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Abstract
We consider a reaction-diffusion model for a population structured in phenotype. We

assume that the population lives in a heterogeneous periodic environment, so that a
given phenotypic trait may be more or less fit according to the spatial location. The
model features spatial mobility of individuals as well as mutation.

We first prove the well-posedness of the model. Next, we derive a criterion for
the persistence of the population which involves the generalised principal eigenvalue
associated with the linearised elliptic operator. This notion allows us to handle the
possible lack of coercivity of the operator. We then obtain a monotonicity result for
the generalised principal eigenvalue, in terms of the frequency of spatial fluctuations
of the environment and in terms of the spatial diffusivity. We deduce that the more
heterogeneous is the environment, or the higher is the mobility of individuals, the harder
is the persistence for the species.

This work lays the mathematical foundation to investigate some other optimisation
problems for the environment to make persistence as hard or as easy as possible, which
will be addressed in the forthcoming companion paper.

Keywords. Reaction-diffusion equation; generalised principal eigenvalue; nonlocal parabolic
equation; population dynamics; phenotype fitness.
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1 Introduction

1.1 Presentation of the model
We consider a model of population dynamics which takes into account both the spatial het-
erogeneity of the environment and the phenotypic structure of the population. This amounts
to a reaction-diffusion equation with a nonlocal reaction term of the Fisher-KPP type.

More precisely, let u(t,x,θ) denote the density at time t of a population structured in space
(x-variable) and in phenotype (θ-variable). The domain of the spatial variable is the whole
space RN , N ∈N, and the domain of the phenotype, denoted by Θ, is either RP , P ∈N, or
a smooth bounded domain of RP . In the latter case we call ν the outward normal to ∂Θ.

The dynamic of the density is governed by the system ∂tu = ∆xu+∆θu+u(r(x,θ)−ρ(t,x)) , t > 0, (x,θ) ∈RN ×Θ,

ν ·∇θu = 0, t > 0, (x,θ) ∈RN ×∂Θ,
(1)

with
ρ(t,x) :=

∫
Θ

u(t,x,σ)dσ (2)

representing the total population at given time and location. We supplement problem (1)-(2)
with an initial condition

u(0,x,θ) = u0(x,θ), (x,θ) ∈RN ×Θ. (3)
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The quantity r(x,θ) corresponds to the fitness of an individual of phenotype θ at location x,
in the absence of competition. We refer to r as the space/phenotype fitness landscape. We
will assume in the sequel that r is periodic in the spatial variable x. The term ρ(t,x)u(t,x,θ),
which is nonlocal in the θ variable, is the competition faced by individuals of phenotype θ
located at x. Throughout the paper, any reference to ∂Θ, such as the boundary condition
in (1), has to be ignored in the case Θ =RP .

The first question that we address in this work is the well-posedness of the problem, which
is not covered by the existing literature under the generality of our assumptions. We will derive
it by first showing that solutions remain bounded, despite the equation lacks the comparison
principle.

The next two fundamental questions on the model are:

1. When does the population survive or get extinct?

2. How to optimise the chances of persistence/extinction?

In Section 2.3, we shall answer the first question by giving a persistence criterion based on
the generalised principal eigenvalue of the linearised operator. Using this criterion, we shall
provide in Section 2.4 an answer to the second question about the chances of persistence
in terms of the fluctuations of the environment and of the diffusivity of the species. These
results will be obtained by considering a fitness function r(x/L,θ) and by adding a diffusion
coefficients d in front of ∆x, then modulating the parameters L,d. In loose terms, we will show
that persistence becomes harder when the heterogeneity of the environment increases, as well
as when the diffusivity grows. Other optimisation problems, under some specific structural
assumptions on the landscape, will be addressed in the forthcoming companion work.

1.2 Related models
Let us explain where the model (1) comes from, and relate it to the existing literature.

The classical Fischer-KPP equation. The following equation has been independently
introduced in 1937 by Fisher [18] and Kolmogorov, Petrovsky and Piskunov [26] :

∂tu(t,x) = ∆xu+ ru−u2, t > 0, x ∈R. (4)

Since then, it has been widely studied, both from a mathematical point of view (e.g. [4]) and
for applications in population dynamics (e.g. [39]). Let us imagine that u is the distribution
of a population living on R. The term ∆xu then stands for the movements of the individuals,
the term ru stands for the demography in the absence of competition, and the nonlinear term
−u2 encodes the competition pressure.

When the individuals of a population move and reproduce, it can be expected that they will
eventually invade their environment. One of the most important aspects of the Fisher-KPP
equation is that it shows an invasion taking place at the asymptotic linear speed cKP P := 2

√
r,
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in the following sense. If the initial condition is bounded, nonnegative, not identically equal
to zero and has a compact support, then:

∀c ∈ (0, cKP P ) , lim
t→+∞

u(t, ct) = r,

and
∀c > cKP P , lim

t→+∞
u(t, ct) = 0.

The standard Fisher-KPP equation has been extended in several ways, in order to make it
more realistic and adapted to capture some relevant biological properties. Our model (1) tries
to circumvent two of the limitations of the standard equation. First, the environment in which
individuals live is rarely homogeneous [33, 37, 38]. This is why the environmental conditions
should affect the growth rate r, according to the spatial position x. Second, the population
itself is heterogeneous: for example, individuals with distinct phenotypes may react differently
to the same environmental conditions. The interplay between the different phenotypes can
have a true impact on the dynamics of the population [16, 31].

In model (1), the phenotype is taken into account through the new variable θ. Then, all
individuals located at the same position compete with each other, regardless of their pheno-
types. Thus, the nonlinear term −u2 is replaced by the nonlocal term −ρu. Finally, we add
a term ∆θu, to account for mutations (which induce variations in phenotype); this modelling
means that the mutations are small and frequent.

Models similar to (1) appeared for the first time in the work of Prévost [35]. Champagnat
and Méléard [15] derived variants of (1) as large population limits of individual-based models
(in their models, the mutations are rarer but larger than in ours). Their derivations allow one
to understand better where the different terms of the equation come from.

We now go back to the standard Fisher-KPP equation, and we progressively add features
to it until we get equations similar to (1), in order to understand the different mathematical
properties that these features entail.

Heterogeneous landscape. If the demography is affected by the environment, and changes
from place to place, then one is led to consider a growth rate that depends on the spatial
variable, i.e. r = r(x). This results in the following N -dimensional spatially heterogeneous
version of the Fisher-KPP equation (typically N = 2 in applications):

∂tu(t,x) = ∆xu+ r(x)u−u2, t > 0, x ∈RN . (5)

We have seen that in the homogeneous setting (4), provided r > 0 (i.e. the environment is
favourable to the species) and the initial condition is nonzero and nonnegative, the population
persists and actually invades the whole environment. This is called the hair-trigger effect.

The model (5) allows one to consider environments composed also of unfavourable regions,
that is, r(x) can be negative for some x ∈ R. Then, the question of the persistence of the
population is no longer trivial. A sharp criterion to determine whether the population persists
or, on the contrary, eventually gets extinct, is provided by the sign of the principal eigenvalue
of the operator linearised around the steady state u ≡ 0, i.e. the operator

∆x + r(x).
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(More details about principal eigenvalues are given in Section 2.3 below.) This criterion was
first derived in [14] for problems set in bounded domains. When dealing with unbounded
environments, a typical modelling assumption is that the landscape is periodic, see e.g. [38].
This can be viewed as a mathematical approximation of more complex situations. In such a
framework, the characterisation in terms of the principal eigenvalue of an operator acting on
the space of periodic functions has been derived in [8].

As in the homogeneous setting, for the heterogeneous equation (5) with periodic r, when
there is persistence there is also complete invasion towards a positive steady state. The inva-
sion occurs with some spreading speed chet, which replaces the quantity cKP P . When N ⩾ 2,
the spreading speed chet may depend on the direction of spreading. A formula for chet has been
derived by Gärtner and Freidlin [19] using probabilistic techniques, and later with PDEs tech-
niques, along with some extensions, see e.g. [7, 36, 40]. A general survey of mathematical works
and methods for reaction-diffusion equation in heterogeneous environments is given in [41].

Structured population. Consider now a heterogeneous population structured according to
the phenotype. A first situation is when there is a finite number of phenotypes: this leads to
a system of Fisher-KPP equations, each of them accounting for a given phenotype, competing
with the other ones. In this direction, let us mention [21] for homogeneous environments and
[22, 24] for heterogeneous environments.

