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Quantum Hall systems are platforms of choice to study topological properties of condensed matter
systems and anyonic exchange statistics. In this work we have developed a tunable radiofrequency
edge magnetoplasmonic resonator controlled by both the magnetic field and a set of electrostatic
gates, meant to serve as a versatile platform for future interferometric devices designed to evidence
non-abelian anyons. In our device, gates allowus tochangeboth the sizeof the resonant cavity and the
electronic density of the two-dimensional electron gas.We show that we can continuously control the
frequency response of our resonator, making it possible to develop an edge magnetoplasmon
interferometer. As we reach smaller sizes of our resonator, finite size effects caused by the
measurement probes manifest. In the future, such device will be a valuable tool to investigate the
properties of non-abelian anyons in the fractional quantum Hall regime.

Under strong perpendicular magnetic fields, two-dimensional electron
gases (2DEGs) enter the quantum Hall regime. One important feature of
this effect is the appearance of edge stateswith quantized conductance. Edge
state transport can be described in terms of free collective bosonic modes
called edge magnetoplasmons (EMP)1–6 that propagate along the edge with
velocity v7–13.

When two counter propagating edges are brought together at the level
of a quantum point contact (QPC), the granularity of charge carriers comes
into play. In the regime of the integer quantum Hall effect (IQHE), the
excitations tunneling at the QPC are quasi-electrons that obey the Fermi
statistics. However, in the case of the fractional quantum Hall effect, these
excitations are no more fermionic but anyonic and follow an anyonic
statistics.

Unlike fermions, anyons are quasiparticles with fractional charge and
non-trivial exchange statistics. This means that the system acquires a non
trivial braidingphasewhen twoanyons are exchanged. Suchpropertieswere
recently demonstrated experimentally in collider14–16 and interferometer17,18

experiments. Those experiments focused on the anyonic nature of the
abelian, i.e., commutative, states ν = 1/3 and ν = 2/5. However, other frac-
tional fillings are expected to host non-abelian anyonic excitations; in par-
ticular the ν = 5/2 filling factor19. The braiding of such non-abelian anyons
has been proposed as a promising platform for topologically protected
quantum computing protocols20,21.

One proposal to evidence these non-abelian properties is to study the
absorption of microwave radiation by EMPs in an isolated Hall island22.
Because of its isolated nature, the Hall island is a resonant cavity for the
EMPs. In this cavity, a resonance at f = v/L (in the GHz range) is defined by
the ratio between the velocity v of the EMPs and the perimeter L of the
island7,8,12. By adding a QPC, the resonator becomes a quasiparticle inter-
ferometer operated in the microwave domain. It is predicted that the sta-
tistics of the quasiparticles involved in the tunneling process determine the
amplitude andperiod of the oscillations of the absorptionwith respect to the
magnetic field. Cano et al.22 theorize that non-abelian properties, particu-
larly expected to be observed at the ν = 5/2 filling, modulate this absorption
depending on the parity of the number of quasiparticles present in both
lobes of the interferometer. One of the main advantages of such a system is
that the amplitude of the interferometric signal has afirst-order dependence
in the strengthof the tunnel coupling.By contrast, other experiments relying
on an open geometry of anyonic interferometers17,18,23,24 make use of two
QPCsand the interferometric signal only has a secondorderdependence on
the tunnel coupling. Such adetection scheme thus increases the sensibility of
the experiment and serve as an alternative route for the study of anyonic
properties of quasiparticles in quantum Hall systems.

Aiming toward the realization of such an interferometer, we study here
the microwave absorption of a bare Hall island, in a simple resonator
regime, i.e., not in the interferometer mode. Contrary to previous works on
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EMP resonators1,2,7–13, we define the cavity by a combination of electrostatic
gates and chemical etching. This allows us to continuously change the shape
of the cavity25, making it possible to fully control the frequency of the
resonant mode.We focus onmicrometer-sized structures, approaching the
dimensions required for interferometric experiments23,24, much smaller
than previously considered EMP resonators7,12,25. In this configuration, we
observe a deviation from the f = v/L relation andwe reach a regime inwhich
the microwave measurement gates act as frequency filters of the resonant
signal. We explore the finite size effect of the probes on the resonance
frequency of the structure. We also consider the role of top gates on the
propagation of magnetoplasmons and compare our results with a theore-
tical description based on an EMP scattering matrix formalism3,5,26.

