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Change Point Detection in Radar Reflectivity
Measurements Contaminated by Speckle Noise

Sarah El Hajj Chehade , Hamza Issa , Georges Stienne , and Serge Reboul

Abstract—This article studies the use of airborne global navi-
gation satellite system reflectometry techniques for remote sensing
applications at regional scale. The objective is to classify the reflec-
tivity of airborne global navigation satellite system (GNSS) signals
in order to differentiate various reflective surfaces along the satel-
lite traces. For this purpose, we propose a segmentation algorithm
based on an online change point detector and an offline change
point localization estimate. Given the presence of speckle noise
in GNSS signals, a homomorphic log-transformation is applied to
mitigate this noise. In this context, the cumulative sum change point
detector and the maximum likelihood change point localization are
designed for a log-gamma distribution. We show that the proposed
radar segmentation system is able to automatically detect different
landforms along real flight experiments that took place in the
northern region of France. Automatic classification using K-means
clustering is applied to the segmented signals allowing to distinguish
different segments of the signal.

Index Terms—Airborne reflectivity, change point detection,
change point localization, global navigation satellite system
reflectometry (GNSS-R), homomorphic transformation, speckle
noise.

I. INTRODUCTION

THE advancement of global navigation satellite system
(GNSS) has expanded the possibilities of remote sens-

ing for Earth surface and atmosphere monitoring. By using
refracted, reflected, and dispersed GNSS signals, data can be
obtained from remote and inaccessible areas, offering global
coverage and benefiting Earth observation purposes. The distinc-
tive features of GNSS signals, including the use of L-band fre-
quencies, make them particularly well-suited for remote sensing
applications [1]. global navigation satellite system reflectometry
(GNSS-R) is a bistatic radar system that uses the GNSS signals
as “signals of opportunity” to characterize Earth surface.

Over the past few decades, GNSS-R has emerged as a re-
liable remote sensing technology [2] for its ability to mea-
sure essential surface parameters with high temporal resolution
and wide coverage [3], [4]. GNSS-R receivers are capable of
receiving both the direct signals from satellites and signals

Manuscript received 23 December 2023; revised 1 March 2024 and 3 May
2024; accepted 21 May 2024. Date of publication 5 June 2024; date of current
version 17 June 2024. This work was supported by the CPER IDEAL program
(approche Intégrée des Défis maritimes et Littoraux) for their financial support.
(Corresponding author: Sarah El Hajj Chehade.)

The authors are with the Laboratoire d’Informatique, Signal et Image
de la Côte d’Opale (LISIC), Université du Littoral Côte d’Opale (ULCO),
62228 Calais, France (e-mail: sarah.chehade@univ-littoral.fr; hamza.issa.10@
gmail.com; georges.stienne@univ-littoral.fr; serge.reboul@univ-littoral.fr).

Digital Object Identifier 10.1109/JSTARS.2024.3410039

that are reflected from Earth surface. GNSS-R techniques can
be applied in various applications depending on the type of
surface being observed. It can estimate wind speed [5], [6],
ocean salinity [7], and sea level altimetry [8], [9], and pro-
vide measurements of the cryosphere on land for sea ice de-
tection [10], [11] and snow depth estimation [12], [13]. For
land observation, GNSS-R applications involves mainly the
measurement of soil moisture content [14], [15], assessment
of plant biomass [16], and, more recently, the detection of
in-land water bodies [17], [18]. In the near future, ESA plans to
launch the HydroGNSS, which is a space-borne scout mission
aimed to collect data on the hydrological climate variables of
soil moisture content and to detect in-land water body surfaces
using delay Doppler maps as observables. In existing literature,
several works focus on the classification of radar signal traces
using a per-pixel approach [19], [20], [21] for soil moisture
estimation. These works typically employ a moving average
window to smooth the signal. However, in these approaches,
several parameters need to be tuned, and the reproducibility of
the processing under various signal acquisition conditions is not
guaranteed.

Remote sensing using GNSS-R can be adapted on a local scale
using ground-based experiments and on a regional scale with
airborne campaigns, which is the case in our application. Studies
in [22] and [23] investigated the possibility of using airborne
data collected by UAV-based GNSS-R sensors for water body
surface measurement in support of flood monitoring operations.
The use of UAVs expanded the capabilities of monitoring and
characterizing a large water body surface with high precision.
Our team has proposed in [17], a radar technique that uses
airborne GNSS-R observations to detect in-land water body
surfaces. The aim of the proposed approach is to detect, monitor,
and characterize in-land water bodies in regions vulnerable to
floods.

