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We report a laboratory study of the transport of angular momentum by a turbulent flow of
an electrically conducting fluid confined in a thin disk. When the electromagnetic force applied
to the liquid metal is large enough, the corresponding volume injection of angular momentum
produces a turbulent flow characterized by a time-averaged Keplerian rotation rate Ω ∼ r−3/2.
Two contributions to the local angular momentum transport are identified: one from the poloidal
recirculation induced by the presence of boundaries, and the other from turbulent fluctuations in
the bulk. The latter produces efficient angular momentum transport independent of the molecular
viscosity of the fluid, and leads to Kraichnan’s prediction NuΩ ∝

√
Ta. In this so-called ultimate

regime, the experiment, therefore, provides a configuration analogous to accretion disks, allowing
the prediction of accretion rates induced by Keplerian turbulence.

The transport of angular momentum by turbulence is
one of the most active research areas in astrophysical
fluid dynamics. The best example is accretion disk the-
ory, which aims to understand the dynamics of thin astro-
physical disks in which turbulent gas is in Keplerian rota-
tion around a massive central body. Observations of disks
around black holes and protostars indicate enormous ac-
cretion rates which must necessarily be compensated for
by a massive outward transport of angular momentum.
Unfortunately, the exact mechanisms by which this trans-
port occurs, or the nature of the turbulence in these discs
remain mostly unknown [1–4]. These open questions have
led to a tremendous work over the past decades and dif-
ferent mechanisms have been proposed [5, 6], but the
most accepted scenario is the so-called magnetorotational
instability (MRI) [7], which explains how a conducting
fluid in differential rotation subjected to a magnetic field
can be destabilized. Although extensively studied nu-
merically, the experimental observation of MRI remains a
major challenge for modern fluid dynamics [8–10], partly
due to the parasitic effect of boundaries and the low sat-
uration level of the instability in the laboratory [11].

Alternatively, many studies have focused on purely hy-
drodynamical Taylor-Couette (TC) flow in order to in-
vestigate the efficiency of turbulent shear flows to trans-
port angular momentum at large kinetic Reynolds num-
bers [3, 12–14]. A central question is whether a so-called
ultimate regime, in which the angular momentum trans-
port becomes independent of molecular viscosity ν at an
arbitrary large Reynolds number Re, can be observed.
The term ultimate refers to the regime of thermal convec-
tion predicted by Kraichnan [15] in which heat transport
relies entirely on convective turbulent structures, and no
longer depends on the molecular diffusivity.

However, observation of this ultimate regime is com-
promised by three properties specific to TC setup which
have no equivalent in astrophysical disks. First, the an-
gular momentum is injected through the rotating radial

boundaries, while accretion disks are dominated by grav-
itation which can be regarded as a volume injection of
angular momentum. Second, only a quasi-Keplerian ro-
tation profile can be obtained, where the Keplerian rota-
tion rate Ω = uθ/r ∼ r−3/2 is replaced by a (presumably
laminar) linearly stable flow Ω = A + B/r. The trans-
port of angular momentum then strongly depends on the
exact value of the rotation ratio of the cylinders and the
distance to the Rayleigh line. Third, finite size effects
due to axial boundaries may, in some cases, contribute
significantly to the turbulent transport [16, 17]. The
first two difficulties can be partially overcome by mod-
ifying Kraichnan’s theory in order to correctly describe
the effect of radial boundary layers [18], and by rescaling
the transport with an empirical function of the rotation
ratio when extrapolated to Keplerian astrophysical ob-
jects [13]. The role of endcaps in TC setups is more
problematic, and has been the focus of a fairly active
debate on the degree of turbulence generated in quasi-
Keplerian flows [3, 4, 17]. In addition, recent observa-
tions [19] have suggested that turbulence in accretion
disks may be weaker than expected, renewing interest
in new laboratory models [20–22] and predictive mea-
surements of angular momentum transport by Keplerian
turbulence. In this Letter, we present a new laboratory
experiment based on a radically different setup, aimed
at elucidating some aspects of the turbulent transport
of angular momentum and modeling accretion disks. It
relies on the generation of a fully turbulent flow in an
electrically conducting fluid driven by a volume Lorentz
force in an axisymmetric thin disk geometry.

