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We present experimental evidence of a thermoelectric effect at the interface between two liquid
metals. Using superimposed layers of mercury and gallium in a cylindrical vessel operating at
room temperature, we provide a direct measurement of the electric current generated by the
presence of a thermal gradient along a liquid-liquid interface. At the interface between two
liquids, temperature gradients induced by thermal convection lead to a complex geometry of
electric currents, ultimately generating current densities near boundaries that are significantly
higher than those observed in conventional solid-state thermoelectricity. When a magnetic
field is applied to the experiment, an azimuthal shear flow, exhibiting opposite circulation
in each layer, is generated. Depending on the value of the magnetic field, two different flow
regimes are identified, in good agreement with a model based on the spatial distribution of
thermoelectric currents, which has no equivalent in solid systems. Finally, we discuss various
applications of this new effect, such as the efficiency of liquid metal batteries.
(published article available at https://www.pnas.org/doi/abs/10.1073/pnas.2320704121)
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Thermoelectricity describes the conversion of heat into electricity and vice versa.
This captivating interplay has long intrigued physicists, as it offers a glimpse

into the complex relationship between energy, temperature and matter (1).
The thermoelectric Seebeck effect is perhaps the best illustration of this: when

a temperature gradient is established at the junction of two electrically conducting
materials, a thermoelectric current flows between the ”hot” and ”cold” regions.
This configuration can be achieved very simply by layering two metals atop each
other and applying a horizontal temperature gradient along the interface.

In addition to its implications for fundamental physics, thermoelectricity has left
an indelible mark on modern engineering thanks to the many applications developed
over the last century. For example, thermocouples are widely used as temperature
sensors, while emerging applications include thermoelectric coolers for portable
refrigeration (2), or the use of thermoelectric materials in space missions for their
ability to generate electricity from temperature differences in harsh environments (3).
Thermoelectricity is an environmentally friendly technology for converting waste
heat into electrical energy.

Thermoelectricity also extends to liquid systems, such
as electrolytes (4) , liquid metals, or semi-conductors.
During the growth of a semiconductor crystal (5) or the
solidification of a metal alloy (6), a thermoelectric current
naturally appears at the liquid-solid interface due to the
Seebeck effect. When subjected to a magnetic field, these
currents can then produce significant flow motions in the
melt. This surprising effect traces back to the pioneering
work of Shercliff (7, 8), who introduced the concept of
thermoelectric magnetohydrodynamics (TEMHD) to describe
the interaction between a liquid metal and the container
wall: when a magnetic field B and a temperature gradient
are applied to a solid-liquid interface, the thermoelectric
current J generated by the Seebeck effect interacts with
the magnetic field to produce a Lorentz force J × B, which
drives significant flow motions. Since Shercliff, only a few
studies have provided experimental data on this effect. In
the context of fusion energy, where TEMHD-induced flows
can provide an effective cooling blanket (9–11), a single
experiment has reported velocity measurements in a divertor
made of liquid lithium (12) heated by an electron beam. More
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recently, temperature measurements have been reported in an
experiment that suggests an interesting interaction between
thermoelectricity and magneto-convection producing periodic
oscillations (13).

This paper reports the first experimental evidence
of thermoelectricity at the interface between two liquid
layers. This configuration is different from the classical
thermoelectric effect, as the vessel walls, electrically
insulating, are not involved in the generation of the current,
which now occurs along a free interface between the two
fluids. In particular, the temperature and current density
distributions are different from the classical situation. The
interest of our study is twofold. First, by using two liquid
metals at room temperature, we aim to provide quantitative
measurements of velocity, temperature, and electric potential
associated with a simple theoretical model to describe
precisely the dynamics of this new type of thermoelectricity.
Second, these experimental results can be extrapolated to
make predictions for several industrial and astrophysical
systems where this effect can play a major role, in particular
liquid metal batteries and Jupiter’s magnetic field.

Experimental setup

The experiment consists of a cylindrical annulus with a
rectangular cross-section. The height is h = 50 mm, and
the radii of the inner and outer cylinders are respectively
Ri = 37 mm and Ro = 100 mm, corresponding to an aspect
ratio close to one Γ = L/h ∼ 1.26 with L = (Ro − Ri) the
cylindrical gap. (see Fig.1). The tank is filled with a layer
of liquid gallium on top of an equally thick layer of liquid
mercury. To avoid solidification of the gallium, which has a
melting point of 29.7 ◦C, the tank is maintained at 35 ◦C
at least. To our knowledge, this is the first experiment on
the dynamics of a gallium-mercury interface, providing a
direct study of a conducting liquid-liquid interface at room
temperature, mercury and gallium are almost immiscible.
To maintain the immiscibility of the two fluids, all our
experiments are limited to T < 80 ◦C.

To avoid mixing the two layers, the mercury is first
introduced into the tank. The liquid gallium is then gently
deposited on the surface of the mercury through a tube
in which the flow is kept at a very low rate. The binary
Hg/Ga phase diagram confirms the proper separation of the
two liquid metals: at this temperature, the mercury layer
contains 3% mass gallium at most, and the interface remains
well defined (14). The inner and outer cylinders are made
of copper and electrically insulated from fluids by an epoxy
resin Duralco 128. The endcaps are 10 mm thick, electrically
insulating PEEK plates. Both cylinders are connected to
thermal baths to impose a radial temperature gradient. The
inner cylinder is heated by water circulation controlled by a
refrigeration circulator Lauda 1845 and the heat is removed
from the outer cylinder by an oil circulation system controlled
by a Lauda T10000 thermal bath. Some of our results are
obtained in the presence of a magnetic field. For this purpose,
the tank is placed between two large Helmholtz coils with an
inner diameter of 500 mm powered by a DC current supply
ITECH IT6015D 80 V-450 A, which produces a constant and
homogeneous vertical magnetic field of 80 mT maximum. The
experiment can thus be controlled by two external parameters,

namely the applied magnetic field B0 and the temperature
difference ∆T0 = Ti − To imposed between the two cylinders.

