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Abstract—Time-delay estimation (TDE) using ground pene-
trating radar (GPR) is of great importance in roadway surveys. 
The conventional GPR methods apply uniform sampling strategy 
for TDE, which require numerous frequency sampling points, 
leading to lengthy data acquisition time and large data storage, 
especially for ultra-wideband (UWB) radar. Moreover, detecting 
the overlapped backscattered echoes from thin layer of roadways 
remains a challenge in TDE, due to the limited resolution of 
GPR and the characteristics of GPR signals. To address these 
issues, we derive a co-prime sampling strategy based TDE for thin 
layers in roadway survey by exploiting off-grid sparse Bayesian 
learning (OGSBL), referred as co-prime-OGSBL. In our scheme, 
the sampling rate of GPR signals with co-prime sampling strategy 
is greatly reduced compared with the uniform sampling, which 
therefore reduces the data acquisition burden and computational 
complexity. The estimation performance of time-delays and 
thickness is also enhanced with OGSBL by utilizing radar pulse, 
co-prime sampling, and non-circularity of GPR signals. Both 
simulation and experimental results demonstrate the efficiency 
and accuracy of the proposed method in the estimation of time-
delays and thickness.

Index Terms—Co-prime sampling, time-delay estimation 
(TDE), off-grid sparse Bayesian learning (OGSBL), ground 
penetrating radar (GPR).

I. INTRODUCTION

ROADWAY is one of the major infrastructures in modern
transportation systems. However, due to anthropopic or

environmental factors, such as traffic loads and rainfall, road-
way often suffers distress, leading to structural and functional
deterioration like cracks, internal voids, and debonding [1]–
[4]. Therefore, roadway maintenance becomes more and more
critical for the safety of transportation, and the rapid and ac-
curate survey of roadways is gaining significance [5], [6]. The
early damages of the roadway can be detected by monitoring
the responses from road pavement structure through various
non-destructive testing (NDT) methods [7]–[10]. Among them,
ground penetrating radar (GPR) is one of the most effective
tools, which has many applications in civil engineering, such
as bridge and building evaluation, mapping of pipelines as well
as roadway survey [10]–[15].

In civil engineering, roadways are usually modeled as hor-
izontally stratified media [16], [17]. As a result, radar profiles
can be used to determine the vertical structure of roadways
through echo detection and amplitude estimation. Specifically,
echo detection provides time-delay estimation (TDE) for each

interface, while amplitude estimation can retrieve the wave 
speed within each layer [16], [18].

In recent years, thin pavement surfacing has gained much 
popularity as a cost-effective and sustainable solution for 
maintaining and rehabilitating roadways [16], [17], [19]. How-
ever, the back-scattered echoes of thin thickness roadways 
would be too close to be distinguished by classical GPR data 
systems. High-resolution signal processing methods, such as 
MUSIC and ESPRIT, are therefore needed to improve the 
temporal resolution of GPR system [16], [20]–[23]. Another 
challenge in the interpretation of GPR signals is the strong 
correlation between echoes, due to multipath propagation. 
Decorrelation techniques, like spatial smoothing preprocessing 
and its variants [24], are required in some GPR procedures, 
especially with high resolution subspace methods.

In the literature, within a given frequency bandwidth, the 
uniform sampling strategy is usually applied on the impulse 
GPR signals in the frequency domain or by a step-frequency 
GPR [25]–[27]. However, GPR measurements with uniform 
sampling frequencies are often burdened by large data vol-
umes, especially for ultra-wideband (UWB) GPR and real-
time operations. As opposed to uniform sampling using dense, 
equispaced sampling points, non-uniform sampling achieves 
unambiguous, accurate estimation with sparse, non-equispaced 
and less sampling points, which has attracted great interest of 
researchers. Among the non-uniform sampling, nested sam-
pling and co-prime sampling [28], [29] are two representative 
strategies because they are implementation friendly and have 
been widely used in direction of arrival (DOA) estimation, 
and frequency estimation [29]–[31]. In principle, both the 
time-delay and DOA can be represented as phase shift in 
the received data, through which we can construct the “array 
manifold” of the corresponding parameters. Therefore, in this 
paper, we adopt the design of co-prime sampling strategy in 
GPR, which could improve the quality of GPR signals and 
ensure accurate and timely interpretation.

In nested sampling [31], part of the sampling points are still 
under Nyquist sampling, and its implementation in GPR sig-
nals might suffer from information loss in the high-frequency 
band. Co-prime sampling is conceptually simple with two 
interleaved uniform sampling sequences and has a closed-
form expression [28], [29]. However, the sparsity in co-prime 
sampling often leads to ambiguity problems. Numerous signal 
processing methods have been proposed to deal with sparsity 
and ambiguity, which can be classified into two typical ap-
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proaches. The first mainly makes use of the co-prime property 
of two physical sub-sequences [28]. The second operates 
from the perspective of virtual array sequence, that is, the 
difference/sum co-arrays constructed from cross correlation 
statistics [29].

However, the virtual sequence based co-prime sampling 
approaches are under the assumption of uncorrelated signals, 
which is not applicable for coherent GPR signals. There are 
works reconstructing the Topelitz matrix through physical 
array interpolation for decorrelation [32], [33]. In [32], the 
missing information in the physical sequence is recovered 
by nuclear norm minimization despite of coherency among 
signals. To deal with the phase difference problems in [32],
[33] proposes to reconstruct a Hermitian Toeplitz matrix 
through atomic norm minimization with multiple measurement 
vectors. But these methods these methods are based on the 
cross-correlation information for matrix reconstruction which 
might affect the accuracy.