In the present paper, we shall use another formalism, and assume that the phenotype is a
continuous parameter. Let us first stick to a homogeneous environment; we get a simplified
version of (1):

∂tu = ∆xu+∆θu+u(r(θ)−ρ(t,x)) , t > 0, (x,θ) ∈RN ×Θ,

ν ·∇θu = 0, t > 0, (x,θ) ∈RN ×∂Θ,

u(0,x,θ) = u0(x,θ), (x,θ) ∈RN ×Θ,

(6)

with ρ defined by (2). Here, contrarily to (1), the coefficient r depends on θ only. This
model is studied in [10] in the case Θ = RP , under the assumption that −r is coercive. The
latter condition allows the authors to define in a standard way the principal eigenvalue λ of
the operator

∆x +∆θ + r(θ)
acting on a Hilbert space. One then has a dichotomy analogous to that for the spatially
heterogeneous Fisher-KPP equation (5): if λ < 0, then the population eventually gets extinct,
while if λ > 0, then the population persists. Moreover, in the latter case, the homogeneity
of the environment (i.e. the independence in x of r) and the coercivity of −r entail that the
equation admits a unique positive steady state V (θ), despite the lack of comparison principle,
and any nontrivial solution converges towards V with a spreading speed equal to cphen := 2

√
λ.

Recent models. Several spatially-heterogeneous versions of (6) have been studied in the
literature. In [2, 34], the authors consider the case of a population evolving along an environ-
mental gradient, that is,

r(x,θ) = R(x−Bθ), B > 0,
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where the function R : R → R is positive on the interval (−1,1), negative outside [−1,1],
and R(y) tends quadratically to −∞ as |y| → ∞. In this model, the fittest phenotype at
position x lies on the interval ((x−1)/B,(x+1)/B), so the phenotype is driven by the spatial
variable x. As a consequence, evolution is necessary for the spatial propagation of the popu-
lation. This is relevant when one studies, for example, migrations along the north-south axis,
or uphill-downhill for populations living in the mountains. In [2] again, using the coercivity
of −r, the authors give a criterion based on a principal eigenvalue to determine whether the
population persists or gets extinct.

Additionally to spatial heterogeneity, the authors of [1] add a heterogeneity in time corre-
sponding to climate change. Their growth rate takes the form r(x− ct,θ). Different shapes of
the favourable space/phenotype zone are studied (confined zone, environmental gradient, or a
mixing of the two). In each case, the authors find a criterion for persistence and propagation
of the species. The criteria, again, are based on the principal eigenvalue of linear operators.

There seems to be few works considering the phenotype together with a periodic hetero-
geneous environment. In [3], Alfaro and Peltier focus on homogeneous environments with a
very small periodic perturbation. When the perturbation is small enough, they show the exis-
tence of stationary states and pulsating travelling waves. In [13], Bouin and Mirrahimi focus
on a situation where evolutionary events (mutations) occur on a much faster timescale than
ecological events (movements). In a similar vein, but in the stationary setting, Léculier and
Mirrahimi [29] studied the weak mutation limit of the stationary version of a model related
to ours. They also give biological properties of the solution; in some cases, they are able to
determine if the population at equilibrium is polymorphic or monomorphic.

2 Main results

2.1 Assumptions on the landscape
The set Θ is either RP or a C2 bounded domain in RP . We shall make the following assump-
tions on r: r ∈ L∞

loc(RN ×Θ), r is bounded above;
r(x+h,θ) = r(x,θ) for all (x,θ) ∈RN ×Θ and h ∈ ZN .

(7)

Throughout the paper, for a given function defined on RN × Θ, we shall refer to the second
condition in (7) as “1-periodicity in x”. We point out that in the case where Θ is bounded,
the function r is globally bounded. In the case Θ =RP , we will sometimes assume that

limsup
∥θ∥→∞

r(x,θ) ⩽ 0, uniformly with respect to x ∈RN , (8)

which means

lim
R→+∞

 sup
x∈RN , ∥θ∥⩾R

r(x,θ)
⩽ 0.

We point out that, unlike in other mathematical studies in the literature, we do not assume r
to be coercive. This will entail a loss of compactness that we will face using the notion of
generalised principal eigenvalue.
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2.2 Well-posedness of the problem
We now state the well-posedness result for (1)-(3). Solutions are understood in the weak sense,
namely: u ∈ L∞([0,T )×RN ×Θ)∩L∞([0,T )×RN ;L1(Θ)) for all T > 0, and it holds

∀ϕ ∈ C∞
c ([0,+∞)×RN ×Θ),

−
∫

u(∂tϕ)−
∫
RN ×Θ

u0(·, ·)ϕ(0, ·, ·) =
∫

u(∆xϕ+∆θϕ)+
∫

uϕ
(

r −
∫

Θ
u(t,x, ·)

)
(9)

(the non-specified integrals are taken on [0,+∞)×RN ×Θ). In fact, solutions to the Cauchy
problem (1)-(3) satisfy the first equation in (1) also in the strong sense, i.e., they belong to
W 1,2

p,loc((0,+∞)×RN ×Θ) for all p > 1, where, here and in the sequel, W 1,2
p (resp. W 1,2

p,loc) is the
set of functions that belong to Lp (resp. Lp

loc) together with their first order derivative with
respect to t and their partial derivatives up to order 2 with respect to (x,θ). In particular,
solutions belong to W 1

p,loc((0,+∞)×RN ×Θ) with respect to all variables (t,x,θ). Hence, by
Morrey’s inequality, the solutions are continuous, so (2) holds for every (t,x) ∈ [0,+∞)×RN

(and not just almost everywhere). Moreover, since the initial datum will be assumed to be
continuous, the initial condition is attained in the classical sense too. However, without further
regularity assumptions on r, the solution u cannot be expected to be more than Lipschitz
continuous in the (x,θ) variables, so the weak formulation of the Cauchy problem is needed
to give meaning to the boundary condition in (1).

Theorem 2.1 (Well-posedness). Let r ∈ L∞
loc(RN ×Θ) be bounded from above (not necessarily

periodic in x), and let u0 ∈ C0(RN ×Θ)∩L∞(RN ;L1(Θ)) be nonnegative and bounded. Then,
there exists a unique solution u to the Cauchy problem (1)-(3). Moreover, u and ρ are bounded
and nonnegative, and if u0 ̸≡ 0, then they are strictly positive.

2.3 Long-time behaviour of the solution
The long-time behaviour of solutions of the Fisher-KPP equation is characterised by the sign
of the principal eigenvalue of the linearised operator around the null state. This is a well-
known fact when the problem is set on a smooth bounded domain, see e.g. [14]. This is also
known if the operator is periodic, thanks to [8]. In both cases, the principal eigenvalue is
provided by the classical Krein-Rutman theory. The characterisation has been extended in [9]
to the non-compact setting by using the notion of the generalised principal eigenvalue inspired
by [5]. It has then been employed in several different frameworks, see e.g. [1, 2, 6, 22, 23, 25].
This notion is required to study our model when Θ =RP .

More precisely, we call L[r] the linearised operator associated with (1), that is

L[r]ϕ := ∆xϕ+∆θϕ+ r(x,θ)ϕ.

We emphasise that L[r] is a local operator.

Definition 2.2. The generalised principal eigenvalue of L[r] is

λ[r] := inf
{
λ ∈R / ∃ϕ > 0, L[r]ϕ ⩽ λϕ in RN ×Θ, ν ·∇θϕ ⩾ 0 on RN ×∂Θ

}
.
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In the above definition, and throughout the paper, the functions ϕ are understood to belong
to W 2

p,loc(RN × Θ) for some p > 1 + N + P , hence to be C1 up to the boundary by Morrey’s
embedding, so the boundary condition holds in the classical sense.

Definition 2.2 applies to both cases Θ bounded and Θ = RP (in the latter, the boundary
condition is ignored, as usual). We point out that, even in the case of bounded Θ, the domain
of the functions ϕ on which the operator acts is not compact, since we do not assume ϕ to
be periodic in x. However, despite the lack of compactness, it turns out that λ[r] is indeed
a generalised principal eigenvalue for the operator L[r] acting on spatially-periodic functions,
in the sense that it admits a positive eigenfunction in that space.

Proposition 2.3. Let r satisfy (7) and let λ[r] be the generalised principal eigenvalue of L[r]
given by Definition 2.2. There exists a solution φ of the problem

L[r]φ(x,θ) = λ[r]φ(x,θ), (x,θ) ∈RN ×Θ,

ν ·∇θφ(x,θ) = 0, (x,θ) ∈RN ×∂Θ,

φ(x,θ) > 0, (x,θ) ∈RN ×Θ,

φ is 1-periodic in x.