In GNSS-R remote sensing applications, the power of the
reflected signal is localized at the specular point with respect
to a given time. In this context, the observations are time series
where changes indicate transitions between different reflecting
surfaces. Accurate detection and localization of the points where
the change has occurred, i.e., the border between two successive
surfaces, are essential in such applications. In this regard, we
can define, between two successive borders, a homogeneous
area that can be classified and associated with a type of soil. For
this purpose, change point detection algorithms are applied to
airborne GNSS-R data. A change point within a dataset denotes
a specific position through which a change or transition takes
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place in the statistical characteristics of the data. However,
GNSS-R measurements encounters not only additive noise as
was assumed in [17] but mainly multiplicative noise, i.e., speckle
noise. Speckle noise, often found in remote sensing data, intro-
duces a unique set of challenges due to its complex, granular
nature [24].

We can find in the published works different statistical models
for the speckle noise that are mainly used for the modeling of
radar signals, SAR radar signals, and active and passive sonar.
Most of these distributions are reviewed in [25]. Many different
noise distributions have been studied in the literature, such as
the log normal, Weibull, Fisher, and generalized gamma [26].
These distributions are empirical because they are not linked to
the electromagnetic physical model of the scattering process.
Other distributions such as Rayleigh, gamma, G0, Rice, and the
generalized Gaussian distribution were proposed according to
physical models of the scattering radar process [25]. Each one
of these distributions is adapted to a specific type of reflecting
areas.

In our radar system, the reflectivity of the signal is defined as
the ratio of the reflected signal intensity over the direct signal
one. We assume that the area of reflection is homogeneous
because the radar cross section is small. The altitude of the
airborne GNSS-R receiver used in our flight experimentation is
low (300 m) and the observations are obtained from satellites
with high elevation angles. We show that the amplitude of
the reflectivity is following a Rayleigh speckle model. As we
consider the sum of several observations of intensity, the noise
is distributed according to a gamma distribution.

Numerous published works extensively discuss reviews on
sequential change point detection [27], [28], [29], where the
noise is often characterized as Gaussian and additive. When the
noise is multiplicative the problem is addressed with parametric
approaches according to the noise distribution [30], [31]. Two
different approaches of sequential change-point detection for a
sequence of independent gamma distributed random variables,
namely the maximum likelihood approach and the cumulative
sum (CUSUM) control chart method, are mainly studied. In
[32], a test was derived from the ratio of the likelihood function
to detect change in the scale parameter of the gamma distri-
bution. Fotopoulos et al. [33] proposed a methodology based
on maximum likelihood estimate (MLE) to evaluate time series
data with an unknown change point. A sharp approximation
of the maximum of the log-likelihood was proposed in [34]
to quickly detect change points in the gamma distributed time
series. The authors in [35] and [36] derived the run-length
distribution of CUSUM charts for gamma distributions and Tan
et al. [37] studied the constancy and convergence rate of the
CUSUM estimator for a negative associated sequence of random
variables.

In both approaches, the performance of the change point
detector depends on the gamma distribution parameters. We are
indeed dealing with multiplicative noise, where the noise power
is a function of the parameter values. In this context, the accuracy
of the estimated likelihood, as well as the CUSUM probability
of false alarm rate, are functions of the gamma distribution

Fig. 1. GNSS-R system of observation.

shape and scale parameters. In practice, the reproducibility of
the detection process is not guaranteed for these change point
detection approaches because these parameters change over
time.

In this article, we introduce a sequential change point detector
designed within the statistical model of GNSS-R reflectivity.
Our approach takes into account the presence of speckle noise,
assumed to follow a gamma distribution. To fix the noise power,
we employ a homomorphic log-transformation of the reflectiv-
ity, resulting in a log-gamma distribution with constant variance.
The focus of change point detection is to estimate the time
when a change occurs once detected, while sequential detection
emphasizes identifying the change as soon as it takes place.
In our approach, we use the CUSUM method along with a
weighted moving average filter for sequential change detection
in the log-transformed reflectivity. The threshold of the CUSUM
algorithm is defined based on the average run length (ARL)
ARL(0), a standard measure of the false alarm rate of a change
point detector. When detecting a change, we use the MLE to
determine the occurrence time, using the log-gamma distribution
for processing. We classify the segmented radar signal with a
classical K-mean approach. The classification allows to show
that the different segments of the signal can be distinguished.
The aim of this work is not to identify the nature of the reflecting
surface. In an experimentation on real signals we show the
reproducibility of the radar system’s capability to differentiate
reflecting surfaces using real flight data recorded by our team in
northern France in 2020 and 2021.