Compressive sensing-based methods, like second-order cone 
programming (SOCP) and orthogonal matching pursuit (OMP)
[17], [34], [35], can work on signal model instead of data 
covariance matrix and therefore handle coherent signals di-
rectly. In [17], a modified OMP method is proposed for TDE 
in the presence of rough interferences. Later, the performance 
of [35] is enhanced by using singular value decomposition 
(SVD) for weak signals coming from pavement layers with 
similar permittivity. Nevertheless, these methods are highly 
dependent on the over-complete dictionary. If the true time-
delays of the back-scattered echoes do not fall within the 
grid points of over-complete dictionary, the performance of 
compressive sensing based methods may drop drastically. 
Based on the off-grid model, joint orthogonal matching pursuit 
(JOMP) [36] employs the first order Taylor compensation to 
improve the DOA estimation in each iteration. However, even 
if the off-grid data model is adopted for OMP [36]–[38], their 
performance still declines dramatically for overlapping echoes 
due to Rayleigh limitation.

Motivated by the aforementioned issues in GPR data pro-
cessing for roadway surveys, we propose a co-prime frequency 
sampling strategy combined with off-grid sparse Bayesian 
learning (OGSBL), called co-prime-OGSBL, for the estima-
tion of time-delays and thickness. In [39], authors exploit the 
sparsity information of signals from a Bayesian perspective, 
which has a higher resolution compared to OMP [40]–[42]. 
The off-grid approach contributes to reducing the impact of 
over-complete dictionary in parameter estimation. Besides, 
the characteristic of radar pulse and non-circularity of GPR 
signals are considered in the proposed method for accurate 
interpretation of GPR signals. The main contributions of this 
paper are summarized as:

1) Unlike conventional uniform sampling, co-prime sam-
pling is exploited to reduce the GPR frequency sampling
rate in road surveys.

2) In the framework of sparse sampling, OGSBL is adapted
for coherent GPR signals, by taking the radar pulse and
non-circularity of GPR signals into account.

The remainder of the paper is organized as follows. The
radar data model taking into account the co-prime sampling

strategy and non-circularity of GPR signals is presented in
Section II. In Section III, the proposed TDE method based on
OGSBL is described. Sections IV and V provide the simulation
and experimental results of the co-prime-OGSBL, respectively.
Conclusions are drawn in Section VI.

II. RADAR DATA MODEL

The top layers of an asphalt pavement are studied. Based
on the work in [43], [44], the media can be considered as low-
loss media, whose dispersivity is negligible. Accordingly, in
the far-field condition, the backscattered echoes in frequency
domain can be written as [26]

y(f) =
K∑

k=1

ẽ(f)ske
−j2πfτk + n(f), (1)

where

• K denotes the number of backscattered echoes, assumed
to be known;

• ẽ(f) is the radar pulse in frequency domain, which can
be measured as the echo backscattered from a metallic
plane;

• sk represents the amplitude of the kth backscattered echo
(depends on the reflection coefficient of the media), which
is real in the scenario of low-loss media [44];

• τk denotes the arrival time of the kth echo;
• n(f) is an additive white Gaussian noise with zero mean

and variance σ2.

In this paper, the TDE problem is based on the following 
assumptions:

1) the number of backscattered ehoes, K, is a priori 
known, which is equal to the number of layers in the 
TDE problem.

2) permittivities of layers can be obtained by amplitude 
estimation methods, which is not focus in TDE problem 
of GPR signal.
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Fig. 1. Frequency sampling in GPR: (a) Two sets of sparse uniform sampling;
(b) Co-prime sampling.
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A. Co-prime Sampling Model

Inspired by the co-prime technique, we apply the co-prime 
sampling strategy in the survey of asphalt pavement with GPR. 
The equispaced frequency sampling points with frequency 
interval ∆f are replaced by a series of nonuniform frequency 
sampling points accordingly. The co-prime sampling scheme is 
composed of two subsets of sparsely equispaced sampling 
points as shown in Fig. 1(a), where M and N (N < M ) are co-
prime integers. Let the frequency interval of the M frequency 
sampling points be N∆f and that with N frequency sampling 
points be M∆f . Based on the co-prime property, the sampling 
points of the co-prime pair do not overlap except the aligned 
one, which is the reference frequency point.

The co-prime sampling strategy generates non-equispaced 
sampling points as shown in Fig. 1(b), which makes GPR 
data processing difficult under the framework of traditional 
methods. Nevertheless, the frequency points of each subset 
are fixed. To begin with, we define the mode vectors corre-
sponding to each subset:

aM (τk) = [e−j2πf1τk , e−j2π(f1+N∆f)τk ,

. . . , e−j2π(f1+(M−1)N∆f)τk ]T
(2)

and

aN (τk) = [e−j2πf1τk , e−j2π(f1+M∆f)τk ,

. . . , e−j2π(f1+(N−1)M∆f)τk ]T .
(3)

It is notable that the backscattered echoes of each subset are
sampled independently which can be written in the following
vector forms as:

yM = ΛMAM s + nM , (4)

yN = ΛNAN s + nN , (5)

where

• AM = [aM (τ1), . . . , aM (τK)] and AN =
[aN (τ1), . . . , aN (τK)] are the mode matrices
corresponding to the subsets with M and N frequency
points, respectively;

• ΛM = diag{ẽ(f1), ẽ(f1 + N∆f), . . . , ẽ(f1 +
(M − 1)N∆f)} and ΛN = diag{ẽ(f1), ẽ(f1 +
M∆f), . . . , ẽ(f1 + (N − 1)M∆f)} denote the radar
pulses in frequency domain corresponding to the subsets
with M and N frequency points, respectively;

• nM ∈ CM×1 and nN =∈ CN×1 denote the noise vectors
corresponding to the subset with M and N frequency
points, respectively.

