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Polina LEMENKOVA1 

 

MAPPING WOODLANDS IN ANGOLA, TROPICAL AFRICA: 

CALCULATION OF VEGETATION INDICES FROM 
REMOTE SENSING DATA 

 

SUMMARY  
This paper presents the application of the scripting algorithm GRASS GIS 

for calculation and visualization of vegetation indices using satellite data. The 

data include satellite images Landsat-8 OLI/TIRS covering tropical rainforests of 

central Angola. The images were acquired in July 2013 and July 2023. The 

methodology is based on using module 'i.vi' of GRASS GIS which automatically 

calculated 10 vegetation indices: DVI, NDVI, ARVI, EVI, GEMI, MSAVI2, 

NDWI, PVI, GARI and IPVI. The algorithms of data processing and calculation 

of vegetation indices are presented in the scripts. The results include the 

extracted information on distribution of bright green vegetation compared with 

other land cover types: tropical forests and coastal areas distinguished from 

artificial surfaces and urban areas, soils and coastal shores. The results indicated 

landscape dynamics in Angola with decline in tropical forests since 2013 until 

2023. The machine-based workflow increases computational efficiency through 

fast processing of satellite data. The use of scripts demonstrated that 

programming method of automated information extraction from satellite images 

is effective for environmental monitoring of tropical African landscapes in 

rainforests. 
Keywords cartography, programming, environment, ecology 
 

INTRODUCTION 
This paper studied the vegetation health in the tropical landscape of 

southern Africa, Angola, using calculation of vegetation indices. Knowledge of 

the size, distribution, and evolution of vegetation patches is an essential element 

of environmental studies on land cover change. Areas affected by deforestation 

or converted into settlements indicate environmental degradation in tropical 

regions. Environmental monitoring can be effectively implemented to detect such 
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problems using satellite images (Sunny et al., 2022; Lemenkova, 2022a; Koon et 

al., 2023).  

However, processing remote sensing (RS) data using Geographic 

Information System (GIS) involves manual work. In contrast, computer vision 

provides automated approach through algorithms (Dumay and Mainguet, 2009).  
RS data has long been used for these purposes in various regions of Africa 

(Bardinet, 1981; Jacques et al., 1993; Lemenkova, 2023 a, b; Dawelbait et al., 

2017). However, the application of RS data in Angola has mainly been used to 

map general land cover types using traditional GIS (Schneibel et al., 2016; 

Lourenco et al., 2022; Lehmann et al., 2023; Awadallah et al., 2015). In coastal 

areas, tropical forests are scattered in wetland ecosystems and are difficult to map 

using traditional approaches. In contrast, the machine approach can automatically 

detect areas covered by healthy vegetation discriminating landscape patches on 

satellite images by the difference in spectral reflectance of bright green leaves. 

This paper presents the use of such technological approach presented through 

programming.  
 

STUDY AREA 
We used the modules and libraries of the GRASS GIS software (Neteler et 

al., 2012) to map vegetation indices in central Angola, Figure 1. 

Over the last 10 years, land cover types and vegetation in Angola have 

changed rapidly due to environmental and climate impacts and anthropogenic 

activities. This trend is visible by comparing satellite images on different data 

covering the same area. While the definitions of landscape patches and 

vegetation types are mainly determined using field surveys based on their size 

and level of complexity, showing the heterogeneity of the area, in the 

mountainous regions of Angola, the identification of landscape patches is 

difficult due to the inaccessible region for topographic studies. Therefore, it is 

worth investigating the dynamics of vegetation growth and plant status with 

freely available satellite images such as Landsat scenes (Ruppen et al., 2023). 