The rest of this article is organized as follows. Section II intro-
duces our proposed statistical model, based on the homomorphic
transformation of the signal and the assumption of a gamma
distribution. In Section III, we present a proposed estimation for
the change point. The application of the proposed techniques
to real flight experimentation is detailed in Section IV. Finally,
Section VI concludes this article and discusses potential future
research directions in this field.

II. STATISTICAL MODEL OF THE GNSS-R REFLECTIVITY

In a GNSS-R radar observation system (see Fig. 1), the
reflectivity is processed as the ratio between the intensity of
the reflected signal and the intensity of the direct signal from
the GNSS satellite, as depicted. When the surface is flat, the
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Fig. 2. Flowchart of the base-band receiver processing.

GNSS signal reflection primarily originates from the specu-
lar point, resulting in maximum reflected signal intensity. In
contrast, for rough surfaces, signals reflected across the glis-
tening zone reach the receiving antenna. Typically, the size of
the glistening zone increases with surface roughness. In such
cases, the scattered power comprises two components: a specular
coherent component and an incoherent component due to surface
roughness.

When a GNSS signal interacts with a rough surface, a non-
coherent component of the reflected signal can be added, with a
magnitude smaller than that of the coherent component and the
power is scattered randomly in all directions. This implies that
the level of coherency of the reflected signal is high for relatively
smooth surfaces and low for very rough surfaces. Furthermore,
within the glistening zones, numerous points provide reflected
GNSS signals with Doppler and range parameters similar to the
signal at the specular point. These points, where equirange and
equi-Doppler lines intersect, generate multiple reflections with
different phase delays that need to be considered in the GNSS
signal processing model.

In this article, the receiver utilizes two tracking loops for
the GNSS signal, each processing both the direct and reflected
signals from every satellite. Fig. 2 illustrates the flow chart of
the base-band signal processing following the downconversion
and sampling of the direct signal (sd) and reflected signal (sr)
from the GNSS satellites. Tracking of the direct signal em-
ploys traditional phase-locked loop (PLL) and delay-locked loop
(DLL) techniques. Due to the dynamic nature of the GNSS-R
receiver, frequency-locked loop (FLL) is also implemented to
keep track of the changes in the Doppler frequency along the
trajectory.

For the reflected signal, we employ an assisted loop that
uses information from the direct signal. The assisted DLL
loop uses the pseudorange of the direct signal and a geometric
model to look at the delay of the specular reflected signal.
The GNSS-R hardware receiver setup that we implement al-
lows the assisted phase open loop of the reflected signal to
use the Doppler frequency estimate obtained from the direct
signal [17].

A. Direct Signal Tracking: PLL

After the demultiplexing stage, the direct signal processed by
the PLL for each GNSS satellite can be represented as follows:

sd(t) = a sin (2πfdt+ φ) + η (1)

where a denotes the amplitude of the signal, fd represents its
Doppler, andη represents an additive noise component following
a centred normal distribution. To process the correlation com-
ponents of the signal, the following local replicas are generated:

sl(t) = sin
(
2πf̂1t+ φ̂

)
(2)

cl(t) = cos
(
2πf̂1t+ φ̂

)
(3)

where f̂1 and φ̂, respectively, represent the Doppler frequency
and phase delay estimated by the FLL and the PLL. In its im-
plementation, the DLL processes the following two correlation
components:

Id(τ) =

∫ Tc

0

sd(t)sl(t+ τ)dt (4)

Qd(τ) =

∫ Tc

0

sd(t)cl(t+ τ)dt (5)

where Id(0) and Qd(0) represent the two quadrature compo-
nents of correlation. Using these two correlation components,
we calculate the signal intensity as

Td = I2d(0) +Q2
d(0) (6)

Id(0) and Qd(0) are assumed to be random variables distributed
according to the following Gaussian distributions:

Id(0) ∼ N(a cos(φe), σ
2) (7)

Qd(0) ∼ N(a sin(φe), σ
2) (8)

where φe = φ− φ̂ which is close to zero. The standard devia-
tion, σ, of the Gaussian distribution is a function of the noise
power in the direct signal. We can define the mean value of the
direct signal intensity as

Td

σ2

which follows a noncentral chi-squared distribution of parameter
a2. Then, we have

E(Td) = a2 + 2σ2. (9)

In our implementation, the direct signal is assumed to be
stationary for large period of time, where its mean value is
estimated.