(10)

We call any solution φ of (10) a principal eigenfunction associated with λ[r]. When Θ is
bounded, the Krein-Rutman theory [27] provides the existence, uniqueness and simplicity of
the principal eigenvalue for problem (10), which furthermore can be expressed through the
Rayleigh quotient; in such a case, Proposition 2.3 asserts that this principal eigenvalue is
characterised by the formula in Definition 2.2. In the case where Θ is unbounded, the Krein-
Rutman theory does not apply and indeed neither simplicity nor uniqueness hold for the eigen-
problem (10), and there is actually a half-line of eigenvalues admitting positive eigenfunctions,
see [12]. This is why we call ϕ in (10) “a” – rather than “the” – principal eigenfunction.

Making use of some results concerning the generalised principal eigenvalue, we are able to
establish the “standard” extinction/persistence dichotomy for the the long-time behaviour of
the solution for our model.

Theorem 2.4. Let r satisfy (7)-(8) and let λ[r] be the generalised principal eigenvalue of L[r].
Let u be the solution to (1)-(3) with u0 ∈ C0(RN ×Θ)∩L∞(RN ;L1(Θ)) bounded, nonnegative
and not identically equal to 0.

• If λ[r] < 0, and in addition u0 is compactly supported, then the population gets extinct,
in the sense that

lim
t→+∞

u(t,x,θ) = 0 uniformly in (x,θ) ∈RN ×Θ.

• If λ[r] > 0 then the population persists, in the sense that

liminf
t→+∞

[
sup

x∈RN

ρ(t,x)
]

> 0.
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We point out that the persistence property in the case λ[r] > 0 does not provide us with
a complete description of the long-time behaviour of the solution, but it just ensures that
it stays bounded from below away from zero. In particular, we do not know whether the
solution converges towards a positive stationary state (as in the case without phenotype (5)
or in the spatially homogeneous case with phenotype (6)); for instance, we cannot rule out the
possibility that the solution approaches a time-periodic cycle, which is a behaviour observed
in some nonlocal reaction-diffusion equations, see e.g. [32].

As a matter of fact, the hypothesis that u0 is compactly supported in the persistence result
is not needed in the case Θ bounded, cf. Remark 5.2 below.

Finally, the borderline case λ[r] = 0 is not treated in this work. In some related reaction-
diffusion models, it is known that when the principal eigenvalue of the linearised operator
is zero, the population gets extinct. This is the case when the phenotype is not taken into
account [8], or when the phenotype is taken into account through a quadratically decreasing
Fisher geometric model and the spatial structure is discrete, with the spatial variable limited
to two possible values [25].

2.4 Influence of the heterogeneity of the environment and of the
diffusivity

We introduce two positive parameters L,d in our model by replacing the first equation in (1)
by either

∂tu = ∆xu+∆θu+u(r(x/L,θ)−ρ(t,x)) , t > 0, (x,θ) ∈RN ×Θ,

or
∂tu = d∆xu+∆θu+u(r(x,θ)−ρ(t,x)) , t > 0, (x,θ) ∈RN ×Θ.

The quantity 1/L represents the frequency of oscillations of the landscape, while the diffusion
coefficient d accounts for the mobility of individuals. Observe that one can pass from one
of the above equations to the other by a simple change of variable. It is clear that all our
previously stated results hold true if one replaces the 1-periodicity in x with the L-periodicity,
hence the same is true for the model with diffusivity d.

Let us write for short
rL(x,θ) := r

(
x

L
,θ
)

.

Thus, extinction or persistence for the model with L-periodicity are determined by the sign
of the generalised principal eigenvalue λ[rL] given by Definition 2.2, while for the model with
spatial diffusivity d they are determined by the sign of the generalised principal eigenvalue
λd[r] of the linearised operator

Ld[r] := d∆x +∆θ + r.

We derive the following.

Proposition 2.5. Let r satisfy the assumptions (7)-(8) and let λ[rL] and λd[r] denote the
generalised principal eigenvalue of the linearised operator L[rL] and Ld[r] respectively.

9



(i) The function L 7→ λ[rL] is continuous and nondecreasing on (0,+∞).

(ii) The function d 7→ λd[r] is continuous and nonincreasing on (0,+∞).

This result, combined with Theorem 2.4, shows that persistence becomes harder for the
population if either the frequency of oscillations of the landscape or the mobility of individuals
increase. This means that habitat fragmentation is armful for the species, and the same is
true for the mobility. While the first fact is rather intuitive, the second one can be surprising,
because one might expect that a faster diffusivity could provide higher chances of adaptation.
Our result shows that in our context, the opposite is true. From a modelling perspective,
this is in accordance with the conclusion of [25, Proposition 2.7.i)], where a spatially discrete
system is considered and an analogous monotonicity property with respect to the migration
rate is obtained.

2.5 A variant with heterogeneous diffusion
For simplicity, we have considered that only the fitness of an individual is affected by its
position and its phenotype. We may also deem it relevant to assume that the mobility and the
mutation rate are anisotropic and depend on the position and the phenotype of the individual.
This leads to the following extension of (1):

∂tu = ∇x · (a(x,θ)∇xu)+∇θ · (µ(x,θ)∇θu)

+u
(

r(x,θ)−
∫

Θ
u(t,x,σ)dσ

)
, t > 0, (x,θ) ∈RN ×Θ,

ν · (µ(x,θ)∇θu) = 0, t > 0, (x,θ) ∈RN ×∂Θ,

u(0,x,θ) = u0(x,θ), (x,θ) ∈RN ×Θ,

where the functions a,µ are ranged in two sets of uniformly positive definite, symmetric
matrices of size N ×N and P ×P respectively, and are 1-periodic in the x variable. One may
check that our arguments remain valid in this setting: the problem is well-posed, the long-time
behaviour is described by the sign of the generalised principal eigenvalue (cf. Theorems 2.1
and 2.4), and the latter is continuous and nonincreasing with respect to the frequency of
oscillations of the habitat and to the amplitude of the spatial diffusivity (cf. Proposition 2.5).

3 Well-posedness of the model (Theorem 2.1)
Proof of Theorem 2.1. We derive the well-posedness of the Cauchy problem on the parabolic
domain [0,T ] ×RN × Θ, with arbitrary T > 0. By uniqueness, this will provide us with a
solution on the entire [0,+∞) ×RN × Θ. The proof is based on a contraction argument. To
make it work, we start by deriving a priori bounds on u and ρ.

In the sequel, the functions r and u0 fulfil the hypotheses of the theorem.
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Step 1. Global boundedness of u and ρ. Let u : [0,+∞) ×RN × Θ → R be a solution
to (1)-(3) (in the weak sense, i.e., u ∈ L∞((0,T ) ×RN × Θ) ∩ L∞((0,T ) ×RN ;L1(Θ)) for all
T > 0 and (9) holds). Since u,ρ are bounded, locally in time, we can apply the parabolic
maximum principle to (1), treating ρ as a datum, and infer that u(t,x,θ) ⩾ 0 for all t > 0,
(x,θ) ∈RN × Θ. Moreover, the strict inequality holds as soon as u0 ̸≡ 0, owing to the strong
maximum principle. Furthermore, it holds that

∂tu ⩽ ∆xu+∆θu+(r̄ −ρ)u, t > 0, (x,θ) ∈RN ×Θ, (11)

where r̄ := supRN ×Θ r, which is finite by assumption. Again, this is understood in the weak
sense, namely, the inequality “⩽” holds in (9) for nonnegative ϕ’s. Restricting to ϕ independent
of θ in this weak formulation, and taking first the integral on θ over Θ by Fubini’s theorem,
one finds that the function ρ satisfies in the weak sense

∂tρ ⩽ ∆ρ+(r̄ −ρ)ρ, t > 0, x ∈RN ,

together with the initial condition ρ(0,x) =
∫
Θ u0(x,σ)dσ. From this, one gets, again by

comparison,
∀t > 0, ∥ρ(t, ·)∥∞ ⩽ A := max{∥ρ(0, ·)∥∞, r̄}. (12)

Last, we show that u is globally bounded. For this, we treat the term ρ as a given
coefficient, that we know being bounded, of the equation in (1), which is then seen as a local
linear parabolic equation.