Results
Sample description
The Hall island considered here is based on an AlGaAs/GaAs hetero-
structure hosting a high mobility 2DEG. Ti/Pt/Ti/Au gates are evaporated
on this structure. These gates are coupled only capacitively to the 2DEG (see
Fig. 1). This geometry allows us to realize islands of controllable sizes, from
8 × 7 μm2 (L = 30 μm) to 8 × 13 μm2 (L = 42 μm), by choosing which QPC
to open or to close (see insets of Fig. 2a–c).

The injection and detection of the microwave signal is done through
two bias-tees connected respectively to the top gate of the central QPC and
to the left padgate (inbrown inFig. 1). These twogates can alsobe addressed
in dc and thus allow us to tune the perimeter of the structure as well as the
local electronic density inside the resonator.Ohmic contacts are also present
(shown in purple in Fig. 1). Their purpose is to control the opening and
closing of the gates in the dc regime in the calibration stage of the
experiment.

The large gates deposited on top of the structure have two roles: first,
they allow us to tune the density of the 2DEG and second, they screen the
inter-channel coupling, leading to a decrease of the velocity v of EMPs by
approximately oneorder ofmagnitude7,27,28. Reducing the velocity brings the

resonance frequency f res into our experimental frequency window of
0.5–8.5 GHz for magnetic fields between 0 and 8 T.

Discrete control of the cavity size
Figure 2a–c. present the result of the measurement of the microwave signal
s(f, B) transmitted through the cavity in three different electrostatic con-
figurations of the same sample. The quantity plotted in this figure is the
square of the normalized transmitted intensity ∣s∣2 (see methods section for
details about the normalization procedure). In this figure, the frequency
varies from 1.5 to 8 GHz and themagnetic field is swept between 0 and 5 T,
corresponding to filling factors ν ≥ 2. Each color map corresponds to the
electrostatic configuration drawn in the inset of the figures where the QPCs
used to define the cavity are represented in red. The main feature of these
transmission maps (Fig. 2a–c) are the resonances whose frequency
decreases with the magnetic field, following the magnetic field behavior of
v∝ 1/B29. In Fig. 2g, the resonance frequency is plotted as a function of 1/B
for three different cavity sizes (perimeters of 30 μm, 35 μmand 42 μm). The
extrapolation of the linear fits down to 0 T−1 demonstrates the inverse
proportionality between the frequency and the magnetic field.

The full maps of the transmitted signal (Fig. 2a–c) exhibit dis-
continuities in the line shape following the resonance. These discontinuities
are caused by the transitions between various plateaus of the IQHE12. This is
particularly visible around 2 T. Within a plateau, the edge states are well
defined thanks to the conductance suppression through the bulk of the
resonator. However, between two plateaus, the bulk becomes conducting
and the edge states cease to exist as 1D chiral conducting regions. Conse-
quently, there is no well defined resonance frequency anymore and this
manifests as discontinuities in our experimental maps. Figure 2d–f. present
the corresponding numerical simulations that will be detailed below.

In the largest cavity (L= 42 μm), we observe a second mode present at
twice the frequency of the fundamental. Thismode is not observed for smaller
cavities. As we will show with our theoretical description, this is due to the
finite-size of thedetectiongate that leads to “blindspots” in theEMPdetection.
When decreasing the size of the cavity, the frequency of the resonance
increases and so does that of the first harmonic. The harmonic is then pushed
into the blind spot of the detection and thus disappears in Fig. 2b, c.

For a fixed magnetic field B, reducing the perimeter of the cavity
increases the resonance frequency. This is better seen by extracting the
frequency at a given field and plotting it as a function of the inverse of the
total perimeter L of the cavity under study as shown on Fig. 2h for the fields
1.05 T, 1.8 T and 2.55 T. If the frequencywere proportional to the inverse of
the total length of the cavity, we would observe a proportionality relation
between f res and 1/L (dotted lines). However, linear fits to the data do not
converge to 0. This peculiar behavior is caused by finite size effects of the
input andoutput gates thatwill be explored theoretically in thenext sections.