B. Reflected Signal Tracking: Assisted Open Loop Phase
Tracking

For the reflected signal, the demultiplexing stage is processed
using the code delay of the direct signal, assuming the receiver’s
location is known. This operation is facilitated by an assisted
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DLL, as described in [17]. After demultiplexing, the expression
for the reflected signal is given by

sr(t) =

L∑
i=1

ai sin (2πfit+ φi) + η (10)

where ai, fi, and φi represent the parameters of the multiple
reflections of the GNSS signal on the ground reaching the
receiver antenna. L is the number of scatters on the reflecting
surface. The assisted open loop tracking of the received signal
processes the two quadrature components using the following
replicas:

sl(t) = sin
(
2πf̂1t

)
(11)

cl(t) = cos
(
2πf̂1t

)
(12)

where f̂1 is the Doppler frequency estimate by the FLL of
the direct signal tracking. The two quadrature components of
correlation are defined as follows:

Ir(τ) =

∫ Tc

0

sr(t)sl(t+ τ)dt (13)

Qr(τ) =

∫ Tc

0

sr(t)cl(t+ τ)dt. (14)

To process the intensity of the reflected signal, we use the
component of correlation obtained for τ = 0. In this context, the
signal intensity, as a function of the two quadrature components,
can be expressed as follows:

T = I2r (0) +Q2
r(0). (15)

The GNSS signal is reflected off a rough surface, and in this
case the phases φi are assumed to be random following a uni-
form distribution between 0 and 2π according to the Goodman
model [24]. Assuming that the central limit theorem is satisfied
(i.e.,L is large), the components of correlation are considered as
random variables and are assumed to follow a centered normal
distribution

Ir(0) ∼ N
(
0, σ2

r

)
(16)

Qr(0) ∼ N
(
0, σ2

r

)
(17)

where the standard deviation σr is a function of the surface
roughness. In our implementation, we process the mean intensity
of the received signal within a working window of size N

Tr =
1

N

N∑
i=1

T =
1

N

N∑
i=1

(
I2r (0) +Q2

r(0)
)
. (18)

In this implementation, as we increase N , we enhance the
signal-to-noise ratio (SNR) of the intensity. In practice for the
GPS L1 signal, the components of correlation are processed with
Tc = 1ms data and a typical value of N = 20. From (15), (16),
and (17), the intensity follows a gamma distribution:

Tr ∼ Gamma
(
N, 2σ2

r/N
)

(19)

where 2σ2
r is the mean value of the intensity and 4σ4

r/N repre-
sents its variance.

C. Reflectivity of the GNSS-R Signal

In a GNSS-R radar system, both the direct signal from the
satellite and the reflected signal obtained after the reflection
of the direct signal on ground are observed. The power of the
reflected signal is a function of the power of the direct signal.
To normalize the observation of the reflected signal, we use the
expression of reflectivity that is given by

R =
Tr

E(Td)
=

1
N

∑N
i=1

(
I2r (0) +Q2

r(0)
)

(a2 + 2σ2)
(20)

where, E(Td), the mean intensity of the direct signal is con-
sidered constant during the duration of the experimentation. In
practice, the intensity of the direct signal changes slowly over
time and its mean value can be easily estimated.

In order to understand the meaning of R, the ideal coherent
reflection is defined where the surface is flat and perfectly
conductive, and the reflection is purely specular. The intensity
of the reflected signal is maximum and its mean value E(Tr)
tends toward E(Td). Then, we have

E(R) =
E(Tr)

E(Td)
≈ 1. (21)

For the incoherent reflections, where we have multiple reflec-
tions of the direct signal due to the roughness of the surface, the
mean value of the reflectivity is defined as

E(R) =
E(Tr)

E(Td)
=

2σ2
r

(a2 + 2σ2)
. (22)

In this case, the intensity of the reflected signal is dispersed
and E(Tr) < E(Td). Finally, we have

0 < E(R) < 1. (23)

D. Homomorphic Transformation of the Signal

In this article, the reflectivityR is assumed to follow a gamma
distribution, based on (19) and (20), and in accordance with
the Goodman model [24], [38]. In this case, the noise on the
observations is a multiplicative speckle noise. Let

R(N, λ) ∼ Gamma (N, λ/N) (24)

with

E(R(N, λ)) = λ =
2σ2

r

(a2 + 2σ2)
. (25)

In the case of a multiplicative model, the noise power is a
function of the signal amplitude that varies in our application
with the surface of reflection. The homomorphic log-operation
transforms the multiplicative noise into additive noise, with
constant noise power. The offset log-transform is defined by

W (N, λ) = log (R(N, λ)) (26)

with

W (N, λ) ∼ Log − Gamma (N, λ/N) (27)
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Fig. 3. Signal model in a working window.

where V (W (N, λ)), the variance of W (N, λ), is constant. We
have the following expressions:

E(W (N, λ)) = Ψ(N) + log(λ/N) (28)

V (W (N, λ)) = Ψ(1)(N) (29)

where Ψ(. . . ) and Ψ(1)(. . . ) are, respectively, the digamma
function and the trigamma function [39], [40].