AH BG

DE CF BG AH

3
2

3

2

4
1

4

1

Ce dessin est notre propriété, il ne peut être reproduit ou communiqué sans notre accord écrit.

Projet pile liquide
Ensemble :Poids (kg)

0,001
Quantité :

Nom du dessin :

  3:10
Echelle :

Matière :

Marlone(Ginsinger)
Client :

29/09/2020
Date :

Arnaud Leclercq
Conçu par :

24, rue Lhomond  75231 PARIS CEDEX 05

Ecole Normale Supérieure

E.N.S

N°

Pièce N°

A _

B _

C _

Tolérances
sauf indication

Tolérances

générales

ISO 2768-fH

Etat de surface
sauf indication

Ra : 1.6

A

A

Coupe A-A

Inner hot cylinder

Outer cold cylinder

Cooling/heating 
circulation system

Holes for potential probes 
and velocity sensors

Fig. 1. Sketch of the experiment. A cylindrical vessel made of two concentric,
electrically insulating cylinders with radii Ri = 37mm and Ro = 100mm and
height 50mm is filled with half mercury, half gallium, forming a liquid metal interface.
All boundaries are electrically insulating, ensuring complete electrical insulation of
the two liquid metals from the outside world. The fluids are subjected to a thermal
gradient due to a temperature difference between the two cylinders ∆T0 = Ti −To.
Thermoelectric potential and flow velocities are measured in the middle of the gap
(see text). A vertical magnetic field up to 80mT can be applied to the experiment.
JT E represents a simplified distribution of thermoelectric currents, but only in the
limit of very low thermal gradients or solidified metals (see text).

Temperature is measured inside the inner and outer
cylinders, and in the tank, using Pt100 platinum resistance
sensors. Five sensors are evenly distributed along a vertical
line in each cylinder, while 14 sensors are glued to the
top endcap, in contact with the gallium, along a line
running from the inner to the outer cylinder (labeled
2 to 15 in the following). Four holes are drilled in the
top endcap for various measurements: flow velocity and
thermoelectric currents are obtained using electric potential
measurements, while Hall probes are used to measure the
magnetic field. Temperature measurements are acquired
using a Keithley 3706A signal-switching multimeter, while
potential measurements, particularly weak, are processed
using a nano-voltmeter (Keysight 34420A). All signals are
then transmitted to the computer via a data acquisition card
National Instrument 6212 controlled by scripts Python.

With two liquid layers, the temperature distribution
responsible for the thermoelectric effect is entirely governed
by fluid motions on either side of the interface. Indeed,
the temperature gradient between the cylinders generates
horizontal thermal convection in both layers, with typical
Rayleigh numbers of the order of Ra = [104 − 105] (See SI
Appendix for calculation), where Ra = αg∆T0∆R3/κν and α
is the thermal dilatation coefficient, κ is the thermal diffusivity
and ν is the kinematic viscosity. For the Rayleigh numbers
reported here, vigorous convection is expected. Although
determination of the exact regime would require a separate
study, it is plausible that our intermediate values of Ra favor
boundary-layer-dominated heat transfer, characterized by
efficient turbulent heat transport in the bulk, and significant
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Fig. 2. Radial temperature profile (measured at the top endcap) for different applied
temperature differences ∆T0 = Ti − To, for B0 = 0. Temperatures at the first
and last radial positions are measured inside the cylinders. Inset: Time-averaged
temperature difference ∆TB as a function of ∆T0, where ∆TB = T15 − T2
is obtained using temperatures measured in gallium, at 5 mm from the cylinders.
Legend: ∆T0 = 0K (◦), ∆T0 = 4K (∇), ∆T0 = 7K (△), ∆T0 = 11K
(◁), ∆T0 = 15K (▷), ∆T0 = 18K (·), ∆T0 = 22K (−), ∆T0 = 26K (⋆),
∆T0 = 30K (×), ∆T0 = 33K (♢), ∆T0 = 37K (□). The red curve is a linear fit
of the piece-wise linear temperature profile in the case ∆T0 = 37K.

diffusive transport in the thin thermal boundary layers. This
interpretation is confirmed by our temperature measurements:

Fig.2 shows the temperature profile measured in the
gallium layer, at the top endcaps, for a series of runs at B0 = 0
and ∆T0 ranging from 0 to 37 K. It shows that the convective
motions, although weak, are sufficient to transport heat and
significantly flatten the temperature profile in the bulk. This
scenario markedly contrasts with the typical diffusive thermal
gradient observed in solids. Most of the temperature drop
is therefore confined to thin thermal boundary layers close
to the cylinders. The inset in Fig. 2 shows, however, that
the temperature gradient in the volume ∆TB = T15 − T2
depends linearly on the applied temperature drop ∆T0. As
liquid metals are very good thermal conductors, we expect
the interface temperature to follow this profile closely.

Seebeck effect

In each fluid layer, the Ohm’s law in the presence of a thermal
gradient reads:

j

σ
= E − S∇T, [1]

where j is the electric current density, E is the electric field,
T is the temperature, σ is the electrical conductivity and S is
the Seebeck coefficient. For gallium and mercury, the values
are given as σGa = 3.87×106 S.m−1, σHg = 1.1×106 S.m−1,
SHg = −6.5 µV.K−1 and SGa = 0.5. µV.K−1 (15).

The production of thermoelectric current is made possible
because the Seebeck coefficient S depends not only on
temperature but also the substance: in a uniform medium, the
electric field is rearranged to compensate for the Seebeck effect
and prevent the emergence of an electric current, E = −S∇T ,
a consequence of the fact that ∇ × (S∇T ) = 0. To generate

a net thermoelectric current, it is therefore necessary to
misalign the temperature and Seebeck coefficient gradients,
which can be achieved simply by generating a thermal gradient
along an interface between two metals. In the quasi-static
limit, ∇ × E = 0 allows us to write E = −∇V . In addition,
charge conservation ∇ · j = 0 implies that the electric
potential follows a Poisson equation in each layer:

∇2V = −S∇2T [2]

Combined with the appropriate boundary conditions at the
interface between the two metals, these equations describe
the generation of a Seebeck effect between the Gallium and
Mercury layers. The detailed solution of equation (2) provides
V , j, and the corresponding magnetic field B. It is tedious
enough to have been left in the Supp. Mat. and simplified by
using cartesian geometry and a temperature field independent
of z. This simplified model shows that an electric current can
flow through liquid metals in response to a horizontal thermal
gradient, even with the unusual geometry involving complete
short-circuiting of the two layers along the interface. More
precisely, the thermoelectric current depends critically on the
temperature profile at the interface and it exhibits a linear
dependence on the effective conductivity, σ̃ = σHgσGa/(σHg +
σGa) and the difference in Seebeck coefficients, ∆S = SHg −
SGa. In addition, calculations show that the thermoelectric
current loop induces a measurable voltage drop between
mercury and gallium.