The KEPLER experiment (see Fig 1) is an annular
channel filled with liquid Galinstan and subjected to a
homogeneous vertical magnetic field (up to B0 ∼ 110mT)
generated by two large Helmholtz coils. While the end-
caps are Plexiglas plates, the cylinders are brass nickel-
plated electrodes subjected to an electric current (up
to I0 ∼ 3000 amperes) injected radially. The result-
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FIG. 1. Left: the experimental setup is an annular cylindrical
channel with inner radius R1 = 6cm, outer radius R2 = 19cm
and height h = 1.5cm, subjected to a radial current (I0 =
[0−3000] A) and a vertical magnetic field (B0 = [0−110] mT).
Right: a series of potential probes extending from the top
plate to midheight provide measurements of both azimuthal
and radial velocity field in the midplane. The blue probes
measure product urΩ and derivative ∂rΩ involved in JΩ.

ing Lorentz force generates a turbulent flow dominated
by its azimuthal component and measured from poten-
tial probes. Because the magnetic Reynolds number
Rm = µ0σUR1 (with σ the electrical conductivity and µ0

the magnetic permeability) always remains below unity
in our experiment, induction effects are negligible and
the induced Maxwell stress is much smaller than the
Reynolds stress.

The experimental setup as well as the main flow
regimes in parameter space were presented in Ref. [23]
where it was shown that a new regime, fully turbulent,
which exhibits large fluctuations and a Keplerian mean
rotation profile is obtained as long as the forcing is strong
enough and the disc sufficiently thin. It can be under-
stood as resulting from the volume force balance between
the Reynolds stress ρ(u∗)2/δ (assuming a fully turbulent
bulk) and the Lorentz force I0B0/(2πrδ). Here, δ is the
size of the turbulent boundary layer at the endcaps, and,
similar to [15], the fluctuation velocity u∗ � uθ is re-
lated to the mean flow by uθ/u

∗ = log Re/κ, where κ is
the von Karman constant and Re = uθh/ν. This leads
to the solution [23]:

uθ(r) =
log Re

κ

√
I0B0

4πρr
(1)

where the bar denotes an average over time. The ve-
locity measurements reported in Vernet et al.[23] are in
very good agreement with this prediction. Except very
close to the no-slip radial boundaries, the time-averaged
flow exhibits a Keplerian rotation profile uθ ∝ 1/

√
r over

a large region of the gap, surprisingly similar to the ro-
tation profile of an accretion disk, despite a very differ-
ent origin ( the gravitation, here, being replaced by the
Lorentz force).

The turbulent transport of angular momentum re-

FIG. 2. Wind Reynolds number Rew versus Ta for an ap-
plied magnetic field B0 = 60mT, and compared to theoretical
predictions. Inset: Same, but compensated by

√
Ta.

ported in the present Letter shares many similarities with
heat transport in thermal convection, and an exact map-
ping between rotational flows and Rayleigh-Benard (RB)
convection can even be obtained in the limit of small ra-
dial gap and large radius [12, 14]. The relevant quantity
analogous to the heat-flux is the transverse current of
azimuthal motion 〈JΩ〉 = r3 〈urΩ− ν∂r(Ω)〉 where 〈...〉
denotes an average over time and a cylindrical surface.
In the KEPLER experiment, the stationary state is given
by (see Appendix):

∂rJΩ −
I0B0

2πρh
r = 0 (2)

Taylor-Couette flows satisfy the same equation with
I0B0 = 0, the flux JΩ then being conserved radially as
in RB convection. Here, the volume injection of angu-
lar momentum rather provides an analogy with internal
or radiative heating [24, 25], the magnetic term play-
ing the role of a nonhomogeneous internal heating rate.

Similarly, the Taylor number Ta =
4r2ū2

θ

ν2 which repre-
sents the magnitude of the rotational flow is the ana-
log of the Rayleigh number. The level of turbulence in
such rotational flows is well probed by the turbulent ra-
dial wind, which is quantified by the Reynolds number

Rew =
ru∗
r

ν based on the fluctuations of the radial velocity
u∗r , here computed from the standard deviation of local
measurements of ur(t). The wind Reynolds number Rew
reported in Fig.2 rapidly converges to a well defined self-
similar behavior at large Ta. Kraichnan [15] predicted for

turbulent convection that Rew ∝ Ra1/2ln(Ra)1/2, while

Grossmann & Lohse [18] have shown that Rew ∝ Ra1/2

(without log correction) should be expected in turbulent
flows where dissipation essentially occurs in the inertial
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FIG. 3. Nusselt number NuΩ versus Taylor number Ta for
typical applied magnetic fields B0 = [40mT, 80mT, 110mT ],
compared to theoretical predictions.

sublayer of the turbulent boundary layers. Our data in-
dicates an effective exponent very close to 1/2 on almost
two decades, suggesting that this last argument holds
here and that the turbulent bulk supplies most of the
AM transport.