Propagation of the EMPs
The theoretical description of the system is done in two steps. First, we
consider the propagation of magnetoplasmons in the presence of a gate
following the description of ref. 28.We consider a 2DEG separated from the
gate by a distance d (see Fig. 3a). In between the 2DEG and the gate, the
AlGaAs layer is described by a dielectric of relative permittivity εr
approximately equal to 12.4 at low temperature30–32. Thedensityn0(x) on the
edge of the system vanishes over a length awhere it connects to the vacuum.

The transmission amplitude for the charge EMP at frequency ω/2π
propagating over a distance l is of the form eik(ω)l. The real part of k(ω)
describes the accumulated phase or equivalently the charge EMP effective
velocity (Re(k(ω)) =ω/v), whereas its imaginary part Im(k(ω)) ≥ 0 describes
the charge magnetoplasmon attenuation along propagation.

In ref. 28, [Sec. IV.A.2], dissipation is associated with the dc long-
itudinal resistance, which is non-vanishing between the plateaus of the
quantum Hall effect. However, this is not the only source of dissipation in
quantumHall systems. Dissipation also arises from the capacitive coupling
to charge puddles within the bulk of the 2DEG, thereby taking energy away
from the charge EMP mode and ultimately dissipating it into the phonon

8.8 µm

13.8 µm

dc , output

dc , input

Lock-in amplifier

Fig. 1 | Edge magnetoplasmon resonator. Schematics of the sample. The 2DEG is
shown in blue and the electrostatic gates are indicated in yellow. Two gates, shown in
brown, are used both for electrostatic gating and microwave measurement. The
injection of the microwave signal is done through the thin central brown gate and
detection by the large brown pad on the left of the structure. Ohmic contacts (in
purple) are also present on the sample far ( ≈100 μm) from the resonator area, in
order to probe the dc properties of the sample (see Supplementary Note 2).
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bath11,33. Suchdissipation is present evenwhen the longitudinal dc resistance
vanishes within quantumHall plateaus. At the lowest order, a contribution
to Im(k(ω)), proportional to ω2 can be added to describe the damping of
EMP along their propagation25. Adding this capacitive dissipation to the
expressions of ref. 28, [Sec. IV.A.2] for the complex valued k(ω) for a wide

edge leads to:

kðωÞ ¼ ω

v
þ i

r2

4ωcτa
þ ξω2

v2

� �
ð1aÞ
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v ¼ γωca
1þ γðr2=4Þ þ ð1=ω2

cτ
2Þ ð1bÞ

where r≃ 2.405 is the first zero of the Bessel function J0, ωc = eB/m is the
cyclotron pulsation and γ = l0d/a

2 with the characteristic length
l0 ¼ e2nb=εmω2

c . In our experiment, nb denotes the bulk electronic density
and ε = εrε0 with ε0 the dielectric permittivity of vacuum and εr = 12.4 the
relative dielectric permittivity ofGaAs34. The effectivemassmof electrons in
the 2DEG is taken to be 0.067 times the mass of free electrons35,36. d is the
distance from the top gates to the 2DEG, d = 105 nm. As we will discuss
later, we obtain a best fit of our data by using a = 2.8 μm. It leads to
γ = 1.4 × 10−2 with l0 = 1.1 μm at 1 T and makes Eq.s (1a) and (1b) valid

since γ≪ 1 and d≪ a. We reach amaximal value of ka≃ 1 for the smallest
cavities which should limit the relevance of some approximation made in
ref. 28 and therefore impact our calculation.However, aswewill see thefinal
agreement with our data remains good.

The relaxation time of the Drude model τ is related to the dc long-
itudinal resistance and thus depends on the magnetic field (see Supple-
mentary Note 5). Finally, the length ξ, which has to be fitted from the
experimental data, accounts for dissipation through capacitive couplings via
the ξω2/v2 contribution to Im(k(ω)) where v, given by Eq. (1b) is the effective
velocity of the magnetoplasmonic charge mode.

Transmission model
Assuming that dissipative propagation of the charge EMP is described
according to the previous paragraph, we can now turn our attention to the
coupling of the resonator to the probing gates. These two gates are described
as twomicrowave transmission lines, capacitively coupled to the 2DEG.The
microwave propagation along these lines is treated within the input/output
formalism for the setup depicted on Fig. 3b.

This corresponds to a plasmonic Fabry-Perot (FP) cavity with exten-
dedmirrors corresponding to the regionwhere its resonantmodes couple to
the external transmission lines through a capacitive coupling Cg,a at the
input gate of length La and Cg,c to the output gate of length Lc. Propagation
along the uncoupled parts of the island over a distance Lb leads to an
amplitude eiXb with Xb = k(ω)Lb (dissipation being contained in Im(k(ω))).