We first deal with the case Θ bounded. We use the parabolic Harnack inequality. In
order to rule out the boundary of Θ, we use the C2-regularity of ∂Θ to extend the solution
u in the θ variable by orthogonal reflection with respect to ∂Θ and get a function defined
for all θ on an open set Θ̃ containing Θ. The extended function is a solution of a parabolic
equation of the same type as the one in (1), with ∆θ extended outside Θ by an elliptic operator
with coefficients depending on Θ, hence regular (Lipschitz-continuous). See e.g. the proof of
Theorem 3.1 in [12]. This allows us to apply the parabolic interior Harnack inequality, cf. [28,
Theorem 1.1], which, for any R > 0, gives a constant CR > 0 such that

∀t ⩾ 1, ∀x ∈RN , sup
B
RN (x,R)×Θ

u(t, ·, ·) ⩽ CR inf
B
RN (x,R)×Θ

u(t+1, ·, ·), (13)

where BRN (x,R) is the open ball in RN with centre x and radius R. We emphasise that the
constant CR is independent of t and x, because the coefficients of the equation (including ρ)
are uniformly bounded. Since ρ(t+1,x) ⩾ |Θ| infΘ u(t+1,x, ·), with |Θ| denoting the measure
of Θ, we deduce in particular

∀t ⩾ 1, ∀x ∈RN , sup
Θ

u(t,x, ·) ⩽ C1 inf
Θ

u(t+1,x, ·) ⩽ C1
|Θ|

ρ(t+1,x),

hence the global boundedness of u follows from the one of ρ.
Now, let us deal with the case Θ =RP . We see u as a subsolution to the equation (11) and

we apply the local maximum principle, see e.g. [30, Theorem 7.36]: there exists a constant
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C > 0 such that for any t ⩾ 2, x0 ∈RN and θ0 ∈RP , there holds:

sup
(t−1/2, t)×B

RN (x0,1/2)×B
RP (θ0,1/2)

u ⩽ C
∫ t

t−1

∫
B
RN (x0,1)

∫
B
RP (θ0,1)

u.

We emphasise that the constant C is independent of t and x0, because the coefficients of the
equation (11) (including ρ) are uniformly bounded. We obtain in particular:

u(t,x0, θ0) ⩽ C
∫ t

t−1

∫
B
RN (x0,1)

ρ ⩽ C|BRN (x0,1)| supρ,

where |BRN (x0,1)| denotes the volume of BRN (x0,1). Then, ρ being uniformly bounded, we
conclude that u is uniformly bounded too.

Step 2. Contraction argument. Now, we fix an arbitrary T > 0 and we take τ ∈ (0,T )
to be determined later. For a given function w : [0, τ ]×RN → L1(Θ), we set

ρ[w](t,x) :=
∫

Θ
w(t,x,σ)dσ.

Then, we consider the set of functions K defined by

K :=
{
w ∈ L∞([0, τ ]×RN ;L1(Θ)) / 0 ⩽ ρ[w](t,x) ⩽ 2Aer̄ T for (t,x) ∈ [0, τ ]×RN

}
.

Next, for a given initial datum ϖ ∈ L∞(RN ×Θ)∩L∞(RN ;L1(Θ)) satisfying

ϖ ⩾ 0 in RN ×Θ, ess sup
x∈RN

∥ϖ(x, ·)∥L1(Θ) ⩽ Aer̄ T , (14)

and for given w ∈ K, we consider the following problem:

(Ew)


∂tu = ∆xu+∆θu+(r(x,θ)−ρ[w](t,x))u, (t,x,θ) ∈ (0, τ)×RN ×Θ,

ν ·∇θu = 0, (t,x,θ) ∈ (0, τ)×RN ×∂Θ,

u(0,x,θ) = ϖ(x,θ), (x,θ) ∈RN ×Θ.

Since r is bounded from above and ρ[w] is bounded, the comparison principle holds for the
above problem, and it is standard that it admits a unique bounded weak solution (in the
sense precised at the beginning of Section 2.2), which we call uw. It also follows that uw ∈
W 1,2

p,loc((0, τ ] ×RN × Θ) and that it is nonnegative, and thus by the same argument as in the
Step 1, the function ρ[uw](t,x) fulfils in the weak sense

∂tρ[uw] ⩽ ∆ρ[uw]+ (r̄ −ρ[w])ρ[uw], t ∈ (0, τ), x ∈RN .

Then, owing to (14), we derive

∀t ∈ [0, τ ], ∀x ∈RN , ρ[uw](t,x) ⩽ Aer̄ (T +t) .

12



It follows that uw belongs to K provided er̄ τ ⩽ 2.
Next, take w1,w2 ∈ K. Let us write for short u1 := uw1 , u2 := uw2 and ρ1 := ρ[w1], ρ2 :=

ρ[w2]. The function v := u1 −u2 vanishes identically at t = 0 and satisfies
∂tv −∆v = rv −ρ1v − (ρ1 −ρ2)u2

⩽ (r −ρ1)v +∥w1 −w2∥L∞([0,τ ]×RN ;L1(Θ))u2 . (15)
Let v̄ be the solution of the equation

∂tv̄ −∆v̄ = r̄ v̄ +∥w1 −w2∥L∞([0,T ]×RN ;L1(Θ))u2, (t,x,θ) ∈ (0, τ)×RN ×Θ,

with Neumann boundary conditions and initial datum identically equal to 0. On the one
hand, v̄ is nonnegative, so we have r̄v̄ ⩾ (r−ρ1)v̄; thus v̄ is a supersolution of the equation (15),
for which v is a subsolution. We deduce by comparison that v ⩽ v̄. On the other hand, in
the case Θ bounded, as done before, we can integrate the equation for v̄ on Θ. Hence, since
u2 ∈ K, we get

∂tρ[v̄]−∆ρ[v̄] = r̄ ρ[v̄]+∥w1 −w2∥L∞([0,T ]×RN ;L1(Θ))ρ[u2]
⩽ r̄ ρ[v̄]+∥w1 −w2∥L∞([0,T ]×RN ;L1(Θ)) ×2Aer̄ T .

It follows that, for τ sufficiently small, only depending on r̄, A and T , it holds

∀t ∈ [0, τ ], ∀x ∈RN , ρ[v̄](t,x) ⩽ 1
2∥w1 −w2∥L∞([0,T ]×RN ;L1(Θ)) .

Instead, in the case Θ =RP , one can explicitly compute the solution v̄ through the heat kernel
and check that the above estimate holds true, again for τ depending on r̄, A and T . This gives
a one-side inequality for ρ[v]. The same argument for −ρ[v] = ρ[−v] follows reverting the roles
of u1 and u2. In conclusion, we have shown that the mapping w 7→ uw is a contraction from the
closed set K into itself, with respect to the L∞([0, τ ] ×RN ;L1(Θ)) norm, for any τ ∈ (0, τ0],
where τ0 > 0 is sufficiently small and depends only on r̄, A and T . Therefore, w 7→ uw has a
unique fixed point, which implies that (1) has a unique solution on (0, τ) ×RN × Θ for any
τ ∈ (0, τ0] and any initial condition ϖ satisfying (14).

Step 3. Conclusion. Step 2 provides us with a unique solution u to problem (1) (0, τ0) ×
RN ×Θ with initial datum u0. Take ε ∈ (0,1/2) and consider the new initial datum ϖ = u((1−
ε)τ0, ·, ·). By (12), ϖ satisfies (14), hence by Step 2 the corresponding problem Ew admits a
unique solution on (0, τ0)×RN ×Θ, which overlaps with u(·+(1−ε)τ0, ·, ·) on [0, ετ0)×RN ×Θ.
We may thus extend u to a solution of (1) for t ∈ [0,(2− ε)τ0). Iterating this argument, we
have that u solves (1) for all times t ∈ (0,T ], hence for all t > 0, by the arbitrariness of T . We
further know by Step 1 that u is globally bounded, together with its associated function ρ.

4 Properties of the principal eigenfunction and eigen-
value

Before studying the long-time behaviour of the solution, we derive some properties of the
generalised principal eigenvalue λ[r] of Definition 2.2.
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We start with the case Θ bounded. We derive a result containing two statements: the
first one follows from the arguments of [12] and provides us with an approximation of the
principal eigenvalue λ[r] by principal eigenvalues in the domains BRN (0,R)×Θ under mixed
Dirichlet-Neumann boundary conditions. The second statement asserts that λ[r] coincides
with the standard periodic principal eigenvalue on RN × Θ. This implies in particular that
Proposition 2.3 holds in the case Θ bounded.

Proposition 4.1. Assume Θ is bounded and has C2 boundary. Let r satisfy (7).