III. CHANGE POINT DETECTION

In our radar application, a large amount of data is available,
and we need to process these data sequentially as a chronological
series. This series is considered to be in control when the
statistical parameters of the process are stationary. In contrast,
it is considered out of control in the nonstationary case when
there is a change in the process. In this context, the hypothesis
test for the change point detection can be defined as follows:

H0 : Rt ∼ Log − Gamma(N, λ0/N) ∀t ∈ {1, . . . , n} (30)

Hτ : Rt ∼ Log − Gamma(N, λ0/N) ∀t ∈ {1, . . . , τ}
: Rt ∼ Log − Gamma(N, λ1/N) ∀t ∈ {τ + 1, . . . , n}

(31)

with λ0 �= λ1 and τ ∈ {1, . . . , n− 1}, the instant of the change.
Fig. 3 represents the signal and its parameters under Hτ in the

working window N. We can observe the increasing evolution of
the signal model between the mean values λ0 and λ1 associated
to the satellite footprint displacement from one area to another.

A. Proposed Change Point Detector

The main objective of the proposed detector is to detect a
change in the observed process. Fig. 4 illustrate the flow chart of
the proposed online/offline change point detector. As described
in Fig. 4, the localization of the change is processed in a second
step within a working window centered on τ ′, the detected instant
of change.

Fig. 4. Change detection system.

The filter can be defined as a recursive mean estimate derived
from the log-transformation of the reflectivity observations

w̄t = w̄t−1 +
1

K
(log(rt)− w̄t−1) (32)

where K is the size of the window used to estimate the mean
w̄t. In practice, K is a parameter that increases with time
and removes information provided by the observation rt. This
estimate can be expressed as a weighted sum

w̄t = α1,t w̄t−1 + α2,t log(rt)

with α1,t + α2,t = 1

and α1,t = 1− 1

K
, α2,t =

1

K
. (33)

This can be rewritten as

w̄t = w̄t−1 + α2,t it (34)

with it = log(rt)− w̄t−1 (35)

where it is the innovation of the filter. In the framework of
optimal adaptive filtering [41], the optimal expression of α2,t

can be derived in the following recursive form:

Pt =
(Pt−1 +Q)Ψ(1)(N)

Pt−1 +Q+Ψ(1)(N)
(36)

α2,t =
Pt

Ψ(1)(N)
(37)

where Q is a parameter defined by the user, and Pt the variance
of the estimate w̄t. In this recursive form, α2,t decreases with
time toward a constant value, and the smoothing of the mean
estimate increases until a constant smoothing level.

We can define the normalized innovation as

ĩt =
it

Pt−1 +Ψ(1)(N)
(38)

and the CUSUM detector in its simple form

g+t =
(
g+t− + ĩt

)+
(39)

g−t =
(
g−t− − ĩt

)+
(40)

τ ′ = min
{
k : (g+t ≥ Cs)U(g−t ≥ Cs)

}
(41)

where (X)+ = max(X, 0). In the case of an innovation process,
g+k and g−k , the integration of the innovation process, evolves as a
random walk before the change. After the change instant τ + t,
g+k , and g−k are monotonic increasing function.

The threshold Cs, fixed by the user, defines the probability of
false alarm underH0. However, the thresholdCs also determines
the delay between the instant where the change occurred and the
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instant an alarm is raised under Hτ . In our approach, this delay
is corrected by the proposed change point estimate described in
the next section.

B. Proposed Change Point Estimate

The samples wt = log(rt), where rt are the observations of
reflectivity, follow a log-gamma distribution f(Wt;N, λ/N)

f(Wt;N, λ/N) =
(eWt)Ne

− NeWt
λ

( λ
N )NΓ(N)

(42)

for W1:n = (W1, . . . ,Wn), n i.i.d. samples distributed accord-
ing to the log-gamma(N,λ/N) distribution. The n samples define
the working window described in Fig. 3. We express the associ-
ated log-likelihood function l(W1:n;N, λ/N) as follows:

l(W1:n;N, λ/N) = N

n∑
i=1

Wi − N

λ

n∑
i=1

eWi

− nN log

(
λ

N

)
− n log(Γ(N)). (43)

An estimate of λ can be defined by

λ̂ = Ne(W−Ψ(N)) (44)

where

W =
1

n

n∑
i=1

Wi. (45)

We can then define the generalized log-likelihood function
as: l(W1:n;N, λ̂/N) and estimate the localization of the change
point τ by searching the following maximum log-likelihood:

τ̂ = argmax︸ ︷︷ ︸
0<τ<n

[
l
(
W1:τ ;N, λ̂0/N

)
+ l

(
Wτ+1:n;N, λ̂1/N

)]

(46)

where λ̂0 and λ̂1 are estimated with the samples W1:τ and
Wτ+1:n, respectively.