Microwave propagation across the FP cavity can then be described
using an EMP scattering matrix connecting the incoming to the outgoing
modes

cout
aout

� �
¼ Scc Sca

Sac Saa

� �
cin
ain

� �
ð2Þ

involving four scattering amplitudes whose explicit forms are given in
Supplementary Note 6. The resonant mode of interest is accessible through
the full transmission amplitude connecting ain to cout:

Sca ¼
t0atc e

iXb

1� r0ar0c e2iXb
: ð3Þ

In this equation, tj and rj respectively denote the EMP transmission and
reflection coefficients at the input (j = a) and output (j = c)mirrors of the FP
cavity. For simplicity, these expressions assume that the distance traveled by
themagnetoplasmonsbetween the input andoutput gates andvice-versa are
the same, as depicted on Fig. 3b. For an asymmetric sample and with the
propagation amplitude discussed in the previous paragraph, the expressions
are almost the same: first of all, the product of the two amplitudes in the
denominator is e2iXb whereXb is computed from Lb being the average of the
propagationdistances from a to c and c toa. However, the exponential at the
numerator has to be replaced by eikðωÞLac where Lac is the actual length of the
path from a to c.

To obtain the expressions of the transmission and reflection coeffi-
cients, we model the mirrors of the FP by a capacitive coupling between a
transmission line with characteristic impedance Z = 50Ω and the edge
channel of the Hall island37. We introduce dissipation for the charge EMP
mode beneath the metallic input and output gates as discussed in the

Fig. 2 | Effect of themagnetic field and the size of the cavity. a–cColormaps of the
microwave transmission ∣s(B, f)∣2 of the sample as a function of the magnetic field
and the excitation frequency for three different electrostatic configurations. From
left to right the size of the cavity decreases (the electrostatic configuration is sche-
matically represented in the inset of the figures) and, reciprocally, the resonance
frequency increases. d–f Numerical simulations performed with the same cavity
sizes as in (a–c). The top horizontal axis indicates the values of the filling factors
associated to the density and field used in the simulations. g Frequency of the
resonant mode as a function of the inverse of the magnetic field for the three cavities
presented in (a–c). These points were obtained by extracting the maximum of the

transmission signal at each value of the magnetic field. The dashed lines correspond
to the linear fit of the experimental points. h Frequency of the resonant mode as a
function of the inverse of the perimeter of the cavity for three different magnetic
fields. The experimental data is presented with error bars and the dashed lines
correspond to the result of the simulation. The dotted lines indicate the expected
f ¼ v Bð Þ=L behavior, only valid for large cavities, using for v the values used to plot
figures (d–f). The error bars shown in this graph correspond, in the frequency axis, to
the fitted width of the resonance. Those in the 1/L axis were taken by estimating the
uncertainty on L and propagating the error to 1/L.

0

Au

AlGaAs

2DEG

a

b

, ,

Input Output

in in

out
−

out

Cavity

out

in

in

out

Fig. 3 | Theoretical description of the system. a The Au gate (in yellow) is posi-
tioned at a distance d ≈ 105 nm above the 2DEG (in red) separated by the AlGaAs
layer (in blue) with relative dielectric permittivity εr. The electronic density n0(x) is
constant in the bulk and decreases to zero on a scale a on the edge. b The radio-
frequency transport through the system is described in terms of three different
sections. The input (resp. output) gate is described by the incident and reflected
amplitudes ain and aout (resp. cin and cout). The cavity is connected capacitively to
these two input and output gates of respective lengthsLa andLc through capacitances
Cg,a and Cg,c. The magnetoplasmons acquire an amplitude eiXb where Xb = k(ω)Lb
when propagating along the edge of the cavity on a length Lb. The transmission
amplitude is given by the term Sac in the magnetoplasmon scattering matrix. For
readability reasons, the top gates are not represented here. Their effect is already
taken into account by Eq. (1a).
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previous paragraph.Weassume total electrostaticmutual influencebetween
the two gates and the resonator within each mirror of the FP cavity. This
hypothesis is reasonable for our sample and ensures maximal coupling
between the resonator and its left and right ports. As shown in supple-
mentary note 6, this leads to the plasmonic transmission and reflection
amplitudes:

t0j ¼ �ReðkðωÞÞLj
ffiffiffiffiffi
R

p
sinc kðωÞ Lj

2

� �
D�1
j ; ð4Þ

tj ¼ �kðωÞLj
ffiffiffiffiffi
R

p
sinc kðωÞ Lj

2

� �
D�1

j ; ð5Þ

r0j ¼ e�ImðkðωÞÞLj2 1þ e�ikðωÞLj2 ×
h

× αj sinc kðωÞ Lj
2

� �
1� ReðkðωÞÞR

2

Lj
αj

 !#
D�1

j ;
ð6Þ

with Dj being the denominator coefficient

Dj ¼ eImðkðωÞÞLj2 1þ eikðωÞ
Lj
2 ×

h

× αj sinc kðωÞ Lj
2

� �
1� ReðkðωÞÞR

2

Lj
αj

 !#
;

whereR ¼ 2e2Z=h. The dimensionless coupling

αj ¼
e2

h

Lj
v Cg;j

ð7Þ

depends on the magnetic field via the EMP velocity v and characterizes the
importance of Coulomb interactions within the mirrors.

Note that dissipative propagation of the charge EMP introduces a non-
reciprocity in the scattering matrix between the transmission line and the
edge channel (i.e., t0j≠tj). This comes from the fact that when the trans-
mission line is driven, it imposes a uniform potential all along the edge
channel beneath the gate whereas, when an ac current is injected into the
edge channel, the associated charge density wave is damped while propa-
gating beneath themetallic gate and therefore induces a smaller voltage drop
at the capacitor and thus a smaller drive on the transmission line. The non-
reciprocity is a consequence of dissipation of the charge EMP along its
propagation and may be used to probe it.

Now equipped with this theoretical description, we come back to the
experimental data inwhich ∣s∣2 can be compared to ∣Sca∣2. Fig. 2d–f depict the
result of the calculation for three cavities with sizes equal to those of the
cavities studied experimentally. In order to better compare the amplitude of
the signal, we apply the same normalization procedure to the numerical
simulations and to the experimental data (seemethods section).Weobserve
that we reproduce well the experimental data by considering a lineic
capacitive coupling cg = 3 nFm−1 (Cg,j = cgLj). The electronic density is fixed
by the dc transport data that indicates the position of the plateaus and leads
tonb = 1.93×1011 cm−2 (see supplementarynote 2). Finally, thebestfit to the
resonance frequencywas obtained by using the value a = 2.8 μm≫ d for the
length over which the electronic density falls to zero on the edge of the
sample. This value is compatible with the ones obtained in refs. 27,38. The
value of the dimensionless coupling αj at B = 1 T is αj ≈ 0.12. It should be
noted here that, in order to obtain a good agreement between data and
theory, we consider edge modes propagating 400 nm inwards compared to
the lithographically defined edges. This condition can be justified by the fact
that we are in the wide edge limit given the value of a: the EMP modes
emerge from the topological edge channels that are spatially separated from
each other and are not found on the exact lithographic edge of the
structure39. Using these parameters, we obtain velocities varying from

1 × 105 m s−1 at 1 T to 2.1 × 104 m s−1 at 5 T (see Appendix D) and wave-
vectors whose maximum value in our experimental range is 2.4 × 106 m−1.

Relation between resonance frequency and cavity size
Aspreviouslymentioned,wedonot have a proportionality relation between
the resonance frequency and 1/L (see Fig. 2h). This discrepancy can be
accounted for by considering the total phase acquired by the EMPs pro-
pagating beneath the input and output gates. This phase becomes non-
negligible compared to that associated to the propagation of EMPs across
the cavity when it becomes small enough, as it is the case in our experiment.
From our numerical simulations, shown in dashed lines in Fig. 2h, the v/L
behavior is recovered for large cavities. However the increase of the fre-
quency faster than v/L for small cavities is well reproduced by our
theoretical model.