(i) For all R > 0, the mixed eigenproblem
L[r]φm

R = λm
R φm

R in BRN (0,R)×Θ,

ν ·∇θφm
R = 0 over BRN (0,R)×∂Θ,

φm
R = 0 over (∂BRN (0,R))×Θ,

φm
R > 0 in BRN (0,R)×Θ,

admits a unique solution λm
R ∈ R and a unique (up to a scalar multiple) generalised

solution φm
R ∈ W 1

2 (BRN (0,R) × Θ) ∩ C0(BRN (0,R)×Θ). Moreover, the function R 7→
λm

R is increasing and satisfies λm
R → λ[r] as R → +∞. Finally, the following Rayleigh

formula holds:

λm
R = max

ϕ∈XR


−
∫

B
RN (0,R)×Θ

|∇ϕ|2 +
∫

B
RN (0,R)×Θ

rϕ2

∫
B
RN (0,R)×Θ

ϕ2

 ,

where

XR :=
{
ϕ ∈ W 1

2 (BRN (0,R)×Θ)∩C0(BRN (0,R)×Θ) / ϕ ≡ 0 over ∂BRN (0,R)×Θ
}

.

(ii) The problem 

L[r]φ(x,θ) = λφ(x,θ) in RN ×Θ,

ν ·∇θφ(x,θ) = 0 over RN ×∂Θ,

φ(x,θ) > 0 in RN ×Θ,

φ is 1-periodic in x,

admits as a solution the unique eigenvalue λ = λ[r] and a unique (up to a scalar multiple)
eigenfunction φ ∈ W 1

2,loc(RN × Θ). In particular, the generalised principal eigenvalue
given by Definition 2.2 coincides with the classical x-periodic principal eigenvalue of the
above problem.

Proof. Statement (i). We point out that the eigenproblem stated in (i) is not completely
standard due to the presence of the “corners” ∂BRN (0,R))×∂Θ. However, the existence and
uniqueness up to a scalar multiple of φm

R is derived in [12, Theorem 3.1] in dimension N = 1.
The arguments, which rely on the solvability, in the generalised sense, of the mixed boundary

14



value problem (see e.g. the Notes to Chapter 8 in [20]) and on the construction of some barriers
to get continuity up to the corners, holds true without modification in the higher dimensional
case. The monotonicity and the convergence of λm

R to λ[r] are due to [12, Proposition 1] (again
in dimension N = 1, but the argument works in arbitrary dimension).

We now show the Rayleigh formula for λm
R . Let W 1

2,0(BRN (0,R) × Θ) denote the closure
in W 1

2 (BRN (0,R)×Θ) of{
ϕ ∈ C1(BRN (0,R)×Θ) / ϕ ≡ 0 over ∂BRN (0,R)×Θ

}
.

By the classical elliptic theory (see e.g. the Notes to Chapter 8 in [20]), for all f ∈ L2(BRN (0,R)×
Θ), there exists a unique weak solution ϕ ∈ W 1

2,0(BRN (0,R)×Θ) to the mixed boundary value
problem 

∆ϕ+(r − r̄)ϕ = f in BRN (0,R)×Θ,

ν ·∇ϕ = 0 over BRN (0,R)×∂Θ,

ϕ = 0 over ∂BRN (0,R)×Θ,

where r̄ = supr. Let T : L2(BRN (0,R) × Θ) → L2(BRN (0,R) × Θ) be the operator which
assigns to f the solution ϕ. Owing to the C2 regularity of Θ and to the Neumann boundary
condition, one may extend ϕ by reflection to a larger domain BRN (0,R) × Θ̃ with Θ ⊂ Θ̃,
which satisfies there a uniformly elliptic equation. This allows one to apply standard elliptic
estimates and a compact injection theorem to infer that the operator T is compact. See e.g. the
argument of Step 2 of the proof of [12, Theorem 3.1]. Thus, the operator T being symmetric,
there exists an orthonormal basis composed of eigenvectors of T . Those eigenvectors are also
eigenvectors of the mixed eigenproblem

L[r]ϕ = λkϕ in BRN (0,R)×Θ,

ν ·∇θϕ = 0 over BRN (0,R)×∂Θ,

ϕ = 0 over (∂BRN (0,R))×Θ,

for some eigenvalues λk ∈R. Therefore, the Rayleigh formula holds for the mixed eigenprob-
lem, see e.g. the proof of [17, Theorem 6.5.2]:

λm
R = max

ϕ∈W 1
2,0(B

RN (0,R)×Θ)

−
∫
RN ×Θ

|∇ϕ|2 +
∫
RN ×Θ

rϕ2∫
RN ×Θ

ϕ2

 .

We point out that the max is reached by the principal eigenfunction φm
R , which belongs

to the space XR defined in the statement of the proposition. Therefore, we may replace
W 1

2,0(BRN (0,R)×Θ) by the subspace XR in the variational formula.
Statement (ii). The classical Krein-Rutman theory [27] (see e.g. the proof of [12, The-
orem 5.1]) yields the uniqueness and simplicity of the Neumann/periodic eigenproblem of
statement (ii). Namely, the problem admits a unique eigenvalue λ and a unique (up to a
scalar multiple) eigenfunction φ. What we need to show is that λ = λ[r].
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The inequality λ[r] ⩽ λ directly follows from Definition 2.2. In order to show the reverse
inequality, we make use of the Rayleigh formula for λm

R . Consider a family of cutoff functions
(ζR)R>1 in C∞(RN ) satisfying ζR ≡ 1 in BRN (0,R − 1), ζR ≡ 0 on ∂BRN (0,R), 0 ⩽ ζR ⩽ 1
and ∥∇ζR∥∞ ⩽ 2. We then apply the Rayleigh formula given in (i) to the the test function
ϕ = φζR ∈ XR. Let us call for short BR := BRN (0,R) and, for R > 1,

UR :=
⋃

h∈ZN s.t. C+{h}⊂BR−1

C +{h} ,

where C := [0,1]N is the periodic cell. We get:

λm
R ⩾

−
∫

UR×Θ
|∇φ|2 +

∫
UR×Θ

rφ2 −
∫

(BR\UR)×Θ

(
|∇(φζR)|2 + |r|φ2

)
∫

BR×Θ
φ2

.

Using the 1-periodicity of φ and r, and noticing that UR contains exactly |UR| distinct cells
C +{h}, h ∈ ZN , we obtain

λm
R ⩾

|UR|
(

−
∫

C×Θ
|∇φ|2 +

∫
C×Θ

rφ2
)

−|BR \UR|× |Θ|
[
sup(|∇φ|+2φ)2 + |r|φ2

]
|UR|

∫
C×Θ

φ2 + |BR \UR|× |Θ| supφ2
,

where | · | stands for the volume. Therefore, since |BR\UR|
|UR| → 0 as R → +∞, letting R → +∞

in the above expression yields

λm
R ⩾

−
∫

C×Θ
|∇φ|2 +

∫
C×Θ

rφ2∫
C×Θ

φ2
,

and the right-hand side is equal to λ, thanks to the standard Rayleigh formula for λ (or even
by direct computation, integrating by parts). Thus, by (i) we conclude λ[r] ⩾ λm

R ⩾ λ.

Let us turn to the case Θ =RP . Using again the results from [12], we now show that the
principal eigenvalue λ[r] of L[r] coincides with the limit as R → +∞ of both the Dirichlet
principal eigenvalue in the domain BRN+P (0,R), and the x-periodic principal eigenvalue in
the domain RN × BRP (0,R). These last two notions of principal eigenvalue are provided by
the classical Krein-Rutman theory [27]. Namely, the eigenproblems

L[r]φd
R = λd

Rφd
R in BRN+P (0,R),

φd
R = 0 over ∂BRN+P (0,R),

φd
R > 0 in BRN+P (0,R),

(16)

and 
L[r]φR = λRφR in RN ×BRP (0,R),
φR = 0 over RN ×∂BRP (0,R),
φR > 0 in RN ×BRP (0,R),
φR is 1-periodic in x,

(17)
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admit a unique eigenpair (λd
R,φd

R) and (λR,φR) respectively (uniqueness for φd
R and φR is

understood up to a scalar multiple).

Proposition 4.2. Assume Θ = RP and let r satisfy (7). Let (λd
R,φd

R) and (λR,φR) be the
eigenpairs of the problems (16) and (17) respectively.

(i) The functions R 7→ λd
R and R 7→ λR are nondecreasing and satisfy

λd
R → λ[r], λR → λ[r], as R → +∞.