Experimentally, the thermoelectric effect can be evaluated
directly via the electric potential difference between two
points on either side of the liquid-metal interface (see Fig.
1), related to the current by:

δV = −
∫ B

A

j

σ
· dl −

∫ B

A

S∇T · dl [3]

where this integration of equation (11) can be done along
any path from A to B. In the experiment, we measure this
voltage between two nickel wires, fully coated except at
their ends, and placed so that the wire tips are located at
mid-radius r = ri + L/2, inside each layer, at approximately
3 mm from the interface. Fig. 3(a) shows the evolution of
voltage as a function of the imposed temperature gradient
∆T0. The measured voltage displays a linear evolution with
∆T0 and reaches about 15 µV for ∆T0 ∼ 37K, therefore
demonstrating the existence of a thermoelectric effect
generated at the interface between two liquid metals. In
agreement with the theoretical predictions of our simplified
model, the voltage δV is approximately linearly related
to the temperature difference applied between the two
cylinders. However, accurately determining the maximum
voltage measured in the experiment is challenging due
to several factors not accounted for in the theory. These
include geometric effects, contact properties at the interface,
oxidation of gallium, miscibility thickness, convective
motions, and the vertical thermal gradient. Each of these
factors can significantly influence the numerical value of δV .

In fact, the liquid nature of the two layers is the key to
understanding the magnitude of this thermoelectric effect.
Unlike solid-state thermoelectricity and thermocouples, which
involve connected electrical wires, the geometry of currents
in this case is not prescribed, and thermoelectric currents
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Fig. 3. Thermoelectric potential as a function of the applied temperature difference
∆T0, for B0 = 0. The error bars correspond to the standard deviation of the time
signal of the electric potential and therefore reflect a certain degree of unsteadiness
induced by turbulent convection.

are subject to the powerful convective motions of liquids. In
the next section, we will show how turbulent convection, by
modifying the temperature profile along the interface, leads
to a complex distribution of thermoelectric currents in the
bulk flow and particularly high current densities near thermal
boundary layers.

Geometry of the electric currents

This complex dependence on the temperature profile contrasts
sharply with what is observed in solid-state thermoelectricity,
and even in classical thermoelectric MHD, where the two
temperatures imposed at the conducting walls always drive
the current measured in the bulk. This is because the
temperature profile is extremely different from the linear
thermal gradient observed in solid conductors, and the
geometry of the current becomes different from the naive
picture described above and sketched in Fig.1. To understand
how a liquid-liquid interface affects the distribution of
thermoelectric currents, we carried out 2D axisymmetric
numerical simulations of Ohm’s relation (11) in the cylindrical
geometry of the experiment and using the physical properties
of gallium and mercury (see the Method section).

Although only the numerical integration is discussed here,
the Supplementary Materials show that identical results are
obtained with the analytical calculation (see Supp. Mat. for a
detailed description of the analytical model). Fig. 4(a) shows
a simulation computed using boundary temperatures obtained
experimentally at ∆T0 = 37K (namely Th = 82◦C and
Tc = 45◦C ) but with a temperature profile T = A log(r)+B,
solution of ∇2T = 0, as if the metals were solid. In this case,
the field geometry is as expected, with an electric current
predominantly horizontal at the center of the cell, forming a
poloidal loop around the interface.

The order of magnitude of the bulk current can be simply
recovered by performing the curvilinear integral along a
closed loop C of equation (11), which leads to

∮
C j · dl/σ ≈

−∆S∆T with ∆S assumed independent of T , and ∆T is
the temperature difference between the two points where C
crosses the interface. By assuming a predominantly horizontal
current density in the bulk, away from the boundaries, so that

charge conservation leads to an identical horizontal current
|j| in each layer (ignoring curvature), this relation can be
integrated and provides a simple estimate of the current
density:

j ∼ ∆S∆T

ℓ
σ̃ [4]

where ∆T = Th − Tc is the temperature difference driving
the currents with Th (resp. Tc) representing the hot
(resp. cold) temperature and ℓ is the typical length of
temperature variation responsible for the thermoelectric
current. As usual, the amplitude of the thermoelectric
current thus depends on the jump of Seebeck coefficients
between the two materials and the temperature difference
between the ”hot” and ”cold” regions of the interface.
In the case of solid metals, it is clear that ℓ = L and
Th − Tc = ∆T0, and Fig. 4(b) shows that the radial current
in the middle of the gap is of the order of J ∼ σ̃∆S∆T0/L
(blue dotted line), as expected in solid-state thermoelectricity.

But as shown in Fig.2, the actual temperature profile
for liquid metals is radically different and instead displays a
piecewise constant gradient involving two very strong thermal
gradients confined to thin boundary layers of thickness δBL,
connected by a gentler linear variation in the bulk. Such a
profile is forbidden in the presence of a solid boundary and is
only possible here due to vigorous thermal convection in the
two liquids on either side of the interface. In the presence
of liquid layers, the choice of Th, Tc, and ℓ is thus highly
nontrivial. Fig. 4(c) shows a typical numerical integration
using such an experimental profile (i.e. the piecewise linear
fit shown in red in Fig.2). Far from the boundaries, the
geometry of currents remains relatively similar to the previous
case. The corresponding radial profile in Fig. 4(b) shows
that currents reach a plateau in the bulk, with a magnitude
that corresponds exactly to the prediction J ∼ σ̃∆S∆TB/L
(dashed line). These simulations therefore show that the
thermoelectrical current generated in the bulk is not directly
due to the temperature drop ∆T0 imposed at the boundaries
but is rather driven by the lower thermal gradient that
subsequently occurs in the bulk outside the boundary layers,
characterized by the temperature difference ∆TB .