C. Parameter Definitions

To ensure the reproducibility of the signals segmentation, the
parameters of both the change point detector and change point
estimate must be independent of the parameters and of the direct
signal intensity (a and σ) and the reflected signal intensity (σr).

For the change point detector, we suggest fixing the threshold
Cs as a function of the probability of false alarm rate. In change
point detection, the false alarm rate is characterized by the
ARL under H0, denoted as ARL(0). ARL(0) is the expected
number of observations between false alarms in a sequence
of observations that represents noise without a change point.
The value of ARL(0) is determined by simulation with a noise
power

√
Ψ(1)(N) under H0. The noise power defined by N is

independent of the direct and reflected signal intensity.
The accuracy of the change point estimate relies only on the

precision of estimating W . This precision is determined by the
noise power

√
Ψ(1)(N) and remains independent of the direct

and reflected signal intensity.

Fig. 5. Gyrocopter used during the flight experimentation with its sensors
embedded on it.

Fig. 6. Trajectory of both flights in the north of France.

IV. EXPERIMENTATION: APPLICATION TO AIRBORNE GNSS-R
DATA

A. Flight Information

Airborne GNSS-R data was collected from two flights that
took place in the northern region of France. Flight 1 took place
on October 19, 2020, starting at 14:45 Coordinated Universal
Time (UTC). Flight 2 took place on June 16, 2021, starting
at 13:56 UTC. Fig. 5 shows the gyrocopter used, featuring
various sensors embedded on it. The gyrocopter is equipped
with a right-hand circular polarized antenna, positioned at the
nose of the gyrocopter and oriented with a tilt of 40◦ from the
zenith for the reception of the direct signals. A left-hand circular
polarized antenna, embedded on the bottom and pointed toward
the nadir, is responsible for receiving the reflected signals. The
drone board sensor records the receiver attitude, altitude, and
spatial coordinates which are essential for the localization of the
GNSS measurements. In addition to the onboard sensors, the
gyrocopter was equipped with the necessary components that
constitute the GNSS-R hardware receiver for data collection.

Fig. 6 shows the trajectory of both flights. The gyrocopter
took off from Calais–Dunkerque Airport. The flights duration
lasted for approximately 45 min, covering an area of ≈230 km2.
The gyrocopter maintained an average speed of 95 km per hour
during the course of both journeys, and it cruised at an average
altitude of 315 m. The selection of this particular study area was
motivated by its wide range of landforms.
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Fig. 7. Traces of the satellites with high elevation angles along the trajectory
of Flight 1—October 19, 2020.

Fig. 8. Variance estimate of the homomorphic log-transform W.

In order to maximize the spatial resolution of our application,
we analyze reflections from satellites with high elevation angles.
The footprints of such satellites with cutoff elevation angle of
50◦, are depicted in Fig. 7 for Flight 1. We scan a large zone of
sandy beach, sea, and land including over 50 different in-land
water body surfaces. The footprints traces are represented by 20
ms localization of the specular points of reflection.

B. Discussion of the Log Transform Noise Model

One of the main contributions of this article is to define an
detection threshold that can be applied seamlessly to different
sets of data. In our approach we assume that the log-transform of
the reflectivity is distributed according to a log-gamma distribu-
tion. We can then define a detection threshold that is completely
independent of the SNR because the standard deviation of the
additive noise on the signal is fixed and known. In order to verify
this assumption, we estimate the noise power on a set of real
airborne GNSS-R reflectivity data, as depicted in Fig. 8.

Fig. 8 shows the variance of the reflectivity log-transform
estimate on ten samples processed for the trace of satellite
PRN 5. We can observe that the estimated variance is noisy.

Fig. 9. Detection, localization, and segmentation process of an airborne GNSS
signal reflectivity.

In this data, there are two sets of reflecting areas. The first is an
area with specular reflections associated to reflections from sand
and sea, and the second area with diffuse reflections associated
to plain land. We show as a red line the theoretical variance
of the log-transform of the reflectivity. This figure shows that
this theoretical value is in accordance with the mean variance in
the second area. Concerning the first area, the theoretical value
underestimate the true value of the mean variance. In this case,
the statistical model of the specular reflections is different from
a gamma distribution.