(ii) The principal eigenfunctions φR, normalised by φR(0,0) = 1, converge locally uniformly,
as R → +∞, to a function φ ∈ W 2

p,loc(RN ×RP ) satisfying the periodic principal eigen-
problem 

L[r]φ = λφ in RN ×RP ,

φ > 0 in RN ×RP ,

φ is 1-periodic in x.

Proof. On the one hand, [12, Proposition 4] implies that λd
R → λ[r] as R → +∞ and that

R 7→ λd
R is nondecreasing. On the other hand, [12, Proposition 5] and its proof imply that

R 7→ λR is nondecreasing and that there exist λ ∈ R and φ ∈ W 2
p,loc(RN ×RP ) such that

λR → λ, φR → φ locally uniformly, and
L[r]φ = λφ in RN ×RP ,

φ > 0 in RN ×RP ,

φ is 1-periodic in x.

By [12, Proposition 6], we also have λ = λ[r] 1 (in the notation of [12], λ = −λ1,l and λ[r] =
−λ1). This concludes the proof.

Statements (ii) of Propositions 4.1 and 4.2 yield Proposition 2.3 in both cases Θ bounded
and unbounded.

5 Long-time behaviour of the solution (Theorem 2.4)
We start with a technical lemma which, together with hypothesis (8), will allow us to translate
the L1

loc(Θ) convergence of u to 0 into L1(Θ) convergence. This will be used to prove the
extinction result in the case Θ =RP and, curiously, also the persistence property. In contrast
with Harnack-type inequalities, the proof exploits the nonlinear term of the equation.

1 We point out that although these results are stated in [12] for bounded potential r, the proofs rely on [11],
which only requires r to be locally bounded, which is the case in our setting.
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Lemma 5.1. Let Θ =RP and let r satisfy (7)-(8). Let u solve (1)-(3) with u0 ∈ C0(RN ×Θ)∩
L∞(RN ;L1(Θ)) nonnegative and not identically equal to 0. For given t0 ⩾ 0 and τ,M > 0,
call

H := r̄ sup
s∈(t0,t0+τ), x∈RN

∫
∥σ∥⩽M

u(s,x,σ)dσ +∥ρ∥∞ sup
x∈RN , ∥θ∥>M

r+(x,θ),

where r̄ := sup
RN ×RP

r, and r+ := max{r,0} denotes the positive part of r. Then it holds that

sup
x∈RN

ρ(t0 + τ,x) ⩽
√

H coth
(√

H τ +arcoth
(

∥ρ∥∞ +
√

H√
H

))
. (18)

Moreover, the expression at the right-hand side in (18) is increasing with respect to H, for
all τ ⩾ 0.

Proof. We recall that Theorem 2.1 ensures that both u and ρ are bounded. Take t0 ⩾ 0,
τ,M > 0, and define H as in the statement of the lemma. As in the proof of Theorem 2.1,
restricting to θ-independent test functions in the weak formulation (9), and using Fubini’s
theorem, one finds that the function ρ satisfies in the weak sense

∂tρ = ∆xρ+
∫
RP

r(x,σ)u(t,x,σ)dσ −ρ2, t > 0, x ∈RN . (19)

For t ∈ (t0, t0 + τ) and x ∈RN , we see that

∂tρ−∆xρ ⩽ r̄
∫

∥σ∥⩽M
u(t,x,σ)dσ +∥ρ∥∞ sup

x∈RN , ∥θ∥>M

r+(x,θ)−ρ2 ⩽ H −ρ2.

Let V be the solution of V ′ = H −V 2, with initial datum V (t0) = ∥ρ∥∞ +
√

H. We point out
that coth′ = 1− coth2; thus

∀t ⩾ 0, V (t0 + t) =
√

H coth
(√

Ht+arcoth
(

∥ρ∥∞ +
√

H√
H

))
.

Moreover, ρ(t0,x) ⩽ V (t0), so by the parabolic comparison principle, ρ(t0 + t,x) ⩽ V (t0 + t)
for t ∈ [0, τ ] and x ∈RN . The inequality (18) is proved.

Finally, Grönwall’s inequality implies that V is strictly increasing with respect to H. The
proof is concluded.

Proof of Theorem 2.4, item 1. Assume that λ[r] < 0. Let φ > 0 be a generalised principal
eigenfunction corresponding to λ[r], i.e. a solution of (10). The function eλ[r]tφ(x,θ) is 1-
periodic in x and it is a positive solution of the linear equation

∂tv = ∆xv +∆θv + r(x,θ)v,

and additionally fulfils the boundary condition ν ·∇θv = 0 if Θ is bounded. The function u is a
subsolution of the above equation. Moreover, since u0 has a compact support in RN ×Θ, and
φ > 0 on RN ×Θ (owing to the Hopf lemma in the case Θ bounded), there exists a large a > 0
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such that aφ ⩾ u0. It follows from the comparison principle that u(t,x,θ) ⩽ aeλ[r]tφ(x,θ) for
all t ⩾ 0, (x,θ) ∈RN ×Θ. This concludes the proof in the case Θ bounded. When Θ =RP , we
deduce that u(t,x,θ) → 0 as t → +∞, uniformly in x ∈RN and locally uniformly in θ ∈RP .
It then follows from Lemma 5.1 and assumption (8) that ρ(t,x) → 0 as t → +∞, uniformly in
x ∈RN , which implies in turn, owing to the Harnack inequality, that u(t,x,θ) → 0 as t → +∞,
uniformly in θ ∈RP as well.

Remark 5.2. The hypothesis that u0 is compactly supported is only used in the above proof in
order to ensure the inequality aφ ⩾ u0 for large enough a. However, when Θ is bounded, this
property automatically holds because inf φ > 0 due to the periodicity in x and the Hopf lemma.
Thus, when Θ is bounded, the assumption that u0 has compact support can be dropped. When
Θ =RP , again due to the periodicity in x of φ, the assumption that u0 has compact support
can be weakened to the existence of some A > 0 such that the support of u0 is included in
RN ×BRP (0,A).

We now turn to the proof of the persistence property. In this case we cannot neglect the
nonlocal nonlinear term −ρu, as we have done in the proof of extinction, so we need to handle
it in some way, despite it prevents the validity of the maximum principle. We treat separately
the case where Θ is bounded and the case where Θ is unbounded.

Proof of Theorem 2.4, item 2, when Θ is bounded. We consider a subset of times where ρ ful-
fils a suitable lower bound, namely:

T :=
{

t ∈ [1,+∞) / sup
x∈RN

ρ(t,x) ⩾ λ[r]
2

}
.

Of course, it may happen that T = ∅. We first derive a lower bound for u on the set of times

T +{1} := {t+1 / t ∈ T },

using the parabolic Harnack inequality; next we prove a lower bound for u for times outside

T +[0,1] := {t+ s / t ∈ T , s ∈ [0,1]},

exploiting the principal eigenfunction; we finally derive a lower bound for ρ on T +[0,1].

Step 1. Lower bound for u for on T + {1}. By the definition of T and the positivity
of λ[r], for any t ∈ T there exists xt ∈RN such that ρ(t,xt) ⩾ λ[r]/4. Letting |Θ| denote the
measure of Θ, one then deduces

∀t ∈ T , sup
θ∈Θ

u(t,xt, θ) ⩾ ρ(t,xt)
|Θ|

⩾
λ[r]
4|Θ|

.

Therefore, by the Harnack inequality (13) derived before in the case Θ bounded, one infers
that, for any R > 0, there exists CR > 0 such that

∀t ∈ T , inf
B
RN (xt,R)×Θ

u(t+1, ·, ·) ⩾ 1
CR

sup
Θ

u(t,xt, ·) ⩾
λ[r]

4CR|Θ|
. (20)
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Step 2. Lower bound for u on [1,+∞) \ (T + [0,1]). First of all, we derive an estimate
similar to (20) at time 1. Namely, it follows from the parabolic strong maximum principle
that u(t,x,θ) > 0 for t > 0, x ∈ RN , θ ∈ Θ. Moreover, owing to the Hopf lemma, the Neu-
mann boundary condition prevents u from vanishing on ∂Θ. One deduces in particular that
u(1,x,θ) > 0 for x ∈ RN , θ ∈ Θ. This, together with (20), implies that, for any R > 0, there
exists C ′

R > 0 such that

∀t ∈ T ∪{0}, inf
B
RN (xt,R)×Θ

u(t+1, ·, ·) ⩾ C ′
R, (21)

where we can choose, for instance, x0 = 0. Next, by Proposition 4.1 (and with the same
notations), there exists R̄ > 0, such that λm

R̄
> λ[r]/2. It follows that the associated φm

R̄
,

extended to 0 for x /∈ BRN (0, R̄), is a generalised subsolution of the equation

∂tv = ∆xv +∆θv +v (r(x,θ)−λ[r]/2) , (22)

and fulfils the Neumann boundary condition for θ ∈ ∂Θ. By periodicity, the same is true for
any translation φm

R̄
(·−h, ·) with h ∈ ZN . We normalise φm

R̄
by ∥φm

R̄
∥∞ = 1.

