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Super-resolution reconstruction from truncated
Hankel transform

Fedor Goncharov, Mikhail Isaev, Roman Novikov, Rodion Zaytsev

Abstract We present the algorithm from our recent work Goncharov, Isaev, Novikov,
Zaytsev (ArXiv preprint, 2024) for recovering a compactly supported function on
R+ from its Hankel transform given on a finite interval [0,r]. This work employs
the PSWF-Radon approach that combines the theory of classical one-dimensional
prolate spheroidal wave functions with the Radon transform theory, which was orig-
inally developed for reconstructing signals from their truncated Fourier transforms.
Adapted to the Hankel transform, it achieves what is known as ‘super-resolution’
(the ability to recover details smaller than π/r), even in the presence of moderate
noise in the data. In particular, our numerical examples show that the PSWF-Radon
approach is consistently as good as, and often outperforms, the conventional ap-
proach that complements missing data with zeros. In this review, to illustrate the
efficiency of our algorithm to simultaneously operate with the Hankel transform
of several different orders, we also include a new application involving truncated
multiple angle expansions for functions on R2.
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1.1 Introduction

The Hankel transform of order ν is defined by

Hν f (t) =
∞∫

0

f (s)Jν(ts)
√

tsds, t ∈ R+, (1.1)

where Jν is the Bessel function of the first kind and R+ = [0,+∞), ν ≥ − 1
2 . In

particular, these assumptions imply that Hν is invertible on L2(R+) and H−1
ν = Hν .

We consider the following problem.

Problem 1 Let σ ,r > 0 and ν ≥− 1
2 be fixed. Find f ∈ L2(R+) from h = Hν f given

on [0,r] (possibly with some noise), under a prior assumption that supp f ⊂ [0,σ ].

Since h(t) is real-analytic on (0,∞), theoretically one can solve Problem 1 using
analytic continuation of h(t): after recovery of h(t) for t ∈ R+, we get f = Hν h.
At the same time, it is known that analytic continuation for this geometry is expo-
nentially unstable for any fixed σ and r; see [3] and references therein. Importantly,
analytic continuation is not easy to implement numerically and to regularise; for
some examples of algorithms see [12].

Another approach to Problem 1 is an approximate solution f ≈ fnaive, where

fnaive = Hν h̃, h̃|[0,σ ] = h, h̃|(σ ,∞) = 0. (1.2)

It is well-known that reconstructions based on (1.2) fail to distinguish details smaller
than the diffraction limit (of order π/r or less) because data for high frequencies was
extrapolated with zeros. Despite this, this approach is widespread in industrial ap-
plications due to its noise robustness. In literature, reconstructing details beyond the
diffraction limit is known as super-resolution. Similarly to analytic continuation, it
is commonly accompanied by severe instability (unless substantial a priori informa-
tion is available); see for example [4, 5, 6] and references therein.

In our recent work [3], we implement and adapt the PSWF-Radon approach,
originally introduced in [4, 5] for the problem of band-limited Fourier inversion, to
tackle Problem 1. The proposed algorithm is simple to implement as it relies only on
standard libraries, moreover, it achieves super-resolution even for moderate levels of
noise in data (in absence of noise – reconstructions are, at least theoretically, exact)
and, most importantly, requires no manual tuning of its hyperparameters.

As an illustration we include [3, Figure 1.1] above as Figure 1.1. We refer to [3]
for additional experiments and theoretical analysis of the PSWF-Radon approach
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(a) (b) (c)

Fig. 1.1: An example from [3] for Problem 1 with ν = 0, σ = 1, and r = 10: (a)
preimage, (b) PSWF-Radon approach, (c) reconstruction via (1.2).

adapted to Problem 1. In particular, this work gives explicit Cormack-type recon-
struction formulas, numerical experiments on stability, and examples of a stable
super-resolution for orders ν ∈ N = {0,1,2, . . .} and ν ∈ 1

2 +N. Note also that our
numerical experiments show that the PSWF-Radon approach is always superior to
reconstructions based on (1.2), reaching similar quality for high levels of noise with-
out any blow-ups.

This review focuses on the case of ν ∈ N and highlights the simplicity of im-
plementing algorithms based on the PSWF-Radon approach. Compared to [3], we
include an additional numerical test that requires solving Problem 1 for several or-
ders ν simultaneously: recovering a compactly supported function on R2 from the
truncated multipole angle expansion of its Fourier transform.

We organise this review as follows. In Section 1.2, we introduce all necessary
notations, explain the reduction of Problem 1 to band-limited Fourier inversion, and
recall some basic facts of the theory of prolate spheroidal wave functions (PSWFs).
In Section 1.3, we give the reconstruction algorithm from [3] for solving Problem 1
based on the PSWF-Radon approach. Finally, in Section 1.4, we present and discuss
the aforementioned numerical experiment.