The threshold is fixed for the land region where diffuse
reflections exist. However, in areas characterized by coherent re-
flections from water surfaces, false alarm detection may increase
due to the increase in the standard deviation of that specific area.

C. Change Point Estimation

In Fig. 9, we present the airborne reflectivity measurements
acquired during our flight experimentation for two water bodies.
The GNSS signal reflectivity variations, as shown in the follow-
ing graphs, are detected and processed by a series of change
detection algorithms.

Initially, the CUSUM algorithm detects changes in the re-
flectivity of the GNSS signal. In the CUSUM implementation,
ARL(0) is fixed to 3000 for N= 20 and the smoothing parameter
Q = 0.001. In order to decrease the number of false alarms in the
area of specular reflection the changes with a dynamic inferior
to 0.01 are removed. Following the CUSUM detection, our pro-
posed log-gamma maximum likelihood localization approach
is applied to localize the changes as shown in Fig. 9. Finally,
the signal is segmented into different sections associated to the
change in the mean reflectivity levels based on the localized
change point positions in Fig. 9.

D. Reflectivity Signal Segmentation

We apply our radar signal segmentation technique for in-land
water body detection. Figs. 10 and 11 represent the radar signal
segmentation for airborne GNSS measurements obtained along
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Fig. 10. Segmentation of the GNSS measurements—Flight 1.

Fig. 11. Segmentation of the GNSS measurements—Flight 2.

the trajectories of both flights. The Google Earth images of these
figures illustrate the traces of the satellite footprints represented
by 20 ms localization of the specular points of reflection. It is
color-coded—yellow denoting land and—blue indicating water
bodies. These colors are associated to different mean reflectivity
measurements. We also present the GNSS reflectivity measure-
ments associated to each satellite signal along both flights and
the corresponding signal segmentation with our proposed radar
technique.

We analyze the GNSS measurements obtained from three
different satellites (PRN 5, 7, and 30) of Flight 1 and two
satellites (PRN 8 and 21) of Flight 2, each characterized by
a different elevation angle. The surface reflectivity exhibits a
direct correlation with the water content in land. The reflectivity
measurements increase when the signals are reflected from a
water body. In addition, the variance of the noise increases with
the mean reflectivity.

We observe that the radar technique detects in-land water bod-
ies with various sizes and shapes under different environments.
We also show our system’s capacity to utilize several datasets

Fig. 12. Reflectivity classification for PRN 5, 7, and 30—Flight 1.

collected from different flights to automatically differentiate
surfaces.

E. Automatic Classification of GNSS Signals Using K-Means
Clustering

The statistical properties, i.e., the mean and standard devia-
tion, of each segment are used to obtain a general classification
of the signal using the K-means clustering technique.

The K-means approach is an effective unsupervised machine
learning method that clusters data points based on the similarity
of their features. In our study, it is important to note that each data
point corresponds to a distinct segment of the reflectivity signal.
The K-means method involves initialization, assignment, and
update. K cluster centers are first initialized randomly. Segments
are then assigned to the nearest cluster center based on their
feature similarity, mean and standard deviation in our case. Then,
the cluster centers are updated by calculating the mean values
of the points inside each cluster. The iterative process continues
until convergence is attained, usually when the distribution of
segments to clusters achieves a state of stability.

In Fig. 12, our k-means segment clusters are depicted, illus-
trating three main classes corresponding to sandy beach, sea,
and land when overlaid on visible (Google Earth) and IGN
classification maps. We observe a significant level of stability in
the segmentation results of Flight 1’s three satellite signals under
consideration. This demonstration showcases our segmentation
approach ability to identify to three distinct classes, with an
automatic categorization of the signal’s characteristics with a
general perspective on the nature of the GNSS-R data.

The same classification algorithm was applied to the reflectiv-
ity measurements obtained from PRNs 8 and 21 of Flight 2, and
the corresponding results are presented in Fig. 13. The results
are in alignment with those obtained from previous GNSS-R
data, hence highlighting the reliability and consistency of the
automatic classification approach across different datasets.

It is worth noting that there are differences in sea and sandy
beach reflectivity levels between the two flights, attributed to a
variety of factors, such as the difference in precipitation and wind
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Fig. 13. Reflectivity classification for PRN 8 and 21—Flight 2.

speed between both flight dates. During the second flight, which
was done on a day with clear weather conditions and relatively
low wind speed, higher reflectivity measurements were obtained
from the sea due to the reflections being mostly coherent, in
contrast to Flight 1 where the presence of wind caused a decrease
in the reflectivity levels due to a higher number of incoherent
reflections.