In the simulations presentedonFig. 2d–f., we observe the emergence of
a higher frequency modes on top of the fundamental one for the larger
island. The role of the FP’s detectionmirror is crucial when its dimension is
comparable to that of the resonator. The gate then plays the role of filter.
This canbemathematically observed through the sinc term that is present in
the expression of the transmission and reflection terms ðrj; tj; t0j Þ. Physically,
this simply accounts for the relation between the wavelength λ = 2π/k of the
EMP and the size of the detection gate. For instance, if we consider the
charge density associated to the fundamental mode of a magnetoplasmon
propagating on the edge of our system, the detection power of our probes
will be related to the integrated field underneath those probes. With λ the
wavelength of the mode of interest, and considering a detection gate of size
λ/2, wewill be able to integrate afinite signal.However, the first harmonic of
wavelength λ/2 and the associated signal integrated by the gate average to
zero. This is the case for our smallest cavity shown in Fig. 2c. In this case, the
total size of the cavity is 30 μm while the detection gate overlaps the EMPs
over a lengthLc = 11.3 μm≃ λ/2. For this reason, unlike previousworkswith
large samples and gates of negligible sizeused for injection anddetection7,8,11,
we are limited to the observationof only the fundamental andfirst harmonic
of the cavity. This aspect is well reproduced in our theoretical modeling of
the system.

Our theoretical calculation also anticipates higher ordermodes that are
not observed experimentally. Other than the relative low amplitude of these
modes, making them difficult to detect experimentally, their absence in the
experimental data could be attributed to dipolar effects. These effects, linked
to the non-circular geometry of the cavity22,40, are not taken into account in
our theoretical description.

Continuous control of the cavity size
The continuous control of the geometry of the cavity is essential in order to
realize a microwave EMP interferometer in the future. Another way to
control the size of the cavity is to use individual gates25 instead of completely
closingQPCs aswedid inFig. 2. Figure 4 shows the result of this experiment.
In this configuration the top gates are polarized to VG = 50mV (including
the output gate, see methods section). The input gate is polarized to
VG =−1.1 V leading to an edge following the contour of the gates instead of
the chemically defined edge. This has the effect of changing the strength of
the coupling of the resonantmode to the input gate.We then tune two gates
at the bottom of the structure (see Fig. 4a). By applying a negative voltage
bias on these two gates we can increase the size L of the cavity from 54 μm
(forVG = 0.2 V) to 71 μm (forVG =−1.4 V). The result of this procedure is
presentedonFig. 4b.As shown inFig. 4d,we can extract the line shapeof the
resonance that clearly shows the shift of the resonance frequency as well as
that of the first harmonic mode. Using a Lorentzian fit, we extract a quality
factorQ = f/Δf for the main resonant mode of ∣s∣2 that varies between 8 (for
VG = 0.2 V) and 18 (for VG =−1.4 V).

This experimental results can be well reproduced using the theory
described previously as shown inFig. 4c. In thisfigure,we plot the frequency
as a function of the total length L of the cavity instead of the QPC voltage as
we cannot access the precise electrostatic of the system and theway the edge
states are deformed by the applied voltage. Because this data was taken after
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thermally cycling the sample and for a different top-gate voltage compared
to thedata fromFig. 2, in this casewe extract a densitynb = 2×1011 cm−2 and
we have different fitting parameters cg = 0.1 nFm−1 and a = 1.8 μm.

Conclusion
In conclusion, we have studied an electrostatically andmagnetically tunable
EMP resonator of very small size, such that the measurement probes are an
integral part of the resonator and cannot be neglected in the theoretical
description. We have shown that such resonator can be defined using
electrostatic gates. Using top gates we are able to change the density of the
2DEG and screen the interaction between edge channels leading to a
decrease of the velocity of the magnetoplasmons, a behavior well captured
byournumerical simulations.Wehave comparedour results to a theoretical
description of our system and have found a good agreement between the
two. In particular we find that the deviation from the expected 1/L trend of
the EMP resonance frequency can be attributed to finite size effects of the
input andoutput gates used inour experiment.Wealso explain the presence
or absence of harmonics in our signal by frequency dependent filtering
effects at the injection and detection gates. Finally, we have shown that we
are able to change the size of the cavity at will by using fully or partially
closed QPCs.

In future experiments, this electrostatic control should allow us to
study resonances in a broad frequency range and, at the same time, reach
surface areas that are small enough to control themagnetic field on the scale
of the magnetic flux quantum. We will then be able to probe interference
effects for elementary electronic or anyonic excitationswithin the resonator.