On the other hand, Fig.4(c) clearly shows that two
additional thermoelectric current loops are induced by the
large temperature gradient in the thermal boundary layers.
These currents are located fairly close to the cylinders, but
the current density is surprisingly high: for ∆T0 = 37K, it
can reach j ∼ 3 × 104A/m2 (see Fig.4,d), 40 times higher
than in the bulk. Interestingly, this value is also one order of
magnitude higher than the one expected in the case of solid
metals (Fig.4,b). This high value can easily be understood
as a local generation of thermoelectric currents by the strong
temperature gradient ∆TBL in the thermal boundary layer
of thickness δBL. Hence, the estimate j ∼ σ̃∆TBL∆S/δBL,
where ∆TBL is the temperature drop inside the boundary
layer provides the correct value of this anomalously high
density current (dotted line in Fig.4(d)). The liquid nature of
the interface therefore produces a non-trivial distribution of
thermoelectric currents, well illustrated by the saddle point
formed by the currents at the interface (indicated by the blue
point in Fig.4(c) ). The radial position of this saddle point
depends on the details of the configuration, but its existence
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Mercury

Gallium

Mercury

Gallium

(a) (b)

(c) (d) Fig. 4. Numerical integration of equation (11) using the
parameters of the experimental setup (see Method section)
and a piecewise linear thermal gradient, for B0 = 0.
(a) colorplot of the induced magnetic field and associated
current streamlines, in the case of a purely conductive
temperature solution. (b) radial profiles of the corresponding
temperature (black) and the radial current induced at z = 1
mm from the interface (red). (c) and (d) are the same, but
for a piecewise temperature gradient typical of convection.
Near the cylinders, the thermal boundary layers generate
a very large current density, 10 times larger than the value
expected with solid-state conventional thermoelectricity.
The dashed (resp. dashed-dotted) line shows the simple
prediction (4) for bulk (resp. boundary) density currents.

is an unavoidable consequence of the non-linear temperature
gradient produced in the liquids.

These high current densities cannot be directly detected
in the experiment due to their confinement near the walls,
where electrical measurements are unavailable. However,
in the next section, we demonstrate that surface velocity
measurements, conducted in the presence of a magnetic field
applied to the layers, can infer the existence of these high
current densities and provide an accurate estimate of the
value of bulk currents. Note that the analytical calculation
in Supp. Mat shows that this peculiar geometry of the
currents is driven by the temperature at the interface and
can not be observed in the case of a liquid in contact with a
conducting wall, for which the thermal gradient is constant
at the liquid/solid boundary. This highlights the essential
role of the fluid motions near the interface for the dynamics
of thermoelectric currents.

Thermoelectric magnetohydrodynamics

The experiment is now subjected to a vertical homogeneous
magnetic field B0 using the two coils. In the presence of a
magnetic field, Ohm’s law (11) is modified as follows to take
into account the magnetic induction:

j

σ
= −∇V + u × B − S∇T, [5]

where u denotes the velocity field and B is the magnetic field.
In the presence of this field, the horizontal thermoelectric
currents described above generate an azimuthal Lorentz
force, directly proportional to the product of B0 and the
temperature difference ∆TB producing the currents. In this
configuration, the azimuthal velocity uφ can be obtained by
measuring the voltage between two wires both located in
liquid gallium (12 mm above the mercury-gallium interface),
so that the contribution of the thermoelectric current can be
neglected (16). In Fig.5, we report the time-averaged value

of uφ as a function of B0, for different fixed values of the
temperature difference ∆T0. Even a moderate temperature
gradient can produce a relatively vigorous motion of the liquid
gallium, which reaches nearly ∼ 15cm/s for B0 = 56mT and
∆T0 = 37K. Note that, as the current changes sign in each
layer, this Lorentz force causes the two liquid metals to rotate
in opposite directions, generating a strong azimuthal shear
flow at the interface. In what follows, we only measure the
velocity field generated in the upper layer of liquid gallium,
but it should be kept in mind that a similar flow occurs
in the bottom layer (albeit somewhat weaker due to the
lower conductivity and higher density of mercury). If the
applied magnetic field changes sign, the direction of the
azimuthal velocity is reversed, as expected. The flow has two
distinct behaviors, depending on the relative magnitudes of
the magnetic and velocity fields. At a small magnetic field,
as long as uφ < 10cm/s or so, the velocity increases rapidly
with the magnetic field, and most of the data collapse to the
prediction uφ ∝ (B0)2/3. This exponent has been reported in
several recent experimental and numerical studies, in which
a conducting fluid is driven by an electromagnetic force (17–
19). It is relatively simple to extend these previous studies
to thermoelectric currents generated in the liquid gallium:
as suggested by Fig.4, the current density in the bulk is
distributed over the entire layer h/2, so that the azimuthal
Lorentz force balances the inertia jT EB0 ∼ ρuruφ/r. Near
the endcap and the interface, the imbalance between the
pressure gradient and vanishing centrifugal force produces
a radial flow uBL

r in the viscous boundary layers, such that
u2

φ/r ∼ νuBL
r /δ2

B with δB =
√

νr/uφ the thickness of the
Bödewadt boundary layer. Combining these two relations
and using an incompressibility condition 2uBL

r δB ∼ urh/2,
we finally obtain a prediction for the mean azimuthal velocity
field:

uφ ∼
(

jT E(r)B0h
√

r

4ρ
√

ν

)2/3

∼
(

σ̃∆S∆TBB0h
√

r

4Lρ
√

ν

)2/3

[6]
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Fig. 5. Time-averaged azimuthal velocity as a function of the product
B0∆TB [T.K]. ∆T0 = 23K (△), ∆T0 = 29K (♢), ∆T0 = 33K (□),
∆T0 = 37K (◦). The error bars correspond to the standard deviation of the
velocity. Two different regimes are observed, that can be relatively well fitted by our
predictions (6), red dashed line and (7), blue dashed line.

where we used jT E ∼ σ̃∆S∆TB/L to obtain the final
expression. This prediction is indicated by the red dashed line
in Fig.5. It shows reasonable agreement with the experiment,
despite some scatter in the data. More importantly, this
agreement confirms that the bulk temperature drop ∆TB

(and not ∆T0) is responsible for driving the flow, at least in
the middle of the gap.