In the limit of an inductionless thin disk, the trans-
port of angular momentum can be described by two addi-
tional dimensionless numbers (defined in the appendix):
the Nusselt number NuΩ = JΩ/Jlam which measures the
local efficiency of the angular momentum transport com-
pared to the laminar case, and the magnetic number H
measuring the strength of Lorentz force. Integration of
Eq. (2) leads to a first relation NuΩ ∝ H/

√
Ta, the factor

of proportionality being a geometrical factor of order 1.
Combining this result with the assumption of Keplerian
turbulence (equation (1)) then gives:

NuΩ ∝
√

Ta× log−2(
√

Ta) (3)

Note that this prediction can also be recovered by a naive
dimensional argument in which we suppose a simple re-
lation NuΩ ∝ TaαHβ : the requirement of a flux JΩ in-
dependent of the molecular viscosity ν leads to a similar
result NuΩ ∝

√
Ta, sometimes referred to as the ulti-

mate or Kraichnan regime in the literature. Turbulent
RB convection leads to exponents smaller than 1/2, gen-
erally between 0.31 [26, 27] and 0.5 [25, 28] depending
on the experimental setup (see [29] for a recent review).
Because of the effect of radial boundary layers, TC flows
rather converge to NuΩ ∝ Ta0.38 [14, 30], casting doubts
on the relevance of Kraichnan’s 1/2 prediction for astro-
physical objects.

For sufficiently large magnetic field, Fig. 3 shows that
the NuΩ(Ta) curve follows a scaling law close to predic-
tion (3), suggesting a turbulent transport mostly inde-
pendent of the molecular viscosity. These results some-

how contrast with TC flows in which the Grossman-Lohse
scaling is observed, reflecting the boundary layer effects
associated to the rotation of the cylinders. The KEPLER
experiment exhibits an ultimate regime with smaller (al-
though nonzero) logarithmic corrections, which naturally
stems from the volume injection of angular momentum
by the Lorentz force.

At smaller magnetic field however, there is a clear de-
parture from the Kraichnan regime. This dependence of
the scaling law with the magnetic field should not come as
a surprise. As described in [23], for large enough B0 the
mean flow becomes two-dimensional for all scales larger
than h. In this case, a quasi-bidimensional turbulent
flow is produced, in which the poloidal recirculation is
confined to thinner and thinner boundary layers as B0

increases. This is one of the advantages of the present
setup compared to TC flows, because a strong magnetic
field decouples the bulk turbulence from the influence
of axial boundaries. The three values of B0 have been
chosen accordingly to this criterion, with B0 = 110mT
corresponding to a flow significantly more bi-dimensional
than B0 = 40mT.

One may expect this contribution from the poloidal re-
circulation to disappear with torque measurements or by
averaging the flux along the zdirection. By contrast, our
local measurements of JΩ in the mid-plane are necessar-
ily polluted by the mean radial flow ur. This highlights
the need to discriminate the contribution of this poloidal
flow. To this end, we introduce the quantities:

JΩ
∗

= JΩ − r3urΩ and Nu∗Ω =
JΩ
∗

Jlam
(4)

Here, the expression of the flux J∗Ω depends only on
the turbulent fluctuations and is related to the Reynolds
stress tensor, ρu∗rΩ

∗, where ∗ denotes the fluctuations.
Experimentally, it is obtained from direct measurements
of the fluctuations, by amplifying the voltage from our
potential probes through a low noise impedance matching
transformer (Princeton Applied Research Model 1900).

The corresponding Nusselt number Nu∗Ω reported in
Fig.4 can therefore be considered as a good estimate of
the transport ignoring the mean poloidal recirculation
∝ urΩ. The values are markedly smaller than NuΩ,
but the most striking feature is the clear-cut scaling law
Nu∗Ω ∼

√
Ta, now satisfied independently of the magnetic

field with an exponent 1/2 constant over two decades.
This can be regarded as a measure of the angular mo-
mentum transport solely due to the turbulence in the
bulk. Note that the open symbols correspond to the low
frequency oscillation reported in [23], which does not fol-
low Kraichnan’s prediction, as expected.