This experimental platform constitutes the basis for future interferometric
microwave experiments aimed at studying the statistics of quasiparticles in
exotic phases of the quantum Hall effect. This platform also opens new
possibilities to investigate the screening role of the mirrors on the cavity in
extreme limits where the combined size of the mirror is larger than the free
propagation length of EMPs. Moreover, it opens the way to a direct
investigation of the spatial dependence of dissipation effects by probing the
non-reciprocity of the capacitive coupling between an edge channel and a
transmission line. Finally, it also enables studying non-linear plasmonic
effects in resonators as well as parametric resonance processes through a
dynamical control of the resonance frequency via a time dependent elec-
trical control of the cavity’s geometry.

Methods
Base temperature
All measurements presented here were performed in a dry dilution cryostat
at amaximal temperature of 30mK.Other details about themethodology of
thiswork, including data analysis anddetails of the theoreticalmodeling can
be found in the supplementary information.

Data normalization procedure
Our experimental setup does not benefit froma low temperature calibration
procedure thatwould allowus to extract the absolute value of the gain of our
measurement chain. In order to overcome this difficulty and access a clear
signal of the resonant modes present in our cavity we apply the following
procedure to the raw signal amplified and collected.

Fig. 4 | Continuous control of the resonance fre-
quency with electrostatic gates.Using two gates we
can change continuously the perimeter of the
structure and thus the frequency of the resonance.
aAt positive gate voltage the edge states go below the
active gates (left). As the gate voltage is decreased,
the edge states are moved towards the top of the
gates (middle) and ultimately completely go around
the gates (right). Doing so, the frequency of the
resonant mode increases. b Frequency vs gate vol-
tage map of the transmission amplitude of the
sample. The markers correspond to the situations
sketched in (a). c Theoretical computation of fre-
quency vs inverse of perimeter (d) Line cut of the
transmission amplitude as a function of the fre-
quency for 3 different values of the gate voltage as
indicated in (d). The dots represent the experimental
data while the dashed lines correspond to a double
Lorentzian fit of the data used to extract the quality
factorQ. e Line cuts of the theoretical data shown in
(c) taken at the same values as in (d).
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Without such calibration, the gain of the whole rf setup and the
background signal vary drastically over the 8 GHz bandwidth of our mea-
surement. However, at a fixed frequency, the variation of the magnetic field
B only affects the sample, leaving the whole rf setup unchanged. Thanks to
this property, we can numerically fix the gain of each frequencies and
remove the background signal.

With sraw(f,B) the complex signalmeasured (amplitude andphase), the
normalization procedure we use is the following :
• First, at each frequency, we extract the average value and the standard

deviation of sraw over B,

srawðf Þ ¼ hsrawðf ;BÞiB
σsraw ðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjsrawðf ; BÞ � srawðf Þj

2iB
r

• Then, we apply the transformation

sðf ;BÞ ¼ srawðf ; BÞ � srawðf Þ
σsraw ðf Þ

Since we measure on a wide range of magnetic field B and because
the resonance width is small compared to this range, the mean value of
srawðf Þ is a good (and systematic) approximation of the background
signal at f. σsraw is the average modulus of the background-less signal.
Apart from the resonance, the signal measured is just a background
noise, so σsraw is a good (and systematic) approximation of the back-
ground noise amplitude at f. Assuming this noise does not depend on the
frequency f, σsraw is then a measure of the gain of our setup at a given
frequency f.

This means that, in order to compute hsrawiB and σ2sraw , we need the full
f, B map. For this reason, the data shown in fig. 4 of the main text (b) are
extracted from eight complete f, Bmaps at various gate voltage Vp.

Gate configurations
In order to optimize the detection of the resonant mode of the cavity, the
electrostatic environment is different between the data shown in Figs. 2, 4 of
the main text. The values of the gate used to obtain Fig. 2 are presented in
Table 1 while the gate configuration of Fig. 4 are presented in Table 2. In
those two tables the column Top gates includes all gates except the QPCs or
pads used to defined the limits of the cavity itself.

The densities are estimated from both the dc measurement of the Hall
voltage and the rf maps.

Data availability
All data related to this paper are available on the zenodo platform under the
following https://doi.org/10.5281/zenodo.13644446. Additional raw data is
available from the corresponding author upon reasonable request.

Code availability
The code used to generate thefigures in this paper is available on the zenodo
platform under the following https://doi.org/10.5281/zenodo.13644446.
Additional raw data analysis code is available from the corresponding
author upon reasonable request.
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