1.2 Preliminaries

For f in Problem 1 the following formula holds (see [3, Section 2.1]):

Fu(p) =
1

(2π)2

∫
R2

u(q)ei(q,p) dq =
iν eiνϕp

2π
√
|p|

Hν f (|p|), |p| ≤ r, (1.3)

where

u(q) :=
f (|q|)√

|q|
eiνϕq ,

q
|q|

= (cosϕq,sinϕq), q ∈ R2. (1.4)
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Using (1.3), (1.4), we reduce Problem 1 for ν ∈ N to the following more general
problem.

Problem 2 Let r,σ > 0 be fixed. Find u ∈ L2(R2) from Fu given on Br (possibly
with some noise), under a prior assumption that suppu ⊂ Bσ .

Problem 2 is at the origin of the the PSWF-Radon approach in [4]. To model data in
Problem 2 one uses, in particular, the truncated Fourier transform

Fc f (x) :=
1∫

−1

eicxy f (y)dy, x ∈ [−1,1], c > 0, (1.5)

where c is the “cut-off frequency”. Operator Fc in (1.5) is well-known in theory of
signal processing; see for example [1], [8], [11], [13], and references therein.

It is easy to verify that Fc : L2[−1,1]→ L2[−1,1] is compact and not self-adjoint.
One notable fact is that Fc has the following singular value decomposition:

Fc f (x) = ∑
n∈N

µn,cψn,c(x)
1∫

−1

ψn,c(y) f (y)dy,

where {ψn,c}n∈N are known as prolate spheroidal wave functions, {µn,c}n∈N are
the corresponding eigenvalues; see [10], [7] and references therein. Collection
{ψ j,c} j∈N constitutes an orthonormal basis in L2[−1,1], hence, the inverse F−1

c (on
range of Fc) is given by the formula:

F−1
c g(y) = ∑

n∈N

1
µn,c

ψn,c

1∫
−1

ψn,c(x)g(x)dx. (1.6)

From compactness of Fc it follows that µn,c → 0 when n → ∞. In practice this leads
to numerical instability of computing F−1

c g when g is corrupted with noise and “falls
off” the range of Fc. To approximate F−1

c (in the weak sense) finite-rank operators
F−1

n,c are used:

F−1
n,c g(y) =

n

∑
j=0

1
µn,c

ψn,c

1∫
−1

ψn,c(x)g(x)dx, (1.7)

where rank n is a free parameter used for regularisation. Note that for each n ∈ N,
operator F−1

n,c is well defined on L2[−1,1].
The principal source of instability in the PSWF-Radon approach of [3] is con-

ditioning of F−1
n,c which is completely characterized by behavior of {µn,c} j∈N. For

example, it is known that (see [10, Section 3.2.3])
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0 < |µn+1,c|< |µn,c| for all j ∈ N,
µn,c decay to zero with exponential rate when j →+∞.

Moreover, for fixed c there is “critical” ncrit,c =
⌊ 2c

π

⌋
so that |µn,c| ≈ (2π/c)1/2 for

n< nc,crit and there are approximately π−2 log(( 1
ε1
−1)/( 1

ε2
−1)) ˙log(c) eigenvalues

with absolute values in interval
√

2π/c · [ε1,ε2], ε1,ε2 ∈ (0,1). Therefore, on span of
{ψn,c : n < ncrit,c} inversion of Fc via F−1

ncrit ,c is very stable and there is an additional
subspace of dimension O(log(c)) where the corresponding stability may still be
acceptable given the noise level in the input.

1.3 Reconstruction for Problem 1 from [3]

Recall from the previous section that Problem 1 is reduced to Problem 2 for u in
(1.4) with truncated data given by (1.3). The PSWF-Radon approach for Problem 2
is based on the following identity [4, Theorem 1.4]:

Fu(rxθ) =
(

σ

2π

)2
FcRθ uσ (x), uσ (q) = u(σq), suppu ⊂ B1,

x ∈ [−1,1], θ ∈ S1, c = rσ ,

(1.8)

where Rθ is the classical Radon transform defined by the formula

Rθ u(s) =
∫

qθ=s

u(q)dq.

Applying F−1
n,c (for appropriate n) and R−1 (Radon inverse) to both sides of (1.8) one

recovers un ≈ u. Finally, using (1.4) we obtain

f ≈ fn(s) =
√

s
2π

2π∫
0

un(scosϕ,ssinϕ)e−iνϕ dϕ, s ∈ [0,σ ]. (1.9)

Thus, for ν ∈ N the reconstruction scheme for Problem 1 is as follows:

h
(1.3)−−→ Fu

(1.8), (1.3)−−−−−−→ FcRθ uσ

(1.6), (1.7) and R−1
−−−−−−−−−−→ uσ

(1.9)−−→ f . (1.10)

For R−1 we use the classical FBP algorithm (see for example [9]), instead of F−1
c we

use F−1
n,c from (1.7). Regularisation parameter n is chosen automatically according

to residual minimisation principle:

n = argminm∈{0,...Nmax}∥Hν fm −h∥L2[0,r]. (1.11)

where fm is a reconstruction by PSWF-Radon approach in (1.9).
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Note that reconstructing f by (1.10) has the following attractive features:

+ only one-dimensional prolate spheroidal wave functions are required (many effi-
cient libraries implement PSWFs in dimension one; see for example, [1], [2]);

+ all numerical operations are standard and implemented in corresponding libraries
(e.g., Radon inversion in 2D, PSWFs in 1D) or require very little work in contrast
to classical algorithms for analytic continuation;

+ for n → ∞ reconstruction is exact, achieving super-resolution when n > ncrit,c, in
contrast with fnaive from (1.2); see discussion in Section 1.2.