Previous experiments pointed out contrasting conclu-
sions on the role of the boundary-driven recirculation:
while some studies [13] reported large angular momen-
tum transport and turbulence in TC flows through torque
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FIG. 4. Fluctuation-based Nusselt number Nu∗Ω versus Tay-
lor number Ta for typical applied magnetic fields B0 =
[40mT, 80mT, 110mT ]. The red dashed line corresponds to

the ultimate regime NuΩ ∝
√

Ta, only observed for large
enough B0 and Ta. Open symbols correspond to the oscil-
latory regime (see text). Inset: compensated scaling law.

measurements, others [3, 31] have concluded from veloc-
ity measurements in the bulk that well-controlled quasi-
Keplerian flows cannot efficiently transport angular mo-
mentum. More recently, both numerical [17] and exper-
imental [32] studies partly reconcile this contradiction,
by showing that the turbulence in quasi-Keplerian flows
at large Re tends to recede to the boundary layers, thus
leaving a relatively laminar bulk [33]. Our results offer
a different perspective to this long-standing controversy:
the predominance of JΩ over J∗Ω also confirms that mid-
plane measurements, such as the torque measured in the
central section in [13], will most likely be dominated by
poloidal recirculation, in our case driven by the Bödewadt
boundary layers [23]

As long as the electric current is kept large enough
to produce a turbulent regime, increasing the magnetic
field brings the flow into two-dimensional turbulence and
provides an effective means of reducing this secondary
flow, as illustrated by Fig.3. The total torque is then
close (although slightly different) to Kraichnan’s regime.
On the other hand, in contrast to [3], the bulk flow in
our experiment is never laminar, as shown by Fig.4 in
which a viscosity-free ultimate regime is observed when
poloidal recirculation is ignored.

The present experiment should not be regarded as a
study of the transition to turbulence in Taylor-Couette
setups or in accretion disks, which both correspond
to different systems. However, it provides a turbulent
flow exhibiting a mean Keplerian rotation rate and a

FIG. 5. Dimensionless energy dissipation G/Re2 and G∗/Re2

versus Re. The dashed lines indicate the range of values ob-
tained by Paoletti et al. [13] for both quasi-Keplerian and
Rayleigh-unstable flows. The flow tends to an ultimate regime
as the applied field is increased. (*) denotes G∗/Re2 values.
Open symbols correspond to the oscillatory regime (see text).

diffusivity-free transport of angular momentum, two
properties presumably satisfied by accretion disks,
independently of the mechanism for the transition to
turbulence. A central question is, then, to understand to
what extent the present laboratory experiment can be
extrapolated to astrophysics. Following [6, 12, 34, 35],
we define a dimensionless energy dissipation (some-

times called β) as G∗/Re2 = ν−2JΩ
∗
/Re2, where G∗

is a dimensionless torque applied to the fluid. This
quantity is related to the accretion rates Ṁ of disks
by G∗/Re2 = Ṁ/Ṁ0 (see appendix) and any deviation
from G∗ ∼ Re2 can be interpreted as an effect of the
viscosity. Similarly, we have also computed the quantity
G/Re2 = ν−2JΩ/Re2 taking into account the effect of
the poloidal recirculation. Fig.5 first shows that except
for B0 = 40mT, this dimensionless energy dissipation
seems to rapidly converge to a plateau, as expected for
a viscosity-free regime. The two horizontal lines indicate
the range of values given by Fig.6 of Paoletti et al [13],
which gathers data obtained from quasi-Keplerian TC
flows (G/Re2 ∼ 10−3, dash-dotted line) to counter-
rotating cylinders (G/Re2 ∼ 3× 10−2, dashed line). Our
results for the total dissipation G/Re2 ≈ 1.8 × 10−2,
dominated by the poloidal recirculation, correspond
to the upper bound of this previous work, related to
Rayleigh-unstable Taylor-Couette flows. The dissipation
due to bulk turbulence, G∗/Re2 ∼ 4 × 10−4 is much
smaller and relatively close to the results obtained
previously for quasi-Keplerian TC flows. This weak
value, comparable to the lower bound obtained for
disks around T Tauri stars [35], may be regarded as
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an accurate prediction for the turbulent transport in
accretion disks, for which no recirculation is present.

By exhibiting an ultimate transport of angular momen-
tum in a turbulent and magnetized Keplerian thin disk,
the KEPLER experiment provides an interesting labora-
tory analog of accretion disks. Naturally, these results do
not aim at investigating the origin of the turbulence in
astrophysical disks, but are likely to provide an interest-
ing new constraint to the amount of angular momentum
that can be transported by the turbulent fluctuations of a
Keplerian disk. In this regard, it would be interesting to
precisely compare these results to recent investigations
claiming that some disks may be in a regime of weak
turbulence [19]. Finally, by increasing both the size of
the disk and the conductivity of the fluid, the Keplerian
flow reported here may become MRI-unstable. Such an
electromagnetically-driven MRI has been previously pro-
posed as a promising setup due to the reduction of bound-
ary effects by the presence of the Lorentz force. [36]. It
would be interesting to see the effect of the correspond-
ing Maxwell stress on the angular momentum transport
in such a large scale experiment.
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APPENDIX