Consider now a time t ∈ [1,+∞)\ (T +[0,1]), that is, t ⩾ 1 and (t−1, t)∩T = ∅. Call

t0 := max{s ⩽ t−1 / s ∈ T ∪{0}}.

On the one hand, we know from (21) that

inf
B
RN (xt0 ,R̄+

√
N)×Θ

u(t0 +1, ·, ·) ⩾ C ′
R̄+

√
N

.

On the other hand, taking h ∈ ZN (depending on t0) such that xt0 − h ∈ C = [0,1]N , we have
that the function φm

R̄
(· − h, ·) vanishes outside BRN (h,R̄) ⊂ BRN (xt0 , R̄ +

√
N) and therefore

C ′
R̄+

√
N

φm
R̄

(·−h, ·) lies below u at time t0 +1. Finally, since (t0 +1, t)∩T = ∅, it follows from
the definition of T that u is a subsolution to (22) on (t0 +1, t)×RN ×Θ. We can then apply
the parabolic comparison principle and infer that C ′

R̄+
√

N
φm

R̄
(·−h, ·) lies below u for all times

in [t0 +1, t], hence in particular

sup
x∈RN

(
min
θ∈Θ

u(t,x,θ)
)
⩾ C ′

R̄+
√

N
min
θ∈Θ

φm
R̄

(0, θ) > 0.

This immediately gives a uniform lower bound for supx∈RN ρ(·,x) on [1,+∞) \ (T + [0,1]).
Thus, in order to conclude the proof, it remains to get an estimate on T +[0,1].

Step 3. Lower bound for ρ on T + [0,1]. Integrating with respect to θ the weak formu-
lation (9), one ends up with the equation (19) for ρ. We rewrite it as

∂tρ = ∆xρ+ r̃(x,θ)ρ−ρ2, t > 0, x ∈RN ,

where r̃ satisfies inf r ⩽ r̃ ⩽ supr (recall that r is bounded in the case Θ bounded). Standard
parabolic estimates and Morrey’s inequality then yield ρ ∈ C0,α([1,+∞) ×RN ) (for any α ∈
(0,1)). Hence ρ is uniformly continuous on [1,+∞)×RN .
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Consider t ∈ T and, as in the Step 1, let xt be such that ρ(t,xt) > λ[r]/4. By the uniform
continuity of ρ, there exists δ > 0 independent of t such that, for all t ∈ T , we have ρ(t, ·) >
λ[r]/8 on BRN (xt, δ). Therefore, calling w the solution to

∂tw = ∆xw +(inf r)w −w2, t > 0, x ∈RN ,

with initial datum equal to λ[r]/8 on BRN (0, δ) and 0 outside, we have that

min
s∈[t,t+1]

ρ(s,xt) ⩾ min
s∈[0,1]

w(s,0),

which is positive due to the strong maximum principle, and independent of t. This is the
uniform lower bound on T +[0,1] which concludes the proof.

Proof of Theorem 2.4, item 2, when Θ =RP . Owing to Lemma 5.1, we are able to prove the
result following essentially the same strategy as in the case Θ bounded. However, several
modifications are needed.

First of all, by the positivity of λ[r] and hypothesis (8), there exists M > 0 such that

r(x,θ) <
λ[r]2

8∥ρ∥∞
for all x ∈RN , ∥θ∥ ⩾ M (23)

(recall that ρ is bounded, as well as u). We call as usual r̄ := supr. We then define

T :=
{

t ∈ [1,+∞) / sup
x∈RN

∫
∥σ∥⩽M

u(t,x,σ)dσ ⩾
λ[r]2
8r̄

}
.

As before, but in a slightly more general setting, we will derive a uniform lower bound for u
on the set of times T +{T}, depending on T > 0. In contrast with the case Θ bounded, using
a principal eigenfunction of the linearised operator, we will be able to obtain a lower bound
for u outside T + [0,T ] only for T sufficiently large. We will then conclude by an estimate
for u on T +[0,T ].

Step 1. Lower bound for u on T +{T}, for T > 0. For t ∈ T , we take xt ∈RN such that
∫

∥σ∥⩽M
u(t,xt,σ)dσ ⩾

λ[r]2
16r̄

.

We use the standard interior Harnack inequality which gives, for any T,R > 0, a constant
CT,R > 0 such that

∀t ∈ T , sup
B
RP (0,R)

u(t,xt, ·) ⩽ CT,R inf
B
RN+P ((xt,0),R)

u(t+T, ·, ·).
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One then finds, for R ⩾ M ,

∀t ∈ T , inf
B
RN+P ((xt,0),R)

u(t+T, ·) ⩾ 1
CT,R

sup
B
RP (0,R)

u(t,xt, ·)

⩾
1

CT,R
sup

B
RP (0,M)

u(t,xt, ·)

⩾
1

CT,R|BRP (0,M)|

∫
∥σ∥⩽M

u(t,xt,σ)dσ

⩾
λ[r]2

16r̄CT,R|BRP (0,M)| .

Step 2. Lower bound for u on [T,+∞)\(T +[0,T ]), for T sufficiently large. Consider
an arbitrary quantity T > 0, that we will fix later. We start by deriving a lower bound for u
at time T . This is simply given by the parabolic strong maximum principle, which ensures
that u > 0 on (0,+∞)×RN ×RP . Thus, owing to Step 1, we deduce that for any T > 0 and
R ⩾ M , there exists C ′

T,R > 0 such that

∀t ∈ T ∪{0}, inf
B
RN+P ((xt,0),R)

u(t+T, ·, ·) ⩾ C ′
T,R, (24)

where we have set, say, x0 := 0.
Next, by Proposition 4.2 there exists R̄ ⩾ M such that λd

R̄
> 3λ[r]/4. It follows that the

associated φd
R̄

, extended to 0 outside BRN+P (0, R̄), is a generalised subsolution of the equation

∂tv = ∆xv +∆θv +v (r(x,θ)−3λ[r]/4) . (25)

By periodicity, the same is true for each of its translations φd
R̄

(· − h, ·) by h ∈ ZN . We nor-
malise φd

R̄
by ∥φd

R̄
∥∞ = 1.

Consider now a time t ∈ [T,+∞)\ (T +[0,T ]), that is, t ⩾ T and (t−T,t]∩T = ∅. Call

t0 := max{s ⩽ t−T / s ∈ T ∪{0}}.

On the one hand, we know from (24) that

inf
B
RN+P ((xt0 ,0),R̄+

√
N)

u(t0 +T, ·, ·) ⩾ C ′
T,R̄+

√
N

.

On the other hand, taking h ∈ ZN (depending on t0) such that xt0 − h ∈ C = [0,1]N , we have
that the function φd

R̄
(·−h, ·) vanishes outside BRN+P ((h,0), R̄) ⊂ BRN+P ((xt0 ,0), R̄+

√
N). It

follows that C ′
T,R̄+

√
N

φd
R̄

(·−h, ·) lies below u at time t0 +T .
Finally, in order to compare C ′

T,R̄+
√

N
φd

R̄
(·−h, ·) with u at time t, we now show that if T > 0

is chosen large enough, then u is a supersolution to (25) on [t0 + T,t] ×RN ×RP . Take any
τ ∈ [T,t − t0]. We apply estimate (18) from Lemma 5.1. We recall that the expression at the
right-hand side there is increasing with respect to H. In the present case, H is bounded from
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above by λ[r]2/4, thanks to (23) and the definition of T (we have indeed (t0, t0 + τ) ⊂ (t0, t),
which does not intersect T ). This shows that

sup
x∈RN

ρ(t0 + τ,x) ⩽ λ[r]
2 coth

(
λ[r]
2 τ +arcoth

(
2∥ρ∥∞ +λ[r]

λ[r]

))
.