However, there is one potential bottleneck of our approach to improved:

- for dense grids single call of R−1 may require significant amount of compu-
tational resources: Problem 1 is one dimensional, whereas Problem 2, which
we solve in (1.10), is two-dimensional (and three-dimensional for ν ∈ 1

2 +N;
see [3]); note also that memory and time complexity grow exponentially with
dimension.

1.4 Numerical experiment with multipole angle expansions

Given u= u(q)∈ L2(R2), suppu⊂Bσ , its multipole angle expansion and the Fourier
transform Fu are given by (see [3, Section 2.1])

u(q) = ∑
k∈Z

uk(|q|)eikϕq ,
q
|q|

= (cosϕq,sinϕq), ϕq ∈ [0,2π),

Fu(p) =
1

2π
√
|p| ∑

k∈Z
ikHk fk(|p|)eikϕp , p ∈ R2\{0},

(1.12)

where
fk(s) := uk(s) ·

√
s, s ∈ R+. (1.13)

After truncation we consider that

Hν fν(t), t ∈ [0,r], ν ∈ {0, . . . ,K} are known.

We solve Problem 1 for each ν ∈ {0, . . . ,K} by recovering fk for k ∈ {−K, . . . ,K}
(note that H−ν f = (−1)ν Hν f ) and consequently uk using (1.13). Then, the final
recovery is obtained in form of truncated multipole angle expansion in (1.12) using
previously recovered uk.

Results of our numerical experiment are presented in Figures 1.2, 1.3. We set
σ = 1, r = 15. Three disks in the phantom u have diameters {0.26,0.26,0.28} with
u= 1 inside the disk and u= 0 otherwise. Distances between boundaries of disks are
{0.08,0.08,0.06}; see Figure 1.2 (a). In Figure 1.2 (b) we also present the truncated
multipole angle expansion of order K = 20 which approximates the phantom. Using
only Hk fk, |k| ≤ K, an algorithm can recover, at best, this approximation but not the
original phantom. Note that diameters of disks are slightly larger than the diffraction
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(a) (b) (c)

Fig. 1.2: (a) three-disks phantom; (b) its truncated angle multipole approximation
of order K = 20; (c) reconstruction via (1.2)

limit π/r ≈ 0.21, whereas distances between them are essentially smaller. There-
fore, without super-resolution it is impossible to resolve three disks and, indeed, the
conventional reconstruction by (1.2) fails to do so; see Figure 1.2 (c).

The PSWF-Radon algorithm achieves super-resolution for the example from Fig-
ure 1.2 with additive Gaussian white noise up to 30%; see Figure 1.3. We also high-
light that it is fully automatized: given Hν f = h from Problem 1, the only free pa-
rameter n in F−1

n,c is chosen by the residual minimisation principle in (1.11) with
Nmax = 30. For equispaced grids of 256 points on [0,r], [0,σ ], a single reconstruc-
tion of uk on a laptop with CPU AMD 7 7840, using 16 threads, took approximately
10 seconds, thus taking ∼ 200 seconds to recover u (memory usage was negligible).
For a detailed analysis of numerical complexity of the PSWF-Radon algorithm we
refer to [?, Section 3].

(a) (b) (c) (d)

Fig. 1.3: PSWF-Radon reconstructions with n chosen according to (1.11) for the
following noise levels: (a) 0%, (b) 10%, (c) 20%, (d) 30%.

Interestingly, using residual minimisation rule (1.11), we never observed over-
fitting to noise in reconstructions (which is generally common for ill-posed inverse
problems). At worst, for high levels of noise the conventional approach via (1.2)
and the PSWF-Radon approach become comparable which is definitely a positive
feature of the latter. Additional numerical experiments (not shown here) also demon-
strated that achieved super-resolution is sensitive to size of detail we want to resolve.
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For example, if distances between disks are decreased by 20%, then super-resolution
is achievable only for noise levels below 5%; see [3, Section 3] for more detail.

Overall, our experiment demonstrates that PSWF-Radon approach has enough
stability for ν ∈ {0,1, . . . ,20} to be superior or, at least, comparable to the conven-
tional approach based on (1.2). The code is based on implementation from [3, Sec-
tion 3], which is open-access available at https://github.com/fedor-goncharov/pswf-
radon.
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