At a sufficiently large magnetic field, the velocity field
reaches a plateau, in which the flow no longer depends on
the magnetic field and is driven solely by the temperature
gradient at the interface. This regime is also relatively similar
to what has been described for strongly magnetized flows
subjected to external currents (17–19). We briefly recall below
the main derivation for this classical prediction, adapting it
to the thermoelectric case. This plateau can be interpreted
as a fully magnetized regime, in which the currents induced
by the flow motions in the bulk become sufficiently large to
oppose the applied thermoelectric currents, i.e. σuφB0 ∼ j.
As a result, the thermoelectric currents flow through two
thin Hartmann boundary layers generated at the endcap
and at the interface (where the velocity must be zero due
to the symmetry of the counter-rotating flow). The current
density in these horizontal boundary layers can be estimated
to j ∼ jT Eh/(4δHa) where δHa ∼

√
σ/ρν/B0 is the thickness

of Hartmann boundary layers. We then obtain a second
prediction, independent of the magnetic field:

uφ ∼ jT E

4√
ρνσ

∼ σ̃∆S∆TB

4L
√

ρνσ
[7]

where again jT E ∼ σ̃∆S∆TB/L has been used. For
∆TB ∼ 8 K this prediction gives uφ ∼ 13 cm.s−1 (blue
dashed line in Fig. 5), which is in good agreement with
the plateau measured at high magnetic field. To further
test this prediction, we report in Fig.6 the azimuthal
velocity uφ as a function of the measured bulk temperature
gradient, showing that the flow depends linearly on the

Theoretical prediction (7)

Experimental data

Fig. 6. Time-averaged velocity as a function of the bulk temperature difference
∆TB [K] for B0 = 56mT (black circles), compared to prediction (7) (dashed
line). Points above ∆TB = 6K were performed at constant imposed temperature
difference in the domain where evolving B0 let the velocity invariant. The error bar
corresponds to the standard deviation of the velocity.

thermal gradient generated in the bulk and follows closely
prediction (7) (blue dashed line in Fig.6). Finally, note
that the transition between the inertial-resistive regime (6)
and the fully magnetized regime (7) should occur when
magnetic and rotational effects are in balance, i.e. when the
Elsasser number Λ = σB2

0/ρΩ is close to unity (18, 20) where
Ω = uφ/r. The intersection of the two predictions in Fig.5 is
obtained for Λc ≃ 0.9, in agreement with this picture.

To go beyond these local measurements and demonstrate
the existence of large current densities at the boundaries, we
carried out a few runs without the top endcap, so that the
gallium phase displays a free interface. To prevent excessive
oxidation of the gallium, the latter is in contact with a
thin layer of hydrochloric acid HCl, which then replaces
the endcap. Using the presence of small oxides on the free
surface, the velocity field is characterized by particle tracking
using a CMOS camera with a resolution of 1080x2049 and
an acquisition frequency of 30Hz. This approach has several
drawbacks compared with local potential measurements: the
density of the oxides is quite different from pure gallium,
and their motion is slowed down by the friction from the
HCl layer. This considerably underestimates the magnitude
of the flow immediately below the free surface. But it also
offers some advantages. To our knowledge, this is the first
direct visualization of the thermoelectric pumping of a
liquid metal (see the movie in supplementary materials),
which allows us to study the spatial structure of the flow.
Fig. 7 shows the azimuthal velocity profile uφ obtained for
B0 = 36mT and ∆T0 = 37K. At the surface, the measured
velocity of the oxides is relatively fast, reaching uφ ∼ 2cm/s
near the inner cylinder. Because of the drag produced
by the HCl, it is difficult to deduce the absolute value of
the velocity in the gallium phase immediately below this
interface, but we expect the measured velocity profile to be
a good proxy of the one in the bulk. Close to inner and
outer radial boundaries, the azimuthal velocity uφ sharply
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Fig. 7. Radial profile of the azimuthal velocity uφ measured at the surface of the
gallium for B0 = 36mT and ∆T0 = 37K, when the top endcap is removed,
using particle tracking of surface oxides. Near the outer cylinder, azimuthal velocity
increases significantly with radius, due to the high current density generated at the
boundaries.

increases, that can only be explained by the presence of
an increasing magnetic forcing near the boundary. This
additional rotation therefore provides an indirect measure
of the large thermoelectric current density predicted by our
calculations in Fig.4. In Fig.7, we plot this theoretical profile
of the radial current, averaged in z over the whole layer
of Gallium (red solid line). This current, induced by the
thermal boundary layers, combines with the homogeneous
magnetic field to produce a Lorentz force much larger
at the boundaries. Although it is difficult to extrapolate
from these measurements, it is interesting to note that the
boundary current density, about 10 times greater than
that generated in the bulk, could lead to an azimuthal
flow near the boundaries much faster than the one in the bulk.

Discussion and conclusion

Although thermoelectric MHD has been discussed previously
in the literature, the results reported here describe a different
type of thermoelectricity. The liquid nature of the two
conductors leads to a more complex temperature distribution,
generating anomalously strong density currents near the
boundaries and driving an azimuthal shear flow in the bulk.
This situation can occur in a variety of contexts, and it is
appropriate to conclude this paper with a brief discussion of
these possible applications.