Choosing T large enough so that coth(λ[r]T/2) ⩽ 3/2, the above estimate yields

∀τ ∈ [T,t− t0], ρ(t0 + τ, ·) ⩽ 3λ[r]/4,

which implies in turn that u is a supersolution to (25) on [t0 +T,t]×RN ×RP .
We can then apply the parabolic comparison principle and infer that C ′

T,R̄+
√

N
φd

R̄
(·−h, ·)

lies below u on [t0 +T,t]×RN ×RP , whence in particular

sup
x∈RN

(
inf

θ∈B
RP (0,R/2)

u(t,x,θ)
)
⩾ C ′

R̄+
√

N
inf

θ∈B
RP (0,R/2)

φd
R̄

(0, θ) > 0.

This is the uniform lower bound for supx∈RN ρ(·,x) on [T,+∞)\ (T +[0,T ]).

Step 3. Lower bound for u on T +[0,T ]. Consider t ∈ T . Let xt be as in the Step 1 and
let θt ∈RP be such that ∥θt∥ ⩽ M and

u(t,xt, θt) = max
∥θ∥⩽M

u(t,xt, θ).

Then one has

u(t,xt, θt) ⩾
1

|BRP (0,M)|

∫
∥σ∥⩽M

u(t,xt,σ)dσ ⩾
λ[r]2

8r̄|BRP (0,M)| .

In the equation in (1), the term ρ is globally bounded and r(x,θ) is bounded uniformly in x ∈
RN and locally uniformly in θ ∈RP , so, due to interior parabolic estimates, the function u is
uniformly continuous on [1,+∞)×RN ×BRP (0,M). Therefore, there exists δ > 0 independent
of t such that

inf
B
RN+P ((xt,θt),δ)

u(t, ·, ·) ⩾ λ[r]2
16r̄|BRP (0,M)| .

(We point out that the centre of the ball (xt, θt) does depend on t.) In order to translate
this lower bound into an estimate which holds on the time interval [t, t + T ] and which is
independent of t, we need to be careful due to the possible unboundedness of r. We circumvent
this difficulty by considering the solution w to the Dirichlet problem

∂tw = ∆xw +w

 inf
RN ×B

RP (0,M+δ)
r −∥ρ∥∞

 in (0,+∞)×BRN+P (0, δ),

w = 0 over (0,+∞)×∂BRN+P (0, δ),
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with initial datum equal to λ[r]2
16r̄|B

RP (0,M)| . Observe that for (x,θ) ∈ BRN+P (0, δ) it holds that
(x+xt, θ +θt) ∈RN ×BRP (0,M +δ), hence the function u(·+ t, ·+xt, ·+θt) is a supersolution
of the above problem, and moreover it lies above w at time 0. It follows that

min
[t,t+T ]×B

RN+P (0,δ/2)
u(·, ·+xt, ·+ θt) ⩾ min

[0,T ]×B
RN+P (0,δ/2)

w,

for any T > 0, and in particular for the value of T provided by the Step 2. By the strong
maximum principle, the right-hand side is a positive number. This is the estimate on the set
of times T +[0,T ] concluding the proof.

6 Dependence of the principal eigenvalue on the spatial
period and on the mobility (Proposition 2.5)

We recall that rL stands for the L-periodic version of r, i.e.,

rL(x,θ) := r
(

x

L
,θ
)

.

Proof of Proposition 2.5. Let us start with the statement (i) of the proposition. We first
consider the case Θ = RP . For L > 0, we let CL := [0,L]N denote the periodic cell of size L.
For R > 0, we call for short BR := BRP (0,R) the ball of RP with radius R and centre 0. We let
(φL

R,λL
R) satisfy the periodic eigenproblem analogous to (17), but with L-periodicity instead

of 1-periodicity, that is, 
L[rL]φL

R = λL
RφL

R in RN ×BR,

φL
R = 0 over RN ×∂BR,

φL
R > 0 in RN ×BR,

φL
R is L-periodic in x,

with the normalisation
∥∥∥φL

R

∥∥∥
L2(CL×BR)

= 1. Take L,L′ > 0. We make now use of the Rayleigh

formula for λL′
R in order to estimate it in terms of λL

R. The Rayleigh formula, which is classical
in the present case because the eigenfunctions act on a compact set (due to the x-periodicity),
implies that

λL′
R ⩾

[
−
∫

CL′×BR

|∇ϕ|2 +
∫

CL′×BR

ϕ2rL′
](∫

CL′×BR

ϕ2
)−1

,

for any function ϕ ∈ W 1
2 (CL′ × BR) ∩ C0(RN × BR) which is L′-periodic in x and vanishes on

RN × ∂BR. We call h(x,θ) := ( L
L′ x,θ) and we take ϕ = φL

R ◦ h (which is L′-periodic) in the
formula. This gives:

λL′
R ⩾

[
−
∫

CL′×BR

((
L

L′

)2 ∣∣∣∇xφL
R

∣∣∣2 ◦h+
∣∣∣∇θφL

R

∣∣∣2 ◦h

)
+
∫

CL′×BR

(φL
R ◦h)2rL′

]

×
(∫

CL′×BR

(φL
R ◦h)2

)−1
.
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By the change of variables (x′, θ′) = h(x,θ), we obtain, since
∥∥∥φL

R

∥∥∥
L2(CL×BR)

= 1:

λL′
R ⩾ −

∫
CL×BR

((
L

L′

)2 ∣∣∣∇xφL
R

∣∣∣2 +
∣∣∣∇θφL

R

∣∣∣2)+
∫

CL×BR

(φL
R)2rL

= λL
R +

(
1−

(
L

L′

)2)∫
CL×BR

∣∣∣∇xφL
R

∣∣∣2 .

Hence, for L′ > L, we have λL′
R > λL

R, that is, L 7→ λL
R is increasing for all R > 0. Since by

Proposition 4.2 (i) (which holds true with 1-periodicity replaced by L-periodicity) we have
that λL

R → λ[rL] as R → +∞, it follows that L 7→ λ[rL] is nondecreasing.
Let us now prove that L 7→ λ[rL] is continuous. We have shown before that

λL
R −λL′

R ⩽

((
L

L′

)2
−1

)∫
CL×BR

∣∣∣∇xφL
R

∣∣∣2 ,

therefore it will suffice to derive a bound for ∥∇xφL
R∥L2(CL×BR) which is locally uniform with

respect to L > 0 and uniform with respect to R⩾ 1. This follows by integrating on CL ×BR the
equation satisfied by φL

R multiplied by φL
R itself. Namely, recalling that

∥∥∥φL
R

∥∥∥
L2(CL×BR)

= 1,
one gets ∫

CL×BR

∣∣∣∇xφL
R

∣∣∣2 =
∫

CL×BR

(rL −λL
R)(φL

R)2 ⩽
(

supr −λL
R

)
.

Then, since λL
R is increasing with respect to R by Proposition 4.2 (i), and it is nondecreasing

with respect to L, as we showed before, we find, for any given L0 > 0,

∀R ⩾ 1, ∀L,L′ ⩾ L0, λL
R −λL′

R ⩽
∣∣∣∣( L

L′

)2
−1

∣∣∣∣(supr −λL0
1
)
.

Passing to the limit as R → +∞ we derive the same inequality for the difference λ[rL]−λ[rL′ ],
which yields the continuity of L 7→ λ[rL].

Let us consider now the case where Θ is a smooth bounded subset of RP . The generalised
principal eigenvalue λ[rL] coincides now with the principal eigenvalue of the Neumann problem
on RN ×Θ, under L-periodicity condition in x, which is then a standard compact setting. We
let φL denote the (unique up to a scalar multiple) corresponding principal eigenfunction,
provided by Proposition 4.1 (ii). Again, the Rayleigh formula is classical in such a framework.
It implies

λ[rL′
] ⩾

[
−
∫

CL′×Θ
|∇ϕ|2 +

∫
CL′×Θ

ϕ2rL′
](∫

CL′×Θ
ϕ2
)−1

,

for any function ϕ ∈ W 1
2 (CL′ ×Θ) which is L′-periodic in x. Taking ϕ = φL ◦h, with the same

function h as above, one infers in the same way that L 7→ λ[rL] is continuous and nonincreasing.
Therefore, item (i) is proved in both cases Θ bounded or Θ =RP .
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Let us now prove item (ii). For a x-periodic function ϕ(x,θ), we let ϕL(x,θ) := ϕ(x/L,θ)
be its L-periodic version. We have(

L[rL]ϕL
)

(Lx,θ) = (LL−2 [r])ϕ(x,θ).

It then follows from Definition 2.2 that the eigenvalue λd[r] associated with the operator Ld[r]
satisfies

λd[r] = λ[rd−1/2
].

Thus, item (ii) is a consequence of item (i).
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