Derivation of the equation for the current of az-
imuthal motion JΩ. Magnetohydrodynamic processes
are described by the combination of the Navier-Stokes
and induction equations:

ρ∂tu + ρu ·∇u = −∇p+ ρν∆u + j ×B (5)

∂tB =∇× (u×B) +
1

µ0σ
∆B (6)

For liquid metals the magnetic Prandtl number Pm =
µ0σν is generally very small (Pm ∼ 1.6×10−6 for Galin-
stan), leading to the so called quasi-static approximation
Pm � 1, Rm � 1. In this case, the fluctuations of the
magnetic field bi = B0δiz −Bi scale as ∼ RmB0. At first
order, the induction equation reads:

B0∂zui = −η∆bi (7)

The transport of the angular velocity is related to the
azimuthal component of the NS equation :

ρ∂tuθ + ρu ·∇uθ + ρ
uruθ
r

=
−1

r
∂θp

+ρν

(
∂2
ruθ +

1

r
∂ruθ + ∂2

zuθ −
uθ
r2

)
+

1

µ0
(∇×B)×B · eθ (8)

Assuming that the radial component of the current flow-
ing across the fluid is over a fraction of the entire height
h is jr ∼ I0/2πrh, one gets:

ρ∂tuθ + ρu ·∇uθ + ρ
uruθ
r

=
−1

r
∂θ(p+

B2

2µ0
)

+ρν

(
∂2
ruθ +

1

r
∂ruθ + ∂2

zuθ −
uθ
r2

)
+
I0B0

2πrh

+
1

µ0
B0∂zbθ (9)

Note that the incompressibility of the fluid gives :

∂zuz = −1

r
∂r(rur) (10)

and the Laplacian can be rewritten as follows :

∂2
ruθ +

1

r
∂ruθ =

1

r
∂r(r∂ruθ) (11)

Note that for reasons of technical feasibility, all the re-
sults reported here are local measurements, carried out
in the middle of the vertical gap and averaged over time
only, the two-dimensional structure of the flow presum-
ably allowing to ignore the cylindrical average. In the fol-
lowing, a temporal average (denoted by X) is performed
instead of the cylindrical average used in [12]. Averaging
NS and using the quasi-static approximation yields:

0 = −ur∂ruθ − uz∂zuθ −
uruθ
r

− 1

rρ
∂θ(p+

B2

2µ0
) + ν

(
∂2
ruθ +

1

r
∂ruθ + ∂2

zuθ −
uθ
r2

)
− I0B0

2πρrh
− σB2

0∆−1∂2
zuθ

(12)

By considering an axisymmetric time-averaged solu-
tion and making use of conditions 10 and 11, one can
rewrite NS (after multiplying by r2) :

0 = ∂r

[
−r2uruθ + ν

(
r3∂r

(
uθ
r

))]
−r2∂z(uzuθ) + r2ν∂2

zuθ +
I0B0

2πρh
r

−r2σB2
0∆−1∂2

zuθ (13)
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where the first term is the partial derivation of the flux
of angular velocity, JΩ = r3(urΩ − ν∂rΩ), according to
the definition given by Eckhardt [12]. Since the flow is
quasi-2D for turbulent structures larger than h, vertical
gradients can be neglected in the bulk and equation 13
becomes :

∂rJΩ −
I0B0

2πρh
r = 0 (14)

The transport of angular momentum can therefore
be described by only three dimensionless numbers: the

Nusselt number NuΩ = JΩ

Jlam
, where Jlam = 2νrūθ is

the laminar flux of angular velocity, the Taylor num-

ber Ta =
4r2ū2

θ

ν2 , and the magnetic number H = I0B0r
ρν2 .

Note that equation (14) can be integrated to give JΩ =
I0B0r

2/(4πρh), but does not directly inform about the
dependence of NuΩ with Ta. Also, this expression should
not be applied to the classical viscous-ideal regime ūθ =
I0/(4πr

√
ρσν), as it corresponds to a limit in which the

magnetic diffusion is neglected in the induction such that
all the current passes through the Hartmann boundary
layers[23], while the derivation of equation (14) relies on
the assumption of a wider distribution of currents.

Following [6, 12, 35], we also define a dimensionless
torque G = ν−2JΩ and the corresponding dimensionless
energy dissipation, G/Re2. This quantity has a great
interest as it can be related to the turbulent viscosity
describing the accretion rates Ṁ of disks. More precisely,
G/Re2 = Ṁ/Ṁ0 where Ṁ0 is an effective accretion rate
based on the typical sizes and rotation of the considered
accretion disk [6, 13, 34, 35].
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