Table 1. Main properties of the different components of a Liquid
Metal Battery Li||LiCl − KCl||P b − Bi (21, 22)

Species Li LiCl-KCl Pb-Bi

Density ρ [kg.m−3] 484.7 1597.9 ∼ 104

Viscosity ν [m2.s−1] 6.64 · 10−7 1.38 · 10−6 1.29 · 10−7

Conductivity σ [S.m−1] 3 · 106 187.1 7.85 · 105

Liquid metal batteries (LMBs) comprise three layers of
different conducting fluids (top and bottom electrodes and

a middle electrolyte) that self-segregate based on density
and immiscibility and are subjected to electric current
flowing through the fluids. Designed to store energy very
efficiently, these low-cost, high-capacity, long-lasting, and
easy-to-manufacture batteries could one day play a vital
role in the massive expansion of renewable energy. Due
to the high operating temperature of these systems, one
could expect significant horizontal temperature gradients
at the interfaces between liquid metals and the electrolyte.
A crude estimate can be made using the properties of
lithium-bismuth batteries Li||LiCl − KCl||P b − Bi, given
in table 1 (21). The Seebeck coefficient of liquid lithium is
SLi = 26 µV.K−1 (23). It is more difficult to estimate
the Seebeck coefficient of the electrolyte, but values for
LiCl around [100 − 1000] µV.K−1 can be used here as an
estimate of typical molten salt electrolytes. For a typical
battery delivering 100A and operating at T > 500 ◦C
during charging and discharging, the vertical magnetic field
can be estimated at 1G (19). For a typical cell with
moderate size r ∼ h ∼ 20 cm, applying a typical horizontal
temperature gradient in the range 10 − 20K (24) could
produce thermoelectrical flows of uφ ∼ 3 mm.s−1 according
to prediction (6). Such a flow magnitude is comparable to,
perhaps larger than other phenomena expected in LMBs,
such as Benard-Marangoni (21) or flows induced by the
Tayler instability (25). Note that a similar flow in opposite
direction is expected in the electrolyte layer. Unlike these
other sources of motion, thermoelectric stirring does not
rely on instability. With simple control of the horizontal
thermal gradient in the cell, this shear flow could be used to
significantly increase LMB efficiency by enabling the kinetic
reaction and influencing the transfer of Li+ ions through the
electrolyte layer and into the Pb-Bi phase.

Note, however, that these considerations are only valid in
the absence of an externally imposed magnetic field. Such
a field, often considered as a means of suppressing some
undesirable instabilities, could then become harmful: our
flow predictions show that the Seebeck effect could produce
a significant thermoelectric pumping, possibly capable of
destabilizing the interface and thus short-circuiting the two
electrodes.

The thermoelectric effect has also been proposed to
explain some features of the magnetic fields of the Earth
and Mercury (26, 27), where a thermoelectric interface is
expected between liquid iron and semiconducting silicate
rocks at the core-mantle boundary of these planets. The
theoretical expressions reported here provide new quantitative
predictions about the regimes eventually reached in these
systems. Furthermore, the liquid-liquid interface specifically
addressed here may be relevant to other astrophysical bodies.
Jupiter is probably the best example. At 85% of its
radius, it exhibits an abrupt transition between an inner
region of metallic hydrogen and an outer atmosphere of
liquid molecular hydrogen. Since non-negligible meridional
temperature variations are expected along this interface, it
bears many similarities to the configuration described here.
Here again, coefficients are relatively difficult to estimate,
but let’s assume that ∆S and σ̃ are both dominated by
values of the semiconducting molecular hydrogen close to the
transition with the metallic layer, such that ∆S ∼ 1 mV.K−1

and σ̃ ∼ 104. In this case, temperature variations of the
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order of 1 K would lead to a local azimuthal magnetic field
Bφ ∼ µ0σ̃∆T ∆S of the order of 10µT , a non-negligible
fraction of the non-dipole radial magnetic field reported
recently (28). In addition, this thermoelectric current,
presumably meridional, can interact with the planet’s radial
magnetic field to generate complex zonal flows. Similar
arguments could be made for stellar interiors at the transition
between radiative and convective regions.

A final comment must be made on the very large current
density induced by thermal boundary layers. The liquid-
liquid interface increases the current density by a factor
of L/δ compared with a conventional solid thermocouple,
where L and δ represent the size of the thermocouple and
the size of the thermal boundary layer respectively. In the
context of a transition to sustainable energy sources, efficient
waste heat recovery generally involves large-scale systems
with a substantial temperature gradient, two ingredients that
maximize L/δ. In this case, using a liquid metal interface
to convert heat into electricity may increase the efficiency of
thermoelectric devices by several orders of magnitude. As
the Prandtl number is small in liquid metals, the thermal
layer is thicker than the viscous layer, which ensures that the
boundary currents efficiently drive the fluids in the presence
of a magnetic field. This possibility obviously requires
further theoretical study, but it could offer an interesting
new mechanism for converting heat into mechanical energy.

Materials and Methods

Experimental measurements. As shown in Fig.1, the experiment is
equipped with 4 holes on the top endcaps, located at r = Ri + L/2
through which various probes can be immersed in the liquid metals.
To measure the velocity field in the gallium layer, two nickel wires,
completely insulated except at their conducting tips (noted A and
B below) and separated by a distance d = 8mm, are immersed in
the liquid. The Seebeck coefficient of nickel is denoted SNi, and
the electrical conductivity and Seebeck coefficient of the liquid
metal are denoted σGa and SGa. The electromotive force between
points A and B is directly given by Ohm’s law integrated over the
distance between the wires:

e =
∫ B

A

(−SGa∇T + u × B − j/σGa) · dl [8]

By neglecting the induced currents, the voltage measured by
the nano-voltmeter Keysight 34420A connected to the wires is:

e = (SNi − SGa)(TA − TB) + UB0d [9]

With (SNi − SGa) ∼ 10µV.K−1, the thermoelectric effect
between the gallium and nickel wires introduces a velocity error
δU ∼ (SNi − SGa)(TA − TB)/(dB0). For B0 ∼ 50 mT and
(TA − TB) ∼ [0.1 − 1]K, this leads to δU ∼ 2 cm.s−1 at most.
This offset is significantly smaller than our measured velocities
and in practice has been systematically subtracted using the
potential e(B0 = 0) measured in the absence of magnetic field.