Then the received signal from co-prime sampling is obtained
by stacking sparse sampling vectors yM and yN as follows

yC =

[
yM

yN

]
= ΛCACs+ nC (6)

where the mode matrix and mode vectors become
AC = [aC(τ1),aC(τ2), · · · ,aC(τK)]T and aC(τk) =
[aTM (τk),a

T
N (τk)]

T , respectively. Correspondingly, the radar
pulse becomes ΛC = diagblk{ΛM ,ΛN}, where diagblk{•}
returns a block-diagonal matrix. And nC = [nT

M ,n
T
N ]T is

the additive Gaussian noise vector of coprime sampling.

Apparently, co-prime sampling reduces the frequency
sampling points compared with that of the conventional
uniform sampling strategy.

B. Extended Radar Data

As the pavement is assumed to be a low-loss media, the 
backscattered echoes are real and can be regarded as non-
circular signals (sk, k = 1, 2, ..., K, is real). Exploiting the 
characteristic of non-circular signals, the radar data model 
can be extended by the co-prime sampling model (6) and its 
conjugate components [45]:

y =

(
Jy∗

C

yC

)
=

(
JΛ∗

CA
∗
C 0

0 ΛCAC

)(
s∗

s

)
+

(
Jn∗

C

nC

)

=

(
JΛ∗

C 0

0 ΛC

)(
A∗

C

AC

)
s+

(
Jn∗

C

nC

)
= ΛAs+ nE

(7)

with (2M + 2N − 2) × K mode matrix A, (2M + 2N −
2)× (2M +2N − 2) diagonal matrix Λ, (2M +2N − 2)× 1
noise vector nE and (M + N − 1) × (M + N − 1) anti-
identity matrix (exchange matrix) J. The operator ∗ denotes
the complex conjugate. According to the extended radar data
model, the new mode vector a with (2M + 2N − 2) × 1
dimension can be expressed as

a(τ) =

(
a∗C(τ)
aC(τ)

)
=[ e2jπf1τ , e2jπf2τ , . . . , e2jπfM+N−1τ ,

(8)

e−2jπf1τ , e−2jπf2τ , . . . , e−2jπfM+N−1τ ]T .

By using the characteristic of non-circular GPR signals, the 
used frequency band has been increased twice (2(N −1)M∆f 
compared with (N − 1)M∆f ) [45]. GPR time resolution can 
be significantly improved by applying the extended radar data 
model [46], [47]. In the following, the extended radar data 
model is used for TDE.

III. ADAPTIVE OFF-GRID SPARSE BAYESIAN LEARNING
FOR TIME-DELAY ESTIMATION

In this section, off-grid sparse Bayesian learning (OGSBL) 
is employed for TDE of backscattered echoes.

A. Off-Grid Radar Data Model

Firstly, we construct an overcomplete dictionary matrix of
the entire GPR working period, which can be sampled as T =
[t1 t2 . . . tNs ], with Ns ≫ K and ∆t = ti+1 − ti. Assuming
that the time-delay of the kth backscattered echo τk /∈ T, and
tik is the nearest sample point to τk, ik = 1, 2, . . . .Ns, the
mode vector can be approximated as [39]

a(τk) ≈ a(tik) + b(tik)(τk − tik)

= a(tik) + b(tik)ψi

(9)
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where b(tik) =
da(tik)

dtik
and ψi ∈ {−∆t

2 ,
∆t
2 }, i =

1, 2, . . . , Ns.
Define matrices As and Bs as

As = [a(t1),a(t2), . . . ,a(tNs
)]

and
Bs = [b(t1),b(t2), . . . ,b(tNs

)].

Then, we construct an overcomplete dictionary of off-grid
radar data model as

Ξ = As +BsΨ (10)

where Ψ = diag{ψ} and ψ = [ψ1, ψ2, . . . , ψNs ]
T

follows a uniform prior distribution with p(ψ) =

U

({
−∆t

2
,
∆t

2

}Ns
)

, which is the off-grid parameter and

represents the deviation between the true time-delay and the
discrete sample point in time domain.

By incorporating the approximate error into noise, the sparse
off-grid radar data model can be written as

y = ΛΞx + n (11)

where x = [x1, x2, . . . , xNs
] and n is the corresponding

noise vector. According to [39], noise in (11) follows the
Gaussian distribution with zero mean and covariance σ̂2INs .
The elements in x are defined as

xi =

{
sk ti = tik or ti = τk

0 otherwise.
(12)

It can be concluded that the off-grid radar data model
applies the first-order approximation of (7), which has much
smaller estimation error than that of the conventional on-grid
model [48].

B. Adaptive Bayesian Learning Method
The likelihood function of GPR backscattered echoes for a

single snapshot can be expressed as

p
(
y
∣∣x; σ̂2INs

)
=

1

(π|σ̂2INs
|)

Ns
2

exp

{
−(y −ΛΞx)

H(
σ̂2INs

)−1
(y −ΛΞx)

2

}

=
1

(πσ̂2)
Ns/2

exp

{
−
∥y −ΛΞx∥22

2σ̂2

}
.