V. DISCUSSION

In our implementation, we use satellites with high elevation
angles ranging from 59◦ to 78◦ to maximize signal power, en-
suring a consistent impact within a range of 1dBiC. In addition,
using satellites with high elevation angles maximize the spatial
resolution of the application. Higher elevation angles results in
a decreased satellite footprint size, which is crucial in airborne
applications that use high-rate observations for the detection,
differentiation, and especially the localization of the different
areas of reflection.

An experiment was conducted to analyze how the elevation
angle of a satellite affects the size of footprints, as represented
by the major axis size of the first Fresnel zone of the reflecting
area. The receiver height was kept constant at 315 m while the
elevation angle varied from 30◦ to 90◦. Results revealed a nearly
exponential decrease in the major axis size as the elevation angle
increased. Initially, at 30◦ elevation angle, the major axis size
measured around 46 m. Subsequently, as the elevation angle
increased, the major axis size decreased reaching approximately
19 m at 59◦ elevation, approximately 16 m at 78◦ elevation,
and approximately 15.5 m at 90◦ elevation. This suggests that
maintaining close elevation angles ensures consistent footprints
on the soil, allowing for resolution consistency throughout flight
experimentation. This stability in reflectivity change detection
levels is supported by the consistent methodology employed
across flights.

In addition, this approach helps mitigate variations in antenna
patterns and their influence on reflectivity accuracy. The change
point detection process employs a fixed threshold for detection
across all flight traces, facilitating automatic segmentation.

Consequently, decreasing the elevation angle is unlikely to
affect the change point detection as a process, although it may
affect its accuracy. This is because lower elevation angles result
in larger footprint sizes on the reflecting surface as previously
mentioned, leading to reflectivity observations representing data
from a broader area. In some cases, this surface can indeed be
at the border between two different areas of reflection, causing
notable fluctuations in reflectivity observations, particularly at

the transition points. Ultimately, such variations can influence
the accuracy of change detection. However, the extent of this
influence depends on application preferences.

It is also worth noting that we are more concerned in the
variations of the GNSS signal intensity. As we use a ratio of
the direct and reflected signal intensity, affected by the same
antenna pattern, the variations in the antenna pattern is of less
importance in our application.

Furthermore, using the same antenna pattern for both direct
and reflected signals minimizes the effect of antenna pattern
variations on the detection of change in the levels of reflectivity.

The antennas used are commercial products from Antcom
with references: G3Ant-53AT1-LH-RoHS and G3Ant-53AT1-
RoHS. The calibration process is facilitated by our offline data
processing workflow. The front end of our system comprises
hardware components that downconvert and digitize the GPS
signal. This hardware bit grabber is a commercial product from
Syntony GNSS. To synchronize the digitization of signals from
the direct and nadir antennas, the reflected signal is delayed
using an optical fiber and summed with the direct signal at the
front end’s entrance. The receiver responsible for processing the
data is a software-defined radio system developed by our team.
This receiver, designed as a set of tools, sequentially processes
signals from different satellites, ensuring accurate and reliable
data processing.

During the analysis of reflectivity segmentation obtained for
different PRNs across both flights, we observed a good agree-
ment, indicating the effectiveness of our methodology. However,
the automatic classification that uses the mean and the variance
estimate in each segment is not sufficient to fully differentiate
between sea and sand as shown for the different flights. During
Flight 1, the wind speed was 24 km/h, whereas it was 12 km/h
during Flight 2. This difference in wind speed helps explain why
the reflectivity over the sea in Flight 1 is lower than in Flight 2.
In addition, Flight 1 took place in October, a rainy month in
northern France, which generally has high humidity. In contrast,
Flight 2 was in June, a dry and warm month, contributing to the
lower reflectivity levels of sand and land compared to Flight 1.
In perspective of this work, environmental conditions as well as
the measurement of coherence of the reflectivity should be able
to improve the classification.

VI. CONCLUSION

In this article, we present change point detection and local-
ization algorithms for the segmentation of GNSS-R reflectivity
data. We consider such data as being affected by a gamma
distributed, multiplicative speckle noise. In this case, the noise
on the log of the reflectivity is shown to be additive, with constant
variance only depending on the measurement sampling rate.
A CUSUM change point detector and a maximum likelihood
localization algorithm based on the log-transformation of the
reflectivity observations are presented. The proposed radar sys-
tem and statistical model demonstrate robust segmentation, even
in the presence of speckle noise. Through real flight experiments
conducted in the northern region of France, our algorithms show
the ability to detect different landforms. Applying K-means
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clustering for classification to the segmented signal enables us
to distinguish different types of terrain. This study not only
contributes to the field but also opens possibilities for future
research, particularly in enhancing the classification technique
for broader recognition of reflected surfaces.
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