As explained in the main text, the measurement of the
thermoelectric potential is based on the same technique, except
that the two conducting tips are now located at different heights,
so the tip of one of the wires is now immersed in the mercury layer.
In this case, the magnetic field from the coils is zero, so B0 reduces
to the Earth’s magnetic field. In this case, uB0d ∼ 10−8V, a value
much smaller than the measured voltages, hence leading to the
expression given in the main text.

Numerical modeling. The equation (11) has been numerically
integrated in an axisymmetric cylindrical geometry using the same
dimensions as the experiment and the physical properties of gallium

and mercury. Specifically, we integrate the curl of the equation,
so that it becomes a modified Poisson equation for the azimuthal
magnetic field B(r, z) :

∇2B =
1
η

∇S × ∇T − ∂zB
∂zη

η
[10]

where η = 1/(µ0σ) is the magnetic diffusivity. This equation is
solved by a Finite Difference Method using a 2nd order numerical
scheme with the central difference in space. The magnetic field
is set to zero at the boundaries to model an insulating vessel.
The interface between the two layers is modeled by taking η(z) =
ηHg − (ηHg − ηGa)(1 + tanh(z/zi))/2 and S(z) = SHg − (SHg −
SGa)(1 + tanh(z/zi))/2 where zi is the typical thickness of the
effective interface, taken as small as possible and fixed at 2 mm in
the results reported here. The temperature depends only on r and
is taken either as the conductive solution in cylindrical geometry
T (r) = A ln r + B (using the same boundary temperatures T (ri)
and T (ro) as the experimental temperatures measured in the
cylinders) or as a piecewise constant temperature gradient. In
the latter case, we used the idealized profile shown in red in
Fig.2, using the four temperature values given by the experimental
data. The typical thickness of the boundary layer is set at 3 mm.
The resolution of the simulations reported in the main text is
Nr × Nz = 300 × 300.
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Supporting Information
Sidewall convection

The presence of horizontal temperature gradient naturally leads to sidewall convection which appears at non-zero ∆T0. The Rayleigh
number Ra = α∆T0∆R3/κν where α is the thermal expansion coefficient, ∆T0 the temperature difference between the cylinders,
∆R = Ro − Ri, κ the thermal diffusivity and ν the kinematic viscosity. For liquid Gallium, α = 5.5 · 10−5 K−1, κ = 1.3 · 10−5 m2.s−1,
ν = 3.18 ·10−7 m2.s−1. The Rayleigh number for ∆T0 ∼ 2−37 K is RaGa ∼ 5.7 ·103 −1.06 ·105. For liquid Mercury, α = 1.83 ·10−4 K−1,
κ = 4.9 · 10−6 m2.s−1, ν = 1.49 · 10−7 m2.s−1. The Rayleigh number for ∆T0 ∼ 2 − 37 K is RaHg ∼ 1.08 − 20.03 · 105.

Analytical model

We derive here a simple analytical model describing the generation of a thermoelectric current, the corresponding magnetic field, and
electric potential, in a rectangular domain made of two dissimilar metals. The two electrically conducting regions, denoted by the indices
′+′ or ′−′, have electrical conductivity σ± and Seebeck coefficient (or thermoelectric power) S±. Both are supposed independent of
temperature. A horizontal thermal gradient of arbitrary shape is applied across the two metals, which are separated by an electrically
conducting interface located at z = 0.

Fig. 8. Two metals with Seebeck coefficients S± and electrical conductivities σ±, superimposed in a rectangular closed domain, are in electrical contact at z = 0, and
subjected to a horizontal temperature gradient.

In the absence of a velocity field u and in the presence of a thermal gradient, Ohm’s law reads:
j

σ
= E − S∇T, [11]

where j is the electric current density, σ is the electrical conductivity, E is the electric field, S is the Seebeck coefficient and T is the
temperature field.

In the following we will use the magnetostatic approximation, relatively well satisfied here: in liquid metal, the magnetic field generally
evolves on time scales much smaller than all the other variables such as the temperature or the velocity field. This is summed up by the
dimensionless number ζ = µ0σκ, with µ0 the vacuum magnetic permeability. ζ is the ratio of the temperature evolution time scale due to
thermal diffusion to the magnetic evolution time scale (also due to diffusion). The presence of convection implies that the temperature can
evolve on time scale faster than ∆R2/κ like the eddy turnover time, ∆R/Uff and Uff being a typical velocity scale due to convection such
as the free-fall velocity Uff ∼

√
α∆T0gh. In that case, Rm = µ0σUff ∆R must also be small to fulfill the quasi-static approximation. In

the present experiment, both ζ ≪ 1 and Rm ≪ 1, ensure that the evolution of the magnetic field produced by thermoelectricity follows
adiabatically the evolution of temperature.

In the magnetostatic approximation and for steady state, the Maxwell-Faraday equation reads ∇ × E = 0. For each layer, the electric
field can then be decomposed as follows, E = −∇V ± where V ± is the electric potential in each subdomain.

Taking the curl of the Ohm’s law (11) in each subdomain:

∇ ×
(

j±

σ±

)
= −∇ × (S∇T ) = ∇S × ∇T [12]

Because S(T ) is a function of temperature only, ∇S × ∇T = 0. With the assumption that the electrical conductivity is constant in each
domain, we get :

j± = −σ±∇ϕ± [13]
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The charge conservation, in the magnetostatic approximation, implies ∇ · j± = 0. Therefore, in each domain, ϕ± fulfills a Laplace
equation ∇2ϕ± = 0. The boundary conditions for the current are prescribed by charge conservation:

j±
x (x = 0, z) = j±

x (x = d, z) = 0, [14]

j+
z (x, z = h/2) = j−

z (x, z = −h/2) = 0, [15]

j+
z (x, z = 0+) = j−

z (x, z = 0−) [16]

These boundary conditions can be translated for ϕ± as:

∂xϕ±(x = 0, z) = ∂xϕ±(x = d, z) = 0, [17]

∂zϕ+(x, z = h/2) = ∂zϕ−(x, z = −h/2) = 0, [18]

σ+∂zϕ+(x, z = 0+) = σ−∂zϕ−(x, z = 0−) [19]

The quantity ϕ± can then be obtained as a decomposition over the eigenfunctions of the Laplacian. It is clear that sin(nπx/d), with
n ∈ N, fulfill the boundary conditions for ∂xϕ±, thus

ϕ± =
∑

n

cos
(

nπx

d

)
g±

n (z). [20]

As ϕ± respects a Laplace equation, it is easy to check that g±
n (z) = a±

n cosh(κnz) + b±
n sinh(κnz) with κn = nπ/d for simplicity. The

boundary conditions at z = ±h/2 then implies:

dg±
n

dz
(z = ±h/2) = κna±

n sinh(±κnh/2) + κnb±
n cosh(±κnh/2) = 0, [21]

which is a constraint on the coefficients since b±
n = ∓ tanh(κnh/2)a±

n . Injected in ϕ±, it gives:

ϕ± =
∑

n

a±
n cos(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz)). [22]

Finally, the boundary condition at z = 0 for ϕ± links the coefficients a+
n and a−

n . Indeed, it is easy to check that a−
n = −σ+a+

n /σ−. The
continuity of the electric potential at the interface between the two conductors gives:

V +(x, z = 0+) − V −(x, z = 0−) = 0, [23]

Using the Ohm’s law ∇V ± = ∇(ϕ± − S±T ) where S is considered constant in each phase, the previous expression can be recast in
terms of ϕ±:

ϕ+(x, z = 0+) − ϕ−(x, z = 0−) = ∆ST (x, 0), [24]

with ∆S = S+ − S−. Injecting the expression of ϕ+ and ϕ− gives:∑
n

a+
n

σ+ + σ−

σ− cos(κnx) = ∆ST (x, z = 0), [25]

multiplying this expression by cos(κmx) and integrating over the interval [0, d] enables to obtain the expression of a+
n (where the

orthogonality relation for trigonometric function has been used):

a+
n =

Knσ−∆S

d(σ+ + σ−)

∫ d

0
T (x, 0) cos(κnx)dx. [26]

with Kn = 1 if n = 0 and Kn = 2 otherwise. Finally, this gives the potential:

ϕ± = ±
∑

n

Knσ∓∆S

d(σ+ + σ−)
cos(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz))

∫ d

0
T (x, 0) cos(κnx)dx. [27]

The potential ϕ which prescribes the thermoelectric current distribution is therefore completely determined by the temperature profile at
the interface. The computation of j± and B which is given by Maxwell-Ampère law’s ∇ × B = µ0j, is straightforward:

j±
x = ±

∑
n

Knσ̃∆Sκn

d
sin(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz))In(T ), [28]

j±
z = ∓

∑
n

Knσ̃∆Sκn

d
cos(κnx)(sinh(κnz) ∓ tanh(κnh/2) cosh(κnz))In(T ), [29]

with σ̃ = σ+σ−/(σ+ + σ−) and In(T ) =
∫ d

0 T (x, 0) cos(κnx)dx. The important point of this result is the fact that any variation of the
temperature along z will be supported by V keeping ϕ, j, and B unchanged. The component of the magnetic field produced by the
thermoelectric effect is orthogonal to the plane (x, z), By simply denoted B and is:

B± = ∓
∑

n

Knµ0σ̃∆S

d
sin(κnx)(sinh(κnz) ∓ tanh(κnh/2) cosh(κnz))In(T ), [30]

We now implement this expression using the geometry and properties of the metals used in the experiment, namely mercury and
gallium, h = 25 mm, d = 60 mm. If the two metals were in a solid state, the temperature profile would be linear with a constant thermal
gradient −∆T0/d, where ∆T0 is the thermal gradient applied at the horizontal wall boundaries. Fig. 9 shows the computed isoline of
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potential ϕ± while Fig. 10 shows a colormap of B for nmax = 400, using the value ∆T0 = 37K obtained in the experiment at maximum
heating power. The black lines correspond to the streamlines of the thermoelectric current. The resolution used to plot the solution is
dx = 5 · 10−4d and dz = 5 · 10−4h.

In the more realistic case of an interface separating two liquid metals, as in the experiment, the temperature profile can be approximated
as piecewise linear at the interface. Here again, we use the temperatures obtained in the experiment (the red profile shown in Fig.2 of the
main text). The resulting solution is shown in Fig 11 and Fig 12. The results are in excellent agreement with those obtained from the
direct numerical simulations reported in the main manuscript, and confirm the existence of intense current loops near the boundaries and
a saddle point at the interface.

Fig. 13 shows the horizontal component of the thermoelectric current at z = +0.5mm for the two cases studied. Far enough from the
vertical walls, a good estimate of jx in the solid case is σ̃∆S∆T0/d while for the liquid case, σ̃∆S∆TB/d provides the correct estimate, in
agreement with numerical predictions.

This agreement between theoretical predictions and numerical results confirms that the geometry of thermoelectric currents and
magnetic field strength are controlled by the temperature profile at the interface, σ̃ and ∆S. This also confirms that the liquid nature of
the interface, which produces a complex non-linear temperature profile, can generate a non-trivial distribution of thermoelectric currents,
particularly near the thermal boundaries.

Fig. 9. Line of potential ϕ in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The temperature profile at the
interface displays a linear gradient, corresponding to the case where at least one of the metals is solid.
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Fig. 10. Colormap of the magnetic field B in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The black lines
are the electric current. The temperature profile at the interface displays a linear gradient, corresponding to the case where at least one of the metals is solid.

Fig. 11. Line of potential ϕ in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The temperature profile at the
interface is a piecewise linear gradient, and the vertical dashed lines indicate the positions of the thermal boundary layers..
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Fig. 12. Colormap of the magnetic field B in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The black lines
are the electric current. The temperature profile at the interface is a piecewise linear gradient, and the vertical dashed lines indicate the positions of the thermal boundary layers.

Fig. 13. Comparison between the horizontal component of the thermoelectric current density for a solid (red line) and a liquid interface (black line) both taken at z = +0.5mm.
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