(13)
The snapshots of the backscattered echoes are independent
from each other. For Nt snapshots, (11) becomes:

Y = ΛΞX+N (14)

where X = [x1,x2, . . . ,xNt
], N = [n1,n2, . . . ,nNt

] and its
likelihood function is:

p(Y|X;ψ, σ̂2) =

Nt∏
j=1

p(yj |xj ;ψ, σ̂
2). (15)

In Bayesian learning, each column of X is assumed to
follow Gaussian distribution with zero mean, unknown covari-

ance Γ = diag{γx}, and γx = [γ1, γ2, . . . , γNs
]. The prior

distribution of X is:

p (X |γx ) =

Nt∏
j=1

CN (xj |0Ns×1,Γ ) (16)

where γx determines the sparsity of the model, and the
estimated time-delays are obtained by searching the non-zero
values of γx in time domain T. We assume that a Gamma
prior is applied on γx and

p(γx) =

Ns∏
k=1

Γ(γk|1, ρ) (17)

where ρ is a positive constant value [49].

In TDE of low-loss media, the amplitude of the kth 
backscattered echo sk is dependent on the reflection coeffi-
cient of the media, which does not change with snapshots 
(x1 = · · · = xNt = x). Therefore, (16) is reduced to

p (X |γx ) = CN (x |0Ns×1,Γ ).

In addition, the inverse of the noise variance γ0 = 1
σ̂2 is

assumed to follow the Gamma prior distribution with p(γ0) =
Γ(γ0|c, d), where c and d are set to be close to 0 [49]. Then,
we calculate the posterior distribution of X as

p(X|Y;ψ, γ0,γx) =
p(Y|X;ψ, γ0)p(X|γx)

p(Y;ψ, γ0,γx)
. (18)

Afterwards, the joint probability density function (PDF) of the
Bayesian model is obtained as

p(X,Y, γ0,γx,ψ) = p(Y|X, γ0,ψ)p(X|γx)p(γx)p(γ0)p(ψ).
(19)

According to the principle of Bayesian learning [49], [50], the
posterior distribution of X also follows Gaussian distribution
with

p (X |Y;ψ,γx, γ0 ) =

Nt∏
j=1

CN
(
xj

∣∣µj ,Σ
)

where
Σ =

(
γ0(ΛΞ)

H
ΛΞ+ Γ−1

)−1

.

Let U = [µ1,µ2, . . . ,µNt
], we have:

U = γ0Σ(ΛΞ)
H
[y1,y2, . . . ,yNt

]

= γ0Σ(ΛΞ)
H
Y.

Similar to [51], the parameters γk ( k = 1, · · · , Ns), γ0 and
ψ can be updated as

γnewk =
−Nt +

√
N2

t + 4ρ[UUH +Σ]k,k

2ρ
, (20)

γnew
0 =

(2M + 2N − 2)Nt + c− 1

d+ ||Y −ΛΞUj ||22 +Nttr
(
ΛΞΣΛΞHΛH

) ,
(21)
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and

ψnew = arg min
ψ∈{−∆t

2 ,∆t
2 }

E
{
||Y −ΛΞX||22

}
= arg min

ψ∈{−∆t
2 ,∆t

2 }
||Y −ΛΞU||22 + Tr{ΞΣΞH}.

(22)

The procedure of the proposed adaptive OGSBL method is
summarized in Table I. With the estimated γ, γ0 and ψ, the
time-delays of the backscattered echoes can be calculated.

INPUT:
(2M + 2N − 2)×Ns-dimensional overcomplete
dictionary matrix Ξ

(2M + 2N − 2)×Nt-dimensional received signal Y
The number of backscattered echoes K

OUTPUT:
Estimated time-delays t̂k, k = 1, 2, . . . ,K

INITIALIZATION:
Initial parameters γk, γ0 and ψ
while not converged (k < K) do

Calculate U and Σ:
U = γ0Σ(ΛΞ)

H
Y

Σ =
(
γ0(ΛΞ)

H
ΛΞ+ Γ−1

)−1

UPDATE:
γk, γ0 and ψ:

γnewk =
−Nt+

√
N2

t +4ρ[UUH+Σ]k,k

2ρ

γnew
0 = (2M+2N−2)Nt+c−1

d+||Y−ΛΞUj ||22+Nttr(ΛΞΣΛΞHΛH)
ψnew = argminψ∈{−∆t

2 ,∆t
2 } ||Y −ΛΞU||22 + Tr{ΞΣΞH}

end while

TABLE I
PROCEDURE OF ADAPTIVE OGSBL METHOD

IV. SIMULATION RESULTS

In this section, the performance of the proposed co-prime-
OGSBL is evaluated with simulated data. The results of
MUSIC-MSSP [26], OMP, JOMP and OGSBL are included
for comparisons. The number of independent snapshots is
1000, and the signal-to-noise ratio (SNR) is defined as the
power ratio of the first backscattered echo to the noise.

A. Simulated Pavement Structures

In both simulations and field experiments, the same UWB 
step-frequency GPR is used to detect the pavement composed 
of 3 homogeneous layers, depicted in Fig. 2. Layers 1 and 2 are 
made up of asphalt, and Layer 3 is a base layer. It can be seen 
that H1 and H2 correspond to the thicknesses of Layers 1 and 2, 
respectively; εrk, k = 1, 2, 3, denotes the relative permittivity 
of the kth layer, which are assumed to be known.

S0(τ) represents the emitted source signal, while Sk(τk) is the 
kth backscattered echo from the kth interface with time-delay 
τk and amplitude sk.

Layer 1

Layer 2

Layer 3

1r

2r

3r

1 ( 1)S  2 ( 2)S 

1 H

2H

3 (S  3)

Fig. 2. Pavement configuration.

