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Abstract—Segmentation of medical images using learning-
based systems remains a challenge in medical computer vision, as
training a segmentation model requires exhaustively annotated
medical images by experts, which are difficult and expensive to
obtain. In the context of melanoma segmentation, we explored
active learning methods to combine human annotation for the
most uncertain pixels with model predictions for the others.
With only around 30% of the images annotated, we achieved
performance similar to that obtained with a fully annotated
dataset. We also demonstrated that, after a few iterations, experts
can focus on annotating only the most uncertain areas of the
images, relying on the model for the rest. These approaches pave
the way for accelerating the annotation of unlabeled medical
datasets and optimizing the use of medical expertise in deep
learning projects.

Index Terms—Active Learning, Image segmentation, Medical
images, Partial annotation

I. INTRODUCTION

Medical image segmentation is a challenging task in com-
puter vision [1], and correctly segmenting anatomical struc-
tures is crucial for computer-aided detection systems [2]. To
address this challenge, various deep learning algorithms have
been specifically tailored, such as Mask R-CNN [3] and U-Net
[4]. This task relies heavily on expert annotations [5], which
can be costly and challenging to acquire.

It has been shown that, during the learning of segmentation,
not all images are equal, and their annotations influence the
training process and the final performance of the segmentation
system [6]. Selecting the most informative images should be
more beneficial to model performance than random selection
of images [7]. This assumption has led to the development of
numerous Active Learning (AL) methods designed to select
the most informative samples for annotation [6].

In the medical domain, obtaining images for diagnostic or
archival purposes has become standard practice, leading to
the availability of large datasets [8]. However, these datasets
are rarely annotated [9]. Thus, selecting the most informative
images using AL methods presents a valuable opportunity
to significantly alleviate the annotation workload for experts,
thereby promoting the creation of more efