < tan y < y(1− 4
π2 y

2)
−1

(see, e.g., [5]) with y := aρ ∈ (0, arccos r) ⊂ (0, π2 ), we then obtain

−ρ2

2

[(
1− 4a2ρ2

π2

)2
− ρ2

d

]−1[
1 +O

(
1

dr2

)]
≤ logP(R(d,m)

r > ρ) ≤ −ρ2

2

[
1 +O

(
1

dr2

)]
, (21)

uniformly in 0 ≤ ρ < A, where

A :=
arccos r

a
= r
√
d
arccos r√
1− r2

≍ r
√
d

tends to infinity by (17). Recalling that the tail of the Rayleigh variable R fulfills logP(R > ρ) = −ρ2

2 ,

the upper bound in (21) entails that

P(R(d,m)
r > ρ)

P(R > ρ)
1{0≤ρ<A} = O(1). (22)

Since (
1− 4a2ρ2

π2

)2
− ρ2

d
=

[
1 + ρ2 ·O

(
a2 +

1

d

)]2
=

[
1 + ρ2 ·O

(
1

dr2

)]2
,
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we also obtain from (21) that, for any positive sequence ε := ε(d)→ 0,∣∣∣P(R(d,m)
r > ρ)− P(R > ρ)

∣∣∣1{0≤ρ<εA} = ρ2 ·O
(
ε2
)
. (23)

Note that both error terms in (22) and (23) do not depend on ρ. We deduce that

W1

(
logR(d,m)

r , logR
)
=

ˆ
R

∣∣∣P(logR(d,m)
r > x)− P(logR > x)

∣∣∣ dx
=

ˆ ∞

0

∣∣∣P(R(d,m)
r > ρ)− P(R > ρ)

∣∣∣ dρ
ρ

≤
ˆ εA

0
ρ2 ·O(ε2)

dρ

ρ
+

ˆ ∞

εA
e−

ρ2

2 ·O(1)
dρ

ρ

= O(ε4A2) +O

(
e−

1
2
ε2A2

ε2A2

)
.

Choosing ε := 2
√
logA/A, we obtain

W1

(
logR(d,m)

r , logR
)
= O

(
log2A

A2

)
= O

(
1

dr2
log2(dr2)

)
,

as stated. Finally, for w > 0, the upper bound in (21) yields that, uniformly for all ρ > 0,

P(R(d,m)
r > ρ)

P
([

1 + w
log 1

a

]
R > ρ

) ≤ exp

−ρ2

2

1−(1 + w

log 1
a

)−2

+O

(
1

dr2

)
= exp

(
− wρ2

log 1
a

[
1 + o(1)

])

≤ 1,

provided d is chosen sufficiently large, where we used that 1
dr2

log 1
a = (a2 + 1

d) log
1
a → 0, by (17).

For the moments of the standard Rayleigh distribution, see, e.g., [25, § 18.3]. □

4.2. Application of Janson’s covering result. In [24], Janson showed that the number of random

“small sets” needed to cover a fixed “big set” converges, when properly normalized, to the Gumbel

extreme value distribution as the “size” of the small sets tends to zero. More precisely, let the big set

be a C2, D-dimensional compact Riemannian manifold M with volume measure vM , and suppose that

the small sets are i.i.d. geodesic balls, that is, they are all of the form BM (xi, aρi), i ≥ 1, where a > 0

is a vanishing scale parameter, and the centers and radii (xi, ρi) arise as the atoms of a Poisson point

process on M × (0,∞) with intensity ΛvM (dx) ⊗ P(R ∈ dρ), for some positive random variable R and

Λ := Λ(a)→∞ as a→ 0. Then, denoting by Cover(Λ, R, a;M) the event

M =
⋃
i≥1

BM (xi, aρi),

Janson [24, Lemma 8.1] proved that

lim
a→0

P
(
Cover(Λ, R, a;M)

)
= e− e−τ

, (J)
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under the following two conditions:

ERq <∞ for some q > D, (J1)

and

J(Λ, R, a;M) := baDvM (M) Λ− log
1

baD
−D log log

1

baD
− logα(R) −−−→

a→0
τ ∈ R, (J2)

with

b := b(R;M) :=
πD/2 ERD

Γ(1 + D
2 )vM (M)

, (Jb)

and [24, Eq. (9.24)]

α(R) :=
1

D!

(√
π Γ(1 + D

2 )

Γ(D+1
2 )

)D−1 (
ERD−1

)D
(ERD)D−1

. (Jα)

In view of Lemma 4.1, we would then like to estimate the probability

P
(
h
(d,m)
λ ≥ r

)
= P

(
Cover(Λ(d,m)

r , R(d,m)
r , a;Sm−1)

)
, (24)

where the scale parameter a :=
√
1− r2/r

√
d vanishes as d → ∞. Although Janson’s original result is

stated only when the distribution of the random radius does not depend on a, we show in Lemma 4.3

below, under a minor reinforcement of the assumption given at (17), that it still holds when we use the

radii R
(d,m)
r instead of their Rayleigh limit R in Lemma 4.2. This is done thanks to a slight improvement

of Janson’s result, Proposition A, which may be of independent interest (see Appendix).

Lemma 4.3 (Application of the extension of Janson’s result). With the notation of Lemmas 4.1 and 4.2,

suppose (J2) holds with Λ := Λ
(d,m)
r and M := Sm−1 (i.e., J

(
Λ
(d,m)
r , R, a;Sm−1

)
→ τ), and suppose also

that

a+
1

d
log2+γ 1

a
−−−→
d→∞

0 (25)

holds for some γ ∈ (0, 12). Then

lim
d→∞

P
(
Cover(Λ(d,m)

r , R(d,m)
r , a;Sm−1)

)
= e− e−τ

.

Proof. We apply Proposition A in Appendix. We have (J2) for Λ := Λ(d,m) and D := m−1, and also (J1)

because all moments of the Rayleigh distribution are finite. It remains to show that the two conditions

of Proposition A related to Ra := R
(d,m)
r are satisfied. The first one is (20) given by Lemma 4.2. For the

second one, (18) gives

W1

(
logR(d,m)

r , logR
)
= O

(
1

dr2
log2(dr2)

)
= o

(
1

log2 1
a

)
, (26)

since, by (25) and the relation 1
dr2

= 1
d + a2,

1

dr2
log2(dr2) log2

1

a
=

[(
1

dr2

)
log

4+2γ
γ (dr2)

] γ
2+γ

·
[
1

d
log2+γ 1

a
+ a2 log2+γ 1

a

] 2
2+γ

−−−→
d→∞

0. □



THE SUPPORT FUNCTION OF THE HIGH-DIMENSIONAL POISSON POLYTOPE 17

The applicability of Lemma 4.3 is done in Lemma 4.4 below. Plugging in the expressions of ERk given

by (19) into the expression (Jα) on page 16, we can see that α(R) simplifies to

α := α(R) =
π

m−1
2 Γ(m+1

2 )

(m− 1)!
=

π
m
2

2m−1 Γ(m2 )
, (27)

by an application of Legendre’s duplication formula. Similarly, using also the expression of κm in (6) and

the fundamental property Γ(1 + m
2 ) =

m
2 Γ(m2 ), the expression of b(R;M) in (Jb) reduces to

b := b(R;Sm−1) =
(
√
2π)

m−1
Γ(m2 )

2π
m
2

=
2

m−3
2 Γ(m2 )√

π
. (28)

Lemma 4.4 (Verification of Janson’s condition (J2) and of (25)). Let m ≥ 2 be a fixed integer, and

suppose that one of the three assumptions (Asub), (Acrit), or (Asup) below occurs:

log d≪ log λκd ≪ d, (Asub)

log λκd ∼ dx with x ∈ (0,∞), (Acrit)

d≪ log λκd ≪ d
3
2
−γ for some γ ∈

(
0,

1

2

)
. (Asup)

Let α and b as in (27) and (28). Then for every τ ∈ R, there exists r := r(d; τ) > 0 such that, for

a := a(d; τ) and Λ
(d,m)
r as in (12) and (13), condition (J2) holds:

J(Λ(d,m)
r , R, a;Sm−1) = bam−1mκmΛ(d,m)

r + log
(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
− logα→ τ. (29)

Furthermore, (25) holds: a+ 1
d log

2+γ 1
a → 0 for some γ ∈ (0, 12).

Proof. According to (12), we seek r := (1 + da2)
− 1

2 ∈ (0, 1). We start with the following asymptotics

of (13), obtained by Lemma 2.2, part 2.,

Λ(d,m)
r = λκd

(1− r2)
1+ d−m

2 rm−2(d2)
m
2
−1

Γ(m2 )

[
1 +O

(
1

dr2

)]

= λκd d
d
2
ad+2−m(1 + da2)

− d
2

2
m
2
−1 Γ(m2 )

[
1 +O

(
1

d
+ a2

)]
,

provided that 1
dr2

= 1
d + a2 ≪ 1. In this case,

bam−1mκm Λ(d,m)
r =

√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2[1 +O

(
1

d
+ a2

)]
, (30)

Next,

log
(
bam−1

)
= −(m− 1) log

1

a
+ log b, (31)

and

−(m− 1) log
[
−log

(
bam−1

)]
= −(m− 1) log log

1

a
− (m− 1) log(m− 1) + o(1). (32)
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Adding (30), (31), (32) and −logα yields

bam−1mκmΛ(d,m)
r + log

(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
− logα (33)

=

√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2[1 +O

(
1

d
+ a2

)]
− (m− 1) log

1

a
− (m− 1) log log

1

a
− logBm + o(1),

(34)

where

Bm :=
α (m− 1)m−1

b
=

π
m+1

2 (m− 1)m−1

2
3m−5

2 Γ(m2 )
2

(35)

follows from the expressions of α in (27) and b in (28). We now observe by monotonicity and continuity

in the variable a ∈ (0, 1) that the equation
√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2 = (m− 1) log
1

a
+ (m− 1) log log

1

a
+ logBm + τ (36)

has a unique solution a := a(d; τ). Moreover, comparing both sides of this equation, we observe that any

accumulation point of a(d; τ) must equal 0 since λκd →∞. Consequently, a(d; τ)→ 0 and we henceforth

make this choice for the parameter a (where, for sake of clarity, we omit the dependency in d and τ). If

we plug in (36) into (34), we obtain that (33) reduces to

bam−1mκmΛ(d,m)
r + log

(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
− logα = τ +O

([
1

d
+ a2

]
· log 1

a

)
, (37)

Note that, in order to get (29), it is enough to justify that the last error term in the right-hand side of (37)

goes to zero. Actually, that last term will be negligible as soon as (17) and a fortiori (25) is satisfied. The

remainder of the proof is then devoted to asymptotically relate 1
a and log λκd in order to check that (25)

holds in all three regimes.

To begin with, passing to the logarithm in (36) easily yields

d

2
log

(
1 +

1

da2

)
= log

Am λκd
1
a log

1
a

−
(m− 1) log log 1

a + logBm + τ

(m− 1) log 1
a

+ o

(
log log 1

a

log 1
a

)
,

where

Am :=

√
2π

m−1
2

(m− 1)Γ(m2 )
. (38)

Dropping the O(1) terms and dividing both sides by d, we have in particular

1

d
log

1

a
+

1

d
log log

1

a
+O

(
1

d

)
=

1

d
log λκd −

1

2
log

(
1 +

1

da2

)
. (39)

We start with the subcritical case and assume that (Asub) holds. Since log λκd ≪ d, the left-hand side

of (39) is equivalent to 1
d log

1
a (because a → 0), while the right-hand side is bounded from above by

1
d log λκd. This entails that 1

d log
1
a → 0, and then, plugging this back into (39), log(1 + 1

da2
) → 0.

Thus da2 →∞, so log 1
a = O(log d), and (39) becomes

1

d
log λκd −

1

2da2
(
1 + o(1)

)
= O

(
log d

d

)
.
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Because log d≪ log λκd, this implies

1

a
∼
√
2 log λκd (subcritical regime),

which results in 1
d log

2 1
a → 0 (so (25) holds for any γ ∈ (0, 12)).

Next, for the critical case, let us now assume (Acrit), i.e.,
1
d log λκd → x ∈ (0,∞). Then (39) implies

that log 1
a = O(d), which in turn implies that log

(
1 + 1

da2

)
= O(1), i.e., a ≳ 1√

d
. Hence, by (39) again,

1
d log λκd −

1
2 log

(
1 + 1

da2

)
→ 0, or in other words,

1

a
∼
√
d(e2x−1) (critical regime),

which is stronger than (25).

Lastly, we consider the supercritical case and assume (Asup). Then the inequality 1
d log

1
a ≤

1
2 log(1+

1
da2

)

(which follows from the concavity of the logarithm) and (39) give

1

d
log λκd = O

(
log
(
1 +

1

da2

))
.

Because log λκd ≫ d, this forces da2 → 0, so (39) produces(
1 + o(1)

)
log

1

a
= log

(
(λκd)

1
d

√
d
)
+ o(1),

that is

1

a
∼ (λκd)

1
d

√
d (supercritical regime).

This will imply 1
d log

2+γ 1
a → 0 and (25) (for some γ ∈ (0, 12)) if we further assume that log λκd ≪ d

3
2
−γ ,

as stated in (Asup).

Finally, we can see that the error term in (37) goes to zero because (25) and a fortiori (17) hold under

each of the three stated conditions (Asub), (Acrit) and (Asup). □

Scholium 4.5 (Summary of useful asymptotics derived in the proof of Lemma 4.4). The sequence a

fulfills the implicit asymptotic equality

d

2
log

(
1 +

1

da2

)
= log

Am λκd
1
a log

1
a

−
(m− 1) log log 1

a + logBm + τ

(m− 1) log 1
a

+ o

(
1

log 1
a

)
, (40)

where we record

Am :=

√
2π

m−1
2

(m− 1)Γ(m2 )
, Bm :=

π
m+1

2 (m− 1)m−1

2
3m−5

2 Γ(m2 )
2

, (41)

from (38) and (35). Furthermore we have, in all regimes,

1

a
∼
√
d
(
(λκd)

2
d − 1

)
∼



√
2 log λκd, under (Asub),√
d(e2x−1), under (Acrit),

(λκd)
1
d
√
d, under (Asup).

(42)

We are now ready to prove Theorem 3 and Corollary 4.
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Proof of Theorem 3. For τ ∈ R, a := a(d; τ), and r := (1 + da2)
− 1

2 as in Lemma 4.4, the conditions to

apply Lemma 4.3 are in place, hence (recalling (24))

lim
d→∞

P(h(d,m)
λ ≥ r) = e− e−τ

.

Now, notice that

P(h(d,m)
λ ≥ r) = P

(
h
(d,m)
λ ≥ (1 + da2)

− 1
2

)

= P

d log 1√
1−

(
h
(d,m)
λ

)2 ≥ d

2
log

(
1 +

1

da2

).
Plugging in (40), we find

P(h(d,m)
λ ≥ r) = P

[
log

Am λκd
1
a log

1
a

− d log
1√

1−
(
h
(d,m)
λ

)2 ≤ (m− 1) log log 1
a + logBm + τ

(m− 1) log 1
a

+ o

(
1

log 1
a

)]
.

To conclude, it remains to express log 1
a and log log 1

a in terms of s(d) = log

√
d
(
(λκd)

2
d − 1

)
. According

to (42),

log
1

a
= s(d) + o(1), and also log log

1

a
= log s(d) + o(1).

Hence

(m− 1)d s(d)

1
d
log

Am λκd
es(d) s(d)

− log
1√

1−
(
h
(d,m)
λ

)2
− (m− 1) log s(d)− logBm

converges in law to the standard Gumbel distribution. This establishes Theorem 3 with

a(d;m) := (m− 1)s(d) log
Am λκd
s(d)

− (m− 1)s(d)2 − (m− 1) log s(d)− logBm, (43)

and

b(d;m) := (m− 1)d s(d), (44)

where we recall that Am and Bm have been defined at (41). □

Proof of Corollary 4. We get from Theorem 3 that

a(d;m)− b(d;m) log
1√

1−
(
h
(d,m)
λ

)2 = OP(1),

where X(d) = OP(1) means that limA→∞ lim supd→∞ P(|X(d)| > A) = 0. Multiplying by 2b(d;m)−1 and

taking the exponential function, it follows that

e
2a(d;m)
b(d;m)

(
1−

(
h
(d,m)
λ

)2)
= 1 +

1

b(d;m)
·OP(1),

where e
2a(d;m)
b(d;m) ∼ (λκd)

2
d from (43) and (44). Since log λκd ≪ d2, this is also equivalent to (λκd)

2
d+1 . We

finish the proof similarly to that of Theorem 1. □
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Figure 3. If ru ∈ hull(X ′
1, . . . , X

′
N ), then ρ

(d)
λ (u) > r.

5. Consequences on the radius-vector function

To conclude this work, we prove an easy consequence on the asymptotics of the radius-vector func-

tion ρ
(d)
λ given at (2). Recall that ρ

(d)
λ ≤ h

(d)
λ , see Figure 1.

Corollary 5.1 (Subcritical and supercritical regimes for ρ
(d)
λ ). Let Assumption (H) hold.

(i) In the subcritical regime, under log λκd ≪ d,

lim sup
d→∞

√
d

2 log λκd
ρ
(d)
λ ≤ 1, in probability.

(ii) In the supercritical regime, under the condition log λκd ≫ d

lim
d→∞

(λκd)
2

d+1

(
1− ρ

(d)
λ

)
=

1

2
, in probability.

Proof. Since ρ
(d)
λ ≤ h

(d)
λ , (i) is an immediate consequence of Theorem 1, and (ii) will also follow from

Theorem 1 if we prove that, for every ε ∈ (0, 1),

P
((

λκd
) 2

d+1

(
1− ρ

(d)
λ (u)

)
>

1

2
+ ε

)
−−−→
d→∞

0. (45)

Recall the definition of the cap Cd(r;u) := {x ∈ Bd : ⟨u, x⟩ > r}. Let {X1, . . . , XN} = Pd
λ ∩ Cd(r;u) and

denote by X ′
i, 1 ≤ i ≤ n, their projections onto the (d− 1)-dimensional hyperplane {x ∈ Rd : ⟨u, x⟩ = r},

with r ∈ (0, 1) arbitrary. The number N has a Poisson distribution with parameter ℓ(r) := λ|Cd(r;u)|,
and conditional on N , the points X ′

i − ru are i.i.d. according to a symmetric distribution on Rd−1. First,

Wendel’s formula [38] allows us to write

P
(
0 /∈ hull{X ′

1 − ru, . . . ,X ′
N − ru}

∣∣∣N) = 1{N<d}+1{N≥d} 2
−(N−1)

d−2∑
k=0

(
N − 1

k

)

= 1− 1{N≥d} 2
−(N−1)

N∑
k=d

(
N − 1

k − 1

)
.

Next, we observe that ru /∈ hull{X ′
1, . . . , X

′
N} on the event {ρ(d)λ (u) ≤ r} (see Figure 3), so we get
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P
(
ρ
(d)
λ (u) ≤ r

)
≤ E

[
P
(
0 /∈ hull{X ′

1 − ru, . . . ,X ′
N − ru}

∣∣∣N)]
= 1− E

[
1{N≥d} 2

−(N−1)
N∑

k=d

(
N − 1

k − 1

)]

= 1− P(SN−1 ≥ d), (46)

where as in the proof of Lemma 2.1, the random variable SN−1 conditional onN has the Binomial(N−1, 12)
distribution. We now let r depend on d and observe that, for r := 1− (λκd)

− 2
d+1 (12 + ε), we have

ρ
(d)
λ (u) ≤ r ⇐⇒ (λκd)

2
d+1

(
1− ρ

(d)
λ (u)

)
>

1

2
+ ε,

so in order to get (45) it suffices to prove that the upper bound in (46) goes to 0, where N is a Poisson

r.v. with mean ℓ(r). But

ℓ(r) =
λκd−1

2
B
(
1− r2; d+1

2 , 12
)

= −logP
(
h
(d)
λ ≤ r

)
= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+ o(1)

}
,

by (3), (4), and (9), provided that d≫ r−2. In fact,

1− r2 = (λκd)
− 2

d+1 (1 + 2ε)
[
1 +O

(
(λκd)

− 2
d+1

)]
,

so

d+ 1

2
log(1− r2) = −log λκd +

d+ 1

2
log(1 + 2ε) + o(d).

We can then see that ℓ(r) = (1 + 2ε)
d
2
+o(d) ≫ d and so N ≫ d, w.h.p. Hence P(SN−1 ≥ d)→ 1 and this

completes the proof. □

Remark (Asymptotics for the volume ratio). By integrating the d-th power of the radius-vector func-

tion ρ
(d)
λ over the whole sphere Sd−1, we obtain the d-dimensional volume of Kd

λ, namely

|Kd
λ| =

ˆ
Sd−1

σd−1(du)

ˆ ρ
(d)
λ (u)

0
td−1 dt,

which by Fubini’s theorem leads to

E |Kd
λ| = κd

ˆ +∞

0
P
(
ρ
(d)
λ > t

)
dtd−1 dt = κd E

(
ρ
(d)
λ

)d
. (47)
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In particular, in the case log λκd = d
2 log

d
2x + o(d) with x > 0, which corresponds to the critical regime

considered by Bonnet, Kabluchko and Turchi [7], we can recover the asymptotics for the volume ratio

stated in their Theorem 3.1. Indeed, for any subsequence of d→∞ we have, almost surely along a further

sub-subsequence, (
ρ
(d)
λ

)d
= exp

[
d log

(
1− 1

2
(λκd)

− 2
d+1
(
1 + o(1)

))]
= exp

[
d log

(
1− x

d

(
1 + o(1)

))]
∼ e−x,

using Corollary 5.1, part (ii). This together with the dominated convergence theorem yields

lim
d→∞

E |Kd
λ|

κd
= e−x .

In view of (47) and Corollary 5.1, part (ii), we can conjecture that when d≪ log λκd ≪ d
2 log(d),

log
E |Kd

λ|
κd

∼ −d

2
(λκd)

− 2
d+1 .

Similarly, when log(λκd)≫ d
2 log(d), we also predict that

1−
E |Kd

λ|
κd

∼ d

2
(λκd)

− 2
d+1 .

We thank Matthias Reitzner for his suggestion which led us to this observation.

Appendix

In this appendix, we state and prove Proposition A, which is instrumental in deriving Theorem 3. As

exposed in Section 4.2, Janson’s result [24, Lemma 8.1] says that, under (J1) and (J2), the probability

P
(
Cover(Λ(a), R, a;M)

)
of covering the manifold M by a union of geodesic balls,

⋃
iBM (xi, aρi) = M ,

where the (xi, ρi)’s arise as the atoms of a Poisson point process with intensity Λ(a)vM (dx)⊗ P(R ∈ dρ),

converges to the Gumbel distribution function as a → 0. Our aim is to prove the following extension

where the random radius R is allowed to depend on a. Instead of adapting Janson’s result and rewriting

the whole proof, we rather reduce to it using a coupling argument. Namely, if Ra converges to R in such

a way that we may construct (R,Ra) so that

(1− η)R ≤ Ra ≤ (1 + η)R (48)

holds with high probability for some positive sequence η := η(a) vanishing sufficiently fast, then we

may approximate (from above and below) P
(
Cover(Λ, Ra, a;M)

)
with similar probabilities where Ra is

changed to (1± η)R, which after replacing a by a/(1± η) leads to the case handled by Janson.

In Proposition A below, condition (49) allows us to achieve the upper bound in (48) and is of course

satisfied if the stronger condition (∀ρ > 0, P(Ra > ρ) ≤ P(R > ρ)) holds for a > 0 sufficiently small (e.g.,

if the sequence of functions ρ 7→ P(Ra > ρ) is eventually non-decreasing as a → 0), while condition (50)

allows us to obtain the lower bound in (48).
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Proposition A (Extension of Janson’s result). Let M be a C2, D-dimensional compact Riemannian

manifold, and let Λ := Λ(a) > 0 and R fulfill Janson’s conditions (J1) and (J2). Suppose Ra, a > 0, are

positive random variables such that for every w > 0 and all a sufficiently small,

sup
ρ>0

P(Ra > ρ)

P
([

1 + w
log 1

a

]
R > ρ

) ≤ 1. (49)

Suppose further that, as a→ 0,

W1(logRa, logR) = o

(
1

log2 1
a

)
. (50)

Then (J) also holds with Ra in place of R:

lim
a→0

P
(
Cover(Λ, Ra, a;M)

)
= e− e−τ

.

Proof. First, with the assumptions (J1) and (J2) of Janson’s theorem [24, Lemma 8.1] fulfilled for R, the

convergence (J) holds:

lim
a→0

P
(
Cover(Λ, R, a;M)

)
= e− e−τ

.

To prove the same for Cover(Λ, Ra, a;M), we use a coupling argument. Let w > 0 and

ηa :=
w

log 1
a

. (51)

By (49), it holds for all a sufficiently small that

∀ρ > 0, P(Ra > ρ) ≤ P
(
(1 + ηa)R > ρ

)
.

Applying the inverse method, that is, considering the generalized inverses F−1
a and F−1 of the distribution

functions of Ra and R respectively, and setting Ra := F−1
a (U) and R := F−1(U) for a uniform variable U

in [0, 1], we may then suppose for every small a > 0 that Ra and R are coupled so that

Ra ≤ (1 + ηa)R, almost surely.

We then introduce independent, uniformly distributed variablesXi, i ≥ 1, onM and, for every small a > 0,

an independent Poisson-distributed variable Na with mean Λ(a)vM (M), as well as a further independent

family (Ra,i, Ri)i≥1 of i.i.d. copies of (Ra, R). Thus, for every small a > 0, we have constructed a Poisson

point process Ξa := {Xi, Ra,i, Ri}1≤i≤Na on M × (0,∞)2 whose projections Ξ1,a := (Xi, Ra,i)1≤i≤Na and

Ξ2,a := (Xi, Ri)1≤i≤Na have intensity ΛvM (dx)⊗ P(Ra ∈ dρ) and ΛvM (dx)⊗ P(R ∈ dρ) respectively. In

particular, with this construction the two covering events are given by

Cover(Λ, Ra, a;M) =

⋃
Ξ1,a

BM (Xi, aRa,i) = M

 and Cover(Λ, R, a;M) =

⋃
Ξ2,a

BM (Xi, aRi) = M

.
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Since Ra,i ≤ (1 + ηa)Ri almost surely for all i ≥ 1, we get

P
(
Cover(Λ, Ra, a;M)

)
= P

⋃
Ξ1,a

BM (Xi, aRa,i) = M



≤ P

⋃
Ξ2,a

BM (Xi, a(1 + ηa)Ri) = M


= P

(
Cover(Λ, R, (1 + ηa)a;M)

)
,

and therefore,

lim sup
a→0

P
(
Cover(Λ, Ra, a;M)

)
≤ lim sup

a→0
P
(
Cover(Λ, R, (1 + ηa)a;M)

)
= lim sup

a→0
P
(
Cover(Λ−, R, a;M)

)
,

with Λ−(a) := Λ( a
1+ηa

) and the last two lim sup being equal because a 7→ a/(1 + ηa) can be inverted

when a > 0 is sufficiently small. This lim sup is in fact a true limit, as we now show. Recalling

J(Λ, R, a;M)→ τ by (J2) and ηa := w/log 1
a in (51),

Λ−(a) =
(1 + ηa)

D

b(R;M)aDvM (M)

(
log

(1 + ηa)
D

b(R;M)aD
+D log log

(1 + ηa)
D

b(R;M)aD
+ logα(R) + τ + o(1)

)

=
1 +Dηa + o(ηa)

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)

=

[
1 +

Dw

log 1
a

+ o

(
1

log 1
a

)]
Λ(a).