In the following, two cases are tested with different struc-
tures of the pavement and frequency bandwidths from 3
simulations. In Case a, the used frequency bandwidth B ∈
[0.5, 2.5] GHz and 2 backscattered echoes are considered. The
pavement structures and sampling strategies are presented in
the following sub-cases:

• a1. H1 = 50 mm and H2 = ∞; εr1 = 4.5, εr2 =
εr3 = 7; the corresponding times of arrival (τ1, τ2) are
1.00 ns and 1.71 ns, respectively. 21 sampling points are
applied with ∆f = 0.1 GHz for MUSIC-MSSP, OMP,
JOMP, and OGSBL; 8 sampling points are used for co-
prime-OGSBL with M = 5, N = 4. The echoes are
non-overlapped.

• a2. H1 = 20 mm and H2 = ∞; εr1 = 4.5, εr2 =
εr3 = 7; the corresponding times of arrival (τ1, τ2) are
1.00 ns and 1.28 ns, respectively. 21 sampling points are
applied with ∆f = 0.1 GHz for MUSIC-MSSP, OMP,
JOMP, and OGSBL; 8 sampling points are used for co-
prime-OGSBL with M = 5, N = 4. The echoes are
overlapped.

• a3. H1 = 50 mm and H2 = ∞; εr1 = 4.5, εr2 =
εr3 = 7; the corresponding times of arrival (τ1, τ2) are
1.00 ns and 1.71 ns, respectively. 8 sampling points are
applied with ∆f = 0.25 GHz for MUSIC-MSSP, OMP,
JOMP, OGSBL; 8 sampling points are also used for co-
prime-OGSBL with M = 5, N = 4. The echoes are
non-overlapped.

• a4. H1 = 20 mm and H2 = ∞; εr1 = 4.5, εr2 =
εr3 = 7; the corresponding times of arrival (τ1, τ2) are
1.00 ns and 1.28 ns, respectively. 8 sampling points are
applied with ∆f = 0.25 GHz for MUSIC-MSSP, OMP,
JOMP, and OGSBL; 8 sampling points are also used for
co-prime-OGSBL with M = 5, N = 4. The echoes are
overlapped.

In Case b, the used frequency bandwidth B ∈ [0.5, 3.5]
GHz and 3 backscattered echoes are considered. The pave-
ment structures and sampling strategies are provided in the
following sub-cases:
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• b1. H1 = 45 mm and H2 = 60 mm; εr1 = 4.5, εr2 =
7, εr3 = 9; the corresponding times of arrival (τ1, τ2, τ3)
are 1.00 ns, 1.64 ns and 2.70 ns, respectively. 31 sampling
points are applied with ∆f = 0.1 GHz for MUSIC-
MSSP, OMP, JOMP, and OGSBL; 10 sampling points
are used for co-prime-OGSBL with M = 6, N = 5. The
echoes are non-overlapped.

• b2. H1 = 15 mm and H2 = 20 mm; εr1 = 4.5, εr2 =
7, εr3 = 9; the corresponding times of arrival (τ1, τ2, τ3)
are 1.00 ns, 1.21 ns and 1.56 ns, respectively. 31 sampling
points are applied with ∆f = 0.1 GHz for MUSIC-
MSSP, OMP, JOMP, and OGSBL; 10 sampling points
are used for co-prime-OGSBL with M = 6, N = 5. The
echoes are overlapped.

• b3. H1 = 45 mm and H2 = 60 mm; εr1 = 4.5, εr2 =
7, εr3 = 9; the corresponding times of arrival (τ1, τ2, τ3)
are 1.00 ns, 1.64 ns and 2.70 ns, respectively. 10 sampling
points are applied with ∆f = 0.3 GHz for MUSIC-
MSSP, OMP, JOMP, OGSBL; 10 sampling points are
also used for co-prime-OGSBL with M = 6, N = 5.
The echoes are non-overlapped.

• b4. H1 = 15 mm and H2 = 20 mm; εr1 = 4.5, εr2 =
7, εr3 = 9; the corresponding times of arrival (τ1, τ2, τ3)
are 1.00 ns, 1.21 ns and 1.56 ns, respectively. 10 sampling
points are applied with ∆f = 0.3 GHz for MUSIC-
MSSP, OMP, JOMP, OGSBL; 10 sampling points are
also used for co-prime-OGSBL with M = 6, N = 5.
The echoes are overlapped.

It should be noted that uniform sampling strategy is necessary
to have the following constraint to avoid the spectral ambigu-
ity:

∆f(τmax − τmin) ≤ 1, (23)

where τmax and τmin are the starting and ending time of the
GPR operating period. False peaks may occur with large sam-
pling frequency interval during a given operating period. The
co-prime sampling here presents an ambiguity-free manner
and has no such limit, which can estimate the time-delays
of the backscattered echoes with small number of sampling
points [30].

B. Performance from a Single Run of Algorithms

In the first simulation, the co-prime-OGSBL with the ex-
tended radar data model and the compared methods are tested
in a single run of the algorithms. Both Cases a and b are
studied.

Figs. 3-4 show pseudo-spectra of the co-prime-OGSBL
and the compared methods (MUSIC-MSSP, OMP, JOMP, and
OGSBL) with different pavements, frequency bandwidths and
sample points. In Fig. 3, a pavement of two layers is studied
with different thicknesses. In Figs. 3(a) and 3(c), the thickness
of layers is 50 mm, and two backscattered echoes are non-
overlapped with product B∆τ ≥ 1. Two peaks correspond
to the true time-delays, which are well estimated by all the
methods in Fig. 3(a). In Fig. 3(c), due to large sampling
frequency difference ∆f(τmax − τmin) ≥ 1, ambiguity occurs
in MUSIC-MSSP and OGSBL with repeated copies of false
peaks, while OMP and JOMP fails in TDE. Nevertheless,
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Fig. 3. Case a with 1000 snapshots and SNR = 10 dB, Pseudo-spectra of
MUSIC-MSSP, OMP, JOMP OGSBL, and co-prime-OGSBL for TDE of 2
backscattered echoes. (a) τ1 = 1.00 ns, τ2 = 1.71 ns; 21 sampling points
are used for MUSIC-MSSP, OMP, JOMP, and OGSBL, 8 sampling points are
used for co-prime-OGSBL; (b) τ1 = 1.00 ns, τ2 = 1.28 ns; 21 sampling
points are used for MUSIC-MSSP, OMP, JOMP, and OGSBL, 8 sampling
points are used for co-prime-OGSBL; (c) τ1 = 1.00 ns, τ2 = 1.71 ns; 8
sampling points are used for MUSIC-MSSP, OMP, JOMP, OGSBL, and co-
prime-OGSBL; (d) τ1 = 1.00 ns, τ2 = 1.28 ns; 8 sampling points are used
for MUSIC-MSSP, OMP, OMP, JOMP, OGSBL, and co-prime-OGSBL.
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Fig. 4. Case b with 1000 snapshots and SNR = 10 dB, Pseudo-spectra of
MUSIC-MSSP, OMP, JOMP OGSBL, and co-prime-OGSBL for TDE of 3
backscattered echoes. (a) τ1 = 1.00 ns, τ2 = 1.64 ns and τ3 = 2.70 ns; 31
sampling points are used for MUSIC-MSSP, OMP, JOMP, and OGSBL, 10
sampling points are used for co-prime-OGSBL; (b) τ1 = 1.00 ns, τ2 = 1.21
ns and τ3 = 1.56 ns; 31 sampling points are used for MUSIC-MSSP, OMP,
JOMP, and OGSBL, 10 sampling points are used for co-prime-OGSBL; (c)
τ1 = 1.00 ns, τ2 = 1.64 ns and τ3 = 2.70 ns; 10 sampling points are
used for MUSIC-MSSP, OMP, JOMP, OGSBL, and co-prime-OGSBL; (d)
τ1 = 1.00 ns, τ2 = 1.21 ns and τ3 = 1.56 ns; 10 sampling points are used
for MUSIC-MSSP, OMP, JOMP, OGSBL, and co-prime-OGSBL.
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Fig. 5. Case a with single snapshot and SNR = 30 dB, Pseudo-spectra of
MUSIC-MSSP, OMP, JOMP OGSBL, and co-prime-OGSBL for TDE of 2
backscattered echoe. (a) τ1 = 1.00 ns, τ2 = 1.71 ns; 21 sampling points
are used for MUSIC-MSSP, OMP, JOMP, and OGSBL, 8 sampling points are
used for co-prime-OGSBL; (b) τ1 = 1.00 ns, τ2 = 1.28 ns; 21 sampling
points are used for MUSIC-MSSP, OMP, JOMP, and OGSBL, 8 sampling
points are used for co-prime-OGSBL; (c) τ1 = 1.00 ns, τ2 = 1.71 ns; 8
sampling points are used for MUSIC-MSSP, OMP, JOMP, OGSBL, and co-
prime-OGSBL; (d) τ1 = 1.00 ns, τ2 = 1.28 ns; 8 sampling points are used
for MUSIC-MSSP, OMP, JOMP, OGSBL, and co-prime-OGSBL.
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TABLE II
ESTIMATED TIME-DELAYS IN CASE a

Method case a1 case a2 case a3 case a4
t1 t2 t1 t2 t1 t2 t1 t2

True value 1.000 1.710 1.000 1.270 1.000 1.710 1.000 1.270
MUSIC 1.000 1.710 1.000 1.270 / / / /
OMP 1.000 1.710 0.960 1.410 1.680 4.980 1.741 4.960
JOMP 1.000 1.710 0.979 1.427 1.023 5.709 0.983 9.398

OGSBL 0.995 1.705 0.989 1.340 / / / /
Co-prime-OGSBL 0.998 1.712 0.995 1.279 1.008 1.710 0.996 1.287

“/” denotes that there is no available solution. The time-delay estimation results are in nanosecond (ns).

by exploiting the co-prime sampling strategy, the co-prime-
OGSBL can accurately estimate the time-delays without ambi-
guity. Similar performance can be found in Figs. 4(a) and 4(c) 
with 3 layers (H1 = 45 mm and H2 = 60 mm, 3 backscattered 
echoes are non-overlapped).

In Figs. 3(b) and 3(d), the thickness of layers is 20 mm, 
where two backscattered echoes are overlapped with product 
B∆τ ≤ 1. In Fig. 3(b), OMP and JOMP fails in TDE; OGSBL 
estimates time-delays of backscattered echoes with bias 
because of limited resolution power, while MUSIC-MSSP and 
the proposed co-prime-OGSBL perform well in TDE. 
However, in Fig. 3(d), MUSIC-MSSP, OMP, JOMP and 
OGSBL cannot estimate the time-delays because of large 
sampling frequency difference, while the co-prime-OGSBL is 
still robust in TDE. In Figs. 4(b) and 4(d), a pavement with 3 
layers is studied with H1 = 15 mm and H2 = 20 mm, and 3 
backscattered echoes are overlapped. The estimation 
performance is similar to that of Figs. 3(b) and 3(d), and the co-
prime-OGSBL performs best in Figs. 4(b) and 4(d), while 
MUSIC-MSSP cannot detect true time-delays of the 
backscattered echoes owing to its resolution capability in Fig. 
4(b). TABLEs II and III display the results of algorithms in the 
above simulations, among which the proposed co-prime-
OGSBL performs stably with higher accuracy compared with 
the four competitors.

In Fig. 5, we evaluate the performance of the proposed co-
prime-OGSBL and the competitors under finite snapshots. The 
pavement structures and sampling strategies are the same as 
those in case a except for single snapshot and SNR = 30 dB. 
Figs. 5(a) and 5(c) show the performance pseudo-spectra of 
algorithms when B∆τ ≥ 1 while Figs. 5(b) and 5(d) give the 
results of two overlapped echoes with B∆τ = 0.56. According 
to Figs 5, some methods fail in the estimation of time-delay due 
to limited temporal resolution, for example, OMP and JOMP; 
some methods show false peaks with repeated periods, such as 
MUSIC-SSP and OGSBL using 8-point uniform sampling in 
Figs. 5(c) and 5(d). The proposed co-prime-OGSBL yields 
effective, unambiguous, and accurate estimation performance 
even with single snapshot.

C. Statistical Performance versus SNR

In the second simulation, the statistical performance of co-
prime-OGSBL and its competitors is evaluated with 200 inde-
pendent runs. The relative root mean square error (RRMSE)
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Fig. 6. RRMSE on the estimated thickness Ĥ1 versus SNR, non-overlapped
echoes (Case a1). B∆τ = 1.42.
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Fig. 7. RRMSE on the estimated thickness Ĥ1 versus SNR, overlapped
echoes (Case a2). B∆τ = 0.56.

on the estimated thickness as a function of SNR is calculated. A 
pavement of two layers is considered (two backscattered 
echoes), SNR ∈ [0, 20] dB. The simulation parameters are the 
same with Cases a1 and a2. The GPR operating period is t ∈ 
[0.5, 2.5] ns.

Figs. 6-7 present the RRMSEs on the estimated thickness 
by the co-prime-OGSBL and its competitors as function of 
SNR. The RRMSEs of the co-prime-OGSBL, OGSBL and 
MUSIC-MSSP continuously decrease with the increase of 
SNR for both Cases a1 and a2 (overlapped and non-overlapped 
echoes), while OMP and JOMP show their biased performance 
in the scenario of overlapped echoes. When it comes to 
non-overlapped echoes, the estimation performance of above
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TABLE III
ESTIMATED TIME-DELAYS IN CASE b

Method case b1 case b2 case b3 case b4
t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

True value 1.000 1.640 2.700 1.000 1.210 1.560 1.000 1.640 2.700 1.000 1.210 1.560
MUSIC 1.000 1.640 2.700 0.990 1.270 1.570 / / / / / /
OMP 1.000 1.650 2.700 0.960 1.330 1.680 1.660 7.667 9.380 1.660 4.300 4.600
JOMP 1.004 1.653 2.474 0.989 1.348 1.773 2.710 4.970 7.667 0.984 1.736 1.918

OGSBL 0.995 1.635 2.695 0.995 1.241 1.570 / / / / / /
Co-prime-OGSBL 1.002 1.635 2.705 0.998 1.209 1.561 0.998 1.645 2.700 0.997 1.208 1.562
“/” denotes that there is no available solution. The time-delay estimation results are in nanosecond (ns).
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Fig. 8. RRMSE on the estimated time-delay ∆̂τ as function of B∆τ product at 
SNR= 10 dB.

mentioned methods tends to be similar. Overall, the co-prime-
OGSBL has better estimation performance than OMP, JOMP 
MUSIC, and OGSBL, especially in the scenario of overlapped 
echoes and high-SNR level.

D. Statistical Performance versus B∆τ Product

In the last simulation, the resolution power of the proposed
co-prime-OGSBL is evaluated as a function of the B∆τ prod-
ucts. Consider a pavement of two layers, the layer thickness
H ∈ [7.1, 53.0] mm, the corresponding B∆τ product changes
from 0.2 to 1.5. SNR is fixed at 10 dB. Other simulation
parameters are the same with those of Case a1. The RRMSEs
of the co-prime-OGSBL and its competitors as a function of
the product B∆τ are evaluated by a Monte-Carlo process of
200 independent runs. The radar pulse can be measured as the
echo backscattered from a metallic plane.

Fig. 8 shows the RRMSEs of the estimated time-delay (∆̂τ ).
In the beginning, B∆τ = 0.2, all the methods fail in TDE.
Then, with the increase of B∆τ product, the RRMSEs of
∆̂τ continuously decrease. The proposed method has enhanced
resolution power (with smaller RRMSE), which outperforms
MUSIC, OMP, JOMP and OGSBL.

In addition, the runtime for a single run of the proposed
method and OGSBL (Case a1) is measured. By using the co-
prime sampling strategy, the computational complexity of the
proposed method (0.229 s) is much lower than that of the
OGSBL (0.451 s) with a computer equipped with a CPU of
3.0 GHz and 32 GB of RAM.

V. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed co-
prime-OGSBL, MUSIC-MSSP, OMP, JOMP and OGSBL are 
presented. An UWB step-frequency GPR based on a vector 
network analyzer (VNA) and two zero-offset antennas (ETSA 
A5 antennas) has been applied for pavement survey during a 
long term experiment at the fatigue carousel [52], [53]. As 
shown in Fig. 9, a pair of air-launched horn antennas, called the 
transmitter (Tx) and receiver (Rx), are close to each other and 
fixed at 70.0 cm above the tested pavement, which satisfies the 
far-field condition. The automatic working platform allows 
moving the Tx-Rx antennas in the direction of pavement 
detection as shown in Fig. 10. The frequency bandwidth of the 
step-frequency GPR signal is B ∈ [0.8, 10.8] GHz. By using 
the uniform sampling strategy, the number of sample points is 
401 with a frequency step of 0.025 GHz.

According to [54], the studied asphalt pavement is made of 
three interfaces separating media, as depicted in Fig. 9. The 
layers Ω1(ϵr1), Ω2(ϵr2) and Ω3(ϵr3) are the asphalt layer, sand 
layer and base-layer, respectively. Layer Ω2(ϵr2) is very thin 
with thickness (H2) less than 1 cm, which represents some 
artificial debonding defect embedded within the pavement 
structure. Based on [53], the sand is proven to be wet by using 
destructive testing method, therefore, the permittivity of this 
layer is about 25 [44]. The length of the studied asphalt 
pavement is about 30 cm with a sample step 1 cm (30 sample 
points). For each sample point, a single snapshot is 
implemented.

A. Data Set

The GPR is moved slightly between different sample points
in order to obtain independent measurements in time domain.
Fig. 11 presents the backscattered echoes from the studied
pavement by raw experimental data (B-scan). Time filtering,
a preprocessing technique, is applied to eliminate the echoes
like multiple echoes and air wave outside the GPR working
time window or the region of interest [17].

It can be seen from Fig. 11 that two peaks corresponding
to the first three echoes backscattered from the first three in-
terfaces: the first peak represents the echo backscattered from

Fig. 9. Experimental configuration.
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Fig. 10. GPR Data collection at the fatigue carousel using a pair of robot-
controlled bistatic antennas over the pavement test area.

the top surface (first echo); the second peak corresponds to
the second and third backscattered echoes from the debonding
layer with a very small embedded sand thickness. The first
backscattered echo is clearly visible in Fig. 11. The echoes
from the second and third interfaces of the sand layer are
overlapped and cannot be distinguished from GPR data. In
the following, we focus on the estimation of the second and
third backscattered echoes, the small thickness of sand layer.
The first echo will be removed by time filtering after it is
detected by the proposed method.
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Fig. 11. GPR data collected at the pavement fatigue carousel test-site. (a)
A-scan of raw data; (b) B-scan.

B. Time-Delay and Thickness Estimation

In the experiment, the co-prime-OGSBL is tested within
frequency bandwidth B = [0.8, 4.8] GHz at the 15th sample
point of the studied asphalt pavement.

By using the co-prime sampling strategy with co-prime inte-
gers M = 7 and N = 6, 12 frequency sample points are used
for co-prime-OGSBL. While for OMP, JOMP OGSBL and
MUSIC-MSSP, uniform sampling strategy is applied with 161
samples. Then, the co-prime-OGSBL is applied to estimate the
time-delays (∆̂τ ) of the second and third backscattered echoes.
Finally, the thickness of the sand layer can be calculated from
following equation:

Ĥ2 =
c∆̂τ

2
√
εr3

(24)

where Ĥ2 is the estimated thickness of the sand layer; c the 
speed of light in vacuum, and εr3 the permittivity of wet sand 
layer. Table IV shows the estimated time-delay ∆̂τ and 
thickness Ĥ2 of the sand layer. Compared with that of MUSIC, 
OMP and OGSBL, the estimated thickness by the co-prime-
OGSBL is close to the true value (H2 ≈ 0.3 ∼ 0.4 cm), which 
means that the proposed method has high estimation accuracy 
in real GPR detection. True value of H2 is obtained by drilling a 
vertical hole at a tested point.

TABLE IV
ESTIMATED TIME-DELAY AND THICKNESS

Method
Parameter

∆̂τ Ĥ2

MUSIC 0.221 ns 0.66 cm
OMP 0.200 ns 0.60 cm

OGSBL 0.150 ns 0.45 cm
Co-prime-OGSBL 0.121 ns 0.36 cm

VI. CONCLUSION

In this paper, we propose a co-prime sampling strategy
based OGSBL, namely co-prime-OGSBL, to estimate time-
delay and thickness of roadway for intelligent transportation
systems. Different from the uniform sampling strategy of GPR,
the co-prime-OGSBL exploits the merits of co-prime sparse
sampling, which uses much fewer frequency sampling points
(low complexity) but reaches similar, or even better estimation
performance than the conventional GPR methods. The OGSBL
is adapted to GPR data processing by taking into account
the radar pulse, non-circularity of GPR signals and co-prime
sampling, which can achieve high resolution and accuracy in
TDE of thin layers. Both numerical and experimental results
demonstrate the effectiveness of the proposed method. In the
future, we will work on the thickness estimation without the
a priori knowledge of permittivity of media and other sparse
sampling strategies.

REFERENCES

[1] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, “Automatic road crack
detection using random structured forests,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 17, no. 12, pp. 3434–3445, 2016.



11

[2] W. W. Lai, R. K. Chang, and J. F. Sham, “A blind test of nondestructive
underground void detection by ground penetrating radar (GPR),” Journal
of Applied Geophysics, vol. 149, pp. 10–17, 2018.

[3] C. Le Bastard, J. Pan, Y. Wang, M. Sun, S. S. Todkar, V. Baltazart,
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