Landsat data are widely used for vegetation mapping, calculating vegetation 

indices, and ecological monitoring. 
The landscapes of Angola are characterized by a mosaic of vegetation 

including coastal plains, tropical rainforests in the central regions, swamps and 

wetlands dominant in the mountainous regions and to grassy and semi-deciduous 

forests in the central regions of the country. The details of their distribution are 

shown in land cover map based on spatial data from the Food and Agriculture 

Organization (FAO), Figure 2. 
The difference between these contrasting vegetation types can be detected 

using RS data. Specifically, the effective tool for land cover monitoring is the 

calculation of vegetation indices. Its effectiveness is explained by the difference 

in spectral reflectance in the Red/NIR channels of satellite images that well 

indicates the distribution of vegetation contrasting with other land cover types. 
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Figure 1. Topographic map of Angola, Africa 

 

 
Figure 2. Land use map of Angola. 
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OBJECTIVES AND GOALS 
The objective of this paper is twofold. First, we present an improved 

GRASS GIS scripting method for computing and visualizing 10 vegetation 

indices calculated using the 'i.vi' algorithm over study area in a mountainous 

region of central Angola. Second, we compare the performance of Landsat-8 

OLI/TIRS imagery in vegetation mapping on 2013 and 2023. GRASS GIS 

programming algorithms have are novel method for computing vegetation 

indices which are usually calculated using traditional GIS approaches. This 

technique is chosen to improve the implementation vegetation monitoring. 

Unlike existing methods, this algorithm works automatically in data extraction 

for different vegetation indices that have been calculated for comparative 

analysis. 
After providing an overview of the GRASS GIS algorithms and offering 

commentary on the code snippets and modules, we demonstrate how to use this 

application to map ten distinct vegetation indices using two satellite photos taken 

between 2013 and 2023. The results of the experiment are then presented, 

together with a consideration of their implications. In the end, we offer 

suggestions for potential future research in related fields and draw conclusions. 

 
MATERIAL AND METHOD 

Multispectral satellite images Landsat with 30 m resolution were enhanced 

by adding topographic layers (cities, roads, hydrographic network and country 

boundaries). The topographic map was produced using Generic Mapping Tools 

(GMT), a scripting toolset for processing and mapping spatial information using 

programming codes (Lemenkova, 2022 a; b). The condition for an accurate 

calculation of vegetation indices is that the images are cloud-free and acquired 

during the season of high vegetation cover and low humidity, which is October to 

May for tropical Africa. For these reasons, we used the selected images with 

cloudiness less than 10% and taken in July 2013 and 2023 during a dry period 

with low precipitation and humidity, Figure 3. 

Launched in 1982, Landsat provides a valuable open source information to 

monitor vegetation and land cover types. For Angola, satellite images are used 

for environmental monitoring, such as landscape dynamics, urbanization 

(Temudo et al., 2019), urban restructuring, deforestation, degradation (Palacios et 

al., 2015, Lemenkova, 2024a), and increased agricultural activities (Mendelsohn, 

2019, Lemenkova, 2024b). We used the latest sensor of Landsat products: 

OLI/TIRS. Compared to Landsat ETM+ where the usable swath range is limited 

to the central part of the image, Landsat OLI/TIRS is updated and improved in 

technical quality and characteristics (Lemenkova, 2023c). The 185 km swath in 

multispectral cameras enables frequent global coverage. Such a wide swath of is 

useful where clouds are a major obstacle to image acquisition in clear weather, as 

in tropical Africa. 
Three software were used: 1) GRASS GIS for image processing (GRASS 

Development Team, 2022); 2) Generic Mapping Tools (GMT) for topographic 
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mapping (Wessel et al., 2019); 3) QuantumGIS (QGIS.org, 2023) for GIS 

mapping. The codes were based on the existing works (Lemenkova, 2024c). 

Technically, this allowed to evaluate scripting approach in processing RS data. 

For environmental analysis, GRASS GIS supported monitoring vegetation cover 

and distribution of tropical forests.  
 

 
Figure 3: RS data: Landsat 8 OLI/TIRS scenes covering central Angola. 