This entails J(Λ−, R, a;M)→ τ +D2w, so Janson’s theorem applies with

lim
a→0

P
(
Cover(Λ−, R, a;M)

)
= e− e−τ−D2w

.

Letting w → 0+, we have proved

lim sup
a→0

P
(
Cover(Λ, Ra, a;M)

)
≤ e− e−τ

.

To establish the other direction, we keep w > 0 and ηa := w/log 1
a , as well as the Poisson point pro-

cess Ξa := {Xi, Ra,i, Ri}1≤i≤Na and its projections Ξ1,a and Ξ2,a, except that this time (Ra,i, Ri)i≥1

are i.i.d. copies of a different coupling of (Ra, R). Namely, the Kantorovich–Rubinstein theorem [15,

Theorem 11.8.2] allows us to choose (Ra, R) so that

W1(logRa, logR) = E |logRa − logR|. (52)

We then restrict Ξa by keeping only the radii Ra,i such that Ra,i ≥ (1− ηa)Ri:

Ξ̃a :=
{
(Xi, Ra,i, Ri) ∈ Ξa : Ra,i ≥ (1− ηa)Ri

}
.
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Hence Ξ̃2,a := {(Xi, Ri) : (Xi, Ra,i, Ri) ∈ Ξ̃a} ⊆ Ξ2,a has a smaller intensity, Λ̃vM (dx)⊗ P(Ra ∈ dρ) with

Λ̃(a) := Λ(a)P(Ra ≥ (1− ηa)R). Since, by Markov’s inequality, (52) and (50),

P(Ra < (1− ηa)R) = P
(
log

R

Ra
> log

1

1− ηa

)
≤ 1

log 1
1−ηa

E |logRa − logR|

≤
log 1

a

w
W1(logRa, logR)

= o

(
1

log 1
a

)
,

we have Λ̃(a) = Λ(a)[1 + o(log−1( 1a))], which by (J2) implies that J
(
Λ̃, R, a;D

)
→ τ , i.e.,

Λ̃(a) =
1

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)
. (J̃2)

Now,

P
(
Cover(Λ, Ra, a;M)

)
= P

⋃
Ξ1,a

BM (Xi, aRa,i) = M



≥ P

⋃
Ξ̃a

BM (Xi, aRa,i) = M



≥ P

⋃
Ξ̃2,a

BM (Xi, a(1− ηa)Ri) = M


= P

(
Cover(Λ+, Ri, (1− ηa)a;M)

)
and therefore (in the same way as above),

lim inf
a→0

P
(
Cover(Λ, Ra, a;M)

)
≥ lim inf

a→0
P
(
Cover(Λ+, R, a;M)

)
,

where, recalling (J̃2) and ηa := w/log 1
a ,

Λ+(a) := Λ̃

(
a

1− ηa

)

=
(1− ηa)

D

b(R;M)aDvM (M)

(
log

(1− ηa)
D

b(R;M)aD
+D log log

(1− ηa)
D

b(R;M)aD
+ logα(R) + τ + o(1)

)

=
1−Dηa + o(ηa)

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)

=

[
1− Dw

log 1
a

+ o

(
1

log 1
a

)]
Λ(a).
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This entails J(Λ+, R, a;M)→ τ −D2w, so Janson’s theorem applies again with

lim
a→0

P
(
Cover(Λ+, R, a;M)

)
= e− e−τ+D2w

.

It remains to let w → 0+ to complete the proof. □
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