 

As a computer tool to help ecology and landscape studies, the calculation 

of vegetation indices is frequently employed in environmental monitoring. The 

principal methodology relies on the properties of plants whose chlorophyll 

content causes notable variations in the red and near-infrared regions of 

multispectral pictures. The presence of vivid green vegetation can thus be 

highlighted on satellite photos by utilizing the Red and NIR bands in a variety of 

combinations and formulas. As a result, it is possible to differentiate lush, vibrant 

vegetation from the surrounding, disparate land cover types, which include urban 

areas, bare ground, rivers, streams, and meadows adjacent to river valleys.  
Numerous vegetation indices have been established in the past to extract 

data from grayscale photos. Because of its widespread use, the NDVI is the most 

well-known and well-liked of them. To make the contrast between the built-up 

regions and the vegetation better, we first employed NDVI and then computed 

other indices for comparison. Several indices with modified characteristics, such 

as enhanced atmospheric resistance (ARVI) or ground brightness correction 

(MSAVI), have been produced as NDVI modifications. 
In this study, we tested 10 different vegetation indices: 1. Difference 

Vegetation Index (DVI); 2. Normalized Difference Vegetation Index (NDVI); 3. 

Atmospherically Resistant Vegetation Index (ARVI); 4. Enhanced Vegetation 

Index (EVI); 5. Nonlinear Vegetation Index for Global Environmental 

Monitoring (GEMI); 6. Modified Soil Adjusted Vegetation Index (MSAVI2) 

minimizes the effect of bare soil on the Modified Soil Adjusted Vegetation Index 
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(MSAVI2); 7. Normalized Difference Water Index (NDWI); 8. Perpendicular 

Vegetation Index (PVI) which is similar to difference vegetation index; 9. Green 

Atmospherically Resistant Vegetation Index (GARI); 10. Infrared Percentage 

Vegetation Index (IPVI). 
Computing vegetation indices is an important part of ecological 

monitoring using RS data. The methods applied to the calculation of vegetation 

indices are based on multispectral transformations of pixels that form the raster 

structure. This approach converts the radiances recorded by the satellite sensor 

into quantities. The multispectral satellite images allow to numerically evaluate 

the state of chlorophyll content in leaves. In this way, the vegetation index 

reflects the growth stage of plants using these indicators. To calculate vegetation 

indices, the ‘i.vi’ algorithm was used by GRASS GIS. This module enables to 

separate vegetation cover from other land cover types, since it is based on 

automatic machine-based discrimination of spectral reflectance values of 

vegetation and rainforests on the satellite images.  
Algorithm implementation of the GRASS GIS programming for image 

processing is as follows. First, the images were imported into the GRASS GIS 

project using the Geospatial Data Abstraction Library (GDAL): "r.in.gdal 

/Users/polinalemenkova/grassdata/Angola_2023/LC08_<...>_T1_SR_B1.TIF 

out=L8_2023_01" This is repeated for the 11 necessary bands of Landsat 

OLI/TIRS Then, the contents of the files were checked using the listing 

command: g.list rast. After that, the files were preprocessed by copying the 

Landsat bands to match the input structure of the "i.landsat.toar" module that will 

be used later to calibrate the digital number (DN) of the Landsat imagery. This is 

done using the following command: g.copy raster=L8_2023_01,lsat8_2023.1 
Afterwards, the DN pixel values were converted to spectral reflectance 

values using DOS1 from digital number (DN) to reflectance. This is done using 

module i.landsat.toar which calculates reflectance and temperature of the “top of 

the atmosphere” for Landsat images. This step is necessary as it converts the DN 

to reflectance values before creating an RGB composite. Otherwise, the colours 

of the natural RGB composite do not look convincing but rather blurred. This 

conversion was done using metadata file with i.landsat.toar by the following 

command: “i.landsat.toar input=lsat8_2023. output=lsat8_2023_toar. sensor=oli8 

method=dos1 date=2023-07-12 sun_elevation=44.08803962 product_date=2023-

07-18 gain=HHHLHLHHL”. 
After the preprocessing, the next step involves the calculation of 10 

vegetation indices. All indices were calculated using the GRASS GIS module 

"i.vi" and then visualized on the maps using a combination of map processing 

modules. First, the NDVI calculation was performed using the code: “g.region 

raster=lsat8_2023_toar.4 -p i.vi red=lsat8_2023_toar.4 nir=lsat8_2023_toar.5 

viname=ndvi output=lsat8_2023.ndvi --overwrite r.colors lsat8_2023.ndvi 

color=ndvi” (here, the example of NDVI). 
The next step included cartographic visualization and data representation 

using several GRASS GIS modules. First, the screen was launched using the 
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'd.mon' module: d.mon wx0. Then, the region was created to include the extent of 

the study area by 'g.region' as follows: “g.region raster=lsat8_2023_toar.4 -p. 

Afterwards, the maps were visualized using the 'd.rast' module (here, the example 

is given for NDVI): d.rast lsat8_2023.ndvi”.Then the map legend was added 

using the GRASS GIS module "d.legend" with the map elements and adjustments 

as follows: d.legend raster=lsat8_2023.ndvi range=-1,1 title="NDVI-2023" 

title_fontsize=14 font=Helvetica fontsize=12 -t -s -b border_color=white thin=12 

label_step=0.1 -d d.out.file output=Angola_NDVI_2023 format=jpg –overwrite. 
Using the methodology with technical details described above the 10 maps 

were generated showing vegetation indices. The difference between indices lies 

in the approach of the formulas used for calculation.  

 

RESULTS 
Vegetation indices are based on characteristics of leaf spectral reflectance 

and their values in the red/near infrared (NIR) bands in multispectral data. 
Besides, they are widely used to identify and monitor landscape dynamics as a 
reliable source of information. Such maps are used for biophysical 
characteristics: biomass, leaf area index, photosynthetic radiation fraction in 
canopy. Figure 4 shows the NDVI and DVI computed for the 2013 and 2023 
Landsat OLI/TIRS images which illustrate land cover and vegetation changes 
over the territory.  

In order to get the best results, we tested with several vegetation indices 
utilizing GRASS GIS's i.vi algorithms. The NDVI and DVI hues in this figure 
correspond to the light vegetation, respectively. The NDVI presents a general 
approach with fixed variation range: from -1 to +1. The formula for 
NDVI=(NIR-Red)/(NIR+Red) uses the red and near infrared bands of Landsat, 
Figure 4. The raw data were pre-processed to convert pixel values to radiance in 
order to compare the NDVI changes between 2013 and 2023. Every NDVI image 
and computation receives the application of the mapping. Greater values signify 
lush, green vegetation. In central Angola, the comparison between 2013 and 2023 
shows a loss in vegetation. DVI is calculated using the difference between the 
maximum absorption in the red, which is dependent on chlorophyll pigments, 
and the maximum reflection in the infrared (IR), which is due to the leaf's 
cellular structure. Though not normalized, this indicator is comparable to the 
NDVI but has more stable results. Red and infrared (NIR) bands are available in 
most RS data, including Landsat, and are used in NDVI.  The drawback of NDVI 
is its sensitivity to noise and climatic factors like humidity and cloudiness. 

The ARVI and EVI indices have been computed and are displayed visually 

in Figure 5. ARVI was first created for the MODIS EOS sensor, but as it uses the 

blue, red, and NIR bands for computation, it may also be applied to Landsat data. 

The ability to adjust for atmospheric effects on vegetation detection is its 

principal benefit. The deciduous forests of central Angola or mixed deciduous 

and evergreen forests with needle-leaving trees, such as cone or scale forests, are 

represented by the highest ARVI values in this region, which range from -0.60 to 

0.70. Figure 5 of the ARVI and Figure 6 of GEMI exhibit comparable changes. 
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Figure 4: DVI and NDVI for 2013 and 2023. 

 

 
Figure 5: ARVI and EVI indices for 2013 and 2023. 
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For vegetation mapping in Angola's tropical mountainous regions, ARVI is 

more accurate than GEMI as it is less susceptible to atmospheric impacts. Bright 

green shows vegetation in ARVI, whereas bright red indicates river valleys. This 

index can be used for hydrological and geomorphological mapping since it 

makes a distinction between densely covered forests and heavily vegetated river 

valleys that have scant or nonexistent vegetation. The major range of values for 

the EVI index is between -0.10 and +0.10, as shown on data distribution in the 

histogram, whereas local minima with a constant of values below -0.20 are filled. 

 

 
Figure 6: GEMI and MSAVI2 for 2013 and 2023. 

 
Figure 6 displays the computed indices for MSAVI and GEMI. MSAVI 

accounts for soil reflectance, so its range of values is limited to -0.12 to 0.1. This 

makes it possible to separate soil from vegetation. The drawback of this method 

is that it needs a lot of vegetation cover. Due to the soil effects, the reflectance 

values may be incorrect if vegetation cover is sparse, and due to similar spectral 

reflectance, plants with comparable photosynthetic properties may be mixed. 

Conversely, GEMI values are between -0.5 and 0.6, with 0.15 to 0.40 being the 

most notable numbers. The graphic displays the brilliant plant cover as a black 

side histogram on the map legends, which indicates data distribution. To reduce 

the impact of the atmosphere on the measurement of the vegetation index, GEMI 

takes into account a non-linear connection.  
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Figure 7 displays the computed values for the PVI and NDWI indices. The 

amount of biomass, the green area, the health of the crop, and vegetation with 

active photosynthetic activities are all closely correlated with the plant water 

content, as the NDWI shows. Accordingly, this index's lowest values in the 

research region are -0.7-, and its highest values are reached up to 0.20, at which 

point the values settle. Higher results, over 0.2 and above, correlate to areas of 

shrubs or natural deciduous and broadleaf forests in high mountains. Very low 

values, of negative order, depict rocky, sandy, or bare places. 
 

 
Figure 7: NDWI and PVI for 2013 and 2023. 

 
In central Angola, the PVI ranges from -0.04 to 0.08 (Figure 7). The 

perpendicular distance between each pixel and the ground line that gives this 

index its name is used in the calculation. Each pixel's distance from the ground 

line determines whether it is land cover or vegetation cover. Identification of 

vegetation is made possible by this index's adjustment to soil reflectivity. Its data 

distribution range is different from the NDVI's since its values are determined 

using perpendicular distances to the ground line, represented in reflectivity units. 

Thus, when compared to the NDVI, this index illustrates better results for 

differentiating vegetation. 
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Normalization by the sum of the 2 bands calculated in the IPVI shown in 

Figure 8 reduces the effects of light and results in values between -0.1 and 0.90. 

The IPVI maintains values regardless of the illumination. This differentiates it 

from simple vegetation indices which are sensitive to changes in illumination. 

The GARI values are between -1 and +1, however, negative values 

corresponding to non-vegetated surfaces are reduced to -0.50, as land use types 

corresponding to negative values, such as snow or dense clouds, are absent. The 

reflectance in the red is higher than that of the NIR, which explains the values. 

The increase of  values to 0.40 means the increase of shrubs and mixed 

vegetation. 

 

 
Figure 8: GARI and IPVI for 2013 and 2023. 

 
The results are encouraging for mapping rainforest ecosystems and tropical 

vegetation in Africa. Therefore, Landsat-8 OLI/TIRS data can be used in similar 

studies using the presented programming codes as a continuous data source for 

vegetation monitoring. The presented findings indicate the value of RS data as a 

source of information for environmental monitoring. Using multi-temporal 

images, this data can be used to map vegetation cover at all time and spatial 

scales, hence facilitating the mapping of landscape dynamics. Changes in the 

terrain and vegetation cover are becoming more obvious in Central and Southern 

Africa due to the effects of climate change and human activities associated with 
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deforestation. This leads to a complicated alteration in the patterns of land cover, 

including the fragmentation of landscapes, which lowers biodiversity. As this 

study demonstrates, research on tropical forest vegetation can advance thanks to 

the wealth of spectral, resolution, and temporal data offered by satellite imaging 

and advancements in programming. 
Vegetation index computation is essential for environmental monitoring. 

More suitable features that adapt to various transboundary zones with varied 

vegetation types (savannah, tropical forests, deciduous forests, mosaic 

grasslands, or shrubs) should be the focus of future research. Finding places with 

complex and shifting landscape structures would be made easier by adapting 

regional characteristics of land cover classes. The GRASS GIS method uses 

scripts to automate image processing in order to define the cartographic 

workflow. This makes it possible to identify vegetation traits and distinguish 

between areas that are diverse or those are homogeneous sections of the 

landscape. 
The tropical forests of Angola are surrounded by agricultural fields, 

cultivated plantations and urban settlements. They are clearly distinguished from 

built-up areas and cultivated areas during the growing season. For this reason, we 

tested several vegetation indices that differ from each other by several technical 

parameters (use of different Landsat channels and their combination in equations) 

and adjustments for environmental parameters and atmospheric characteristics. 

 

DISCUSSION  
Revealing the geographical distribution and structural properties of 

vegetation has become increasingly dependent on satellite pictures due to their 

effectiveness, affordability, and wide coverage (Goodchild, 1994, Altobelli et al., 

2007, Lemenkova, 2024d, Burstein et al., 2023). Nevertheless, there are still a lot 

of difficulties in integrating programming techniques with data from remote 

sensing to enable vegetation research and modeling (Kopecký and Čížková,  

2010; Deepthi Murthy et al., 2023). For various vegetation mapping applications, 

many image types that differ in their spectral, spatial, radiometric, and temporal 

features are appropriate. Furthermore, a variety of image interpretation processes 

and techniques can be used when mapping vegetation using remotely sensed 

images. Therefore, employing remote sensing data to categorize and map plant 

cover continues to be a difficult endeavor (Whig et al., 2024). 

Satellite images have been successfully utilized by numerous researchers 

to continuously monitor vegetation at different scales using dynamic processes. 

For instance, Zhang et al. (1999) evaluated crop condition and variability at 

different growth phases by monitoring and evaluating vegetation crop 

management using remotely sensed imagery. Kawamura et al. (2005) monitored 

seasonal vegetation changes and short-term vegetation phenology with respect to 

forage quantity and quality using data from sensors that measure the Advanced 

Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging 

Spectroradiometer (MODIS). Papeş et al. (2012) quantified the impact of 
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vegetation canopy on seasonal migration and behaviour of birds using remotely 

sensed data.  

Moreover, specific soil-vegetation indices are developed for agricultural 

characteristics. For instance, Herbei et al. (2022) showed that agrochemical 

indices of pH, humus (H), saturation in bases (V), nitrogen index (NI), 

phosphorus (P) and potassium (K) content, can be applied for analysis of soil. 

Finally, vegetation indices, such as NDVI, are used for conservation of 

biodiversity and ecosystem services using analysis of temporal analysis of 

vegetation cover (Rios et al., 2024). 

Both GIS and remote sensing are limited to approximations of the truth 

and the geographical continuum can be discretized in a variety of ways, they 

exhibit inaccuracy and uncertainty (Atkinson and Foody, 2002). The accuracy of 

differentiating vegetation from other land cover types can be diminished due to 

mixed pixel difficulties resulting from the spatial resolution limitations of 

satellite photography (Fairbanks and McGwire, 2004). Spatial uncertainty 

requires attention in order to facilitate spatiotemporal dynamics through data 

analysis (Bouaziz et al., 2020). Furthermore, the application capabilities of 

satellite RS are limited by elements like weather (Khillare and Patil, 2023; Niraj 

et al., 2023), revisit intervals, and fixed orbits (Tůma et al., 2022).  

Compared to other studies that also used vegetation indices (Coles-Ritchie 

et al., 2007; Mutiibwa and Irmak, 2013; Patra et al., 2024; Zeydan et al., 2023), 

the obtained results reveal the following advantages. The approach demonstrated 

in this paper was developed by integrating GIS techniques, RS data, and 

programming algorithms for satellite image processing. It presented an example 

of mapping spatial ecology for computing vegetation indices, and demonstrated 

the usefulness and efficiency of integration of RS data, GIS methodology, and 

programming techniques. Specifically, we demonstrate the variety and difference 

of vegetation indices calculated using the GRASS GIS programming approach 

for the central region of Angola. The computation and visualisation of vegetation 

indices in tropical rainforests of Angola is important to monitor health vegetation 

and detect deforestation.  

A GRASS GIS script-based method was used for extracting information 

on distribution of healthy or sparse vegetation and distinguished them from the 

bare land. The advantage of this method is that it considers band-to-band 

relationships between pixel spectral reflectance and vegetation cover 

identification. This is useful for environmental monitoring using Landsat 

multispectral image processing. Several vegetation indices were computed using 

formulas based on Landsat bands: NDVI, ARVI, GARI, and GVI. GRASS GIS 

operations operated excellent with satellite images. 

 

CONCLUSIONS 

Landscape dynamics can be examined in greater detail from a 

spatiotemporal perspective by using image sequences. This data's content can be 

obtained by analyzing appropriate and adequate features for landscape 
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monitoring using satellite photography. In order to distinguish between land plots 

with drastically different textural and structural characteristics for the purpose of 

identifying deforestation, vegetation shrinkage, or other examples of land cover 

change, it is therefore possible to take into consideration the exact classification 

of land cover types based on vegetation indices. 

This paper illustrated the importance of programming in RS data 

processing using spectral and texture feature analysis of satellite images for 

analysis of vegetation indices. Vegetation indices can be applied as 

characteristics for analysis of landscape heterogeneity. Landscape diversity can 

manifest itself in different ways depending on the data categories and 

quantification methods. It is a key feature of the environment and is particularly 

evident at the landscape scale in regions as complex as in Angola, southern 

Africa. Therefore, vegetation indices can reveal information on spatial 

distribution of landscapes which can be studied to analyse spatial heterogeneity 

of the territory. In turn, landscape diversity at the spatio-temporal scale shows a 

gradient that illustrates the dynamics of ecosystems in space and time.  

Using this information, landscape structure can be analysed through 

mapping constituting elements which have distinct and complex boundaries and 

reflected as different patches in the mosaic of vegetation indices on the maps. 

Automated interpretation of the vegetation distribution through index calculation 

yields better results than traditional classification. Adaptive vegetation type 

determination by computed indices is a novel aspect of this study. Landscape 

monitoring using RS data is an important research topic for climate-environment 

monitoring in Africa, as automatic processing of satellite images using computer 

vision algorithms is a challenging task. Detecting vegetation on satellite data 

using computed indices has shown excellent results on Landsat-8 OLI/TIRS 

images with simple color texture covering tropical Angola.  

The presented maps demonstrated landscape dynamics in Angola. The 

tropical forests of the country are known for their rich biodiversity and 

exceptional value to the planet. Nevertheless, the decrease of natural vegetation 

endangers ecosystems. Cultivated plantations are gradually replacing natural 

tropical forests for commercial reasons. Landscape mapping and vegetation 

analysis of landscape units were conducted for the mountainous region of Angola 

for 2013 and 2023. The consequences of human activities (agricultural practices 

and commercial deforestation) and climate change (increasing temperatures, 

periods of drought, erratic rainfall) have strongly contributed to the loss of 

tropical forests and increased fragmentation of landscapes. The difference in 

areas occupied by woodlands in 2013 and 2023 is visible on the presented maps.  

The dynamics of spatial and temporal landscape diversity allows to 

measure their heterogeneity. Nevertheless, the contribution of this work and its 

scope is not only a technical mapping and processing of satellite images but also 

the assessment of deforestation in Angola for the environmental monitoring of its 

landscapes. Therefore, this study integrates technical methods and satellite data 

for environmental monitoring objectives in West Africa based on the vegetation 
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indices computed for selected region of Angola, southern Africa. In future work, 

we suggest modeling changes of land use types. It might, for instance, investigate 

segmentation techniques that are applicable to multi-scale satellite picture 

analysis. Based on the determined vegetation indices, this method's advancement 

could incorporate automatic segmentation, object classification, and feature 

extraction from images. The emphasis would be on employing computer vision 

techniques to automatically recognize different forms of land cover with 

comparable spectral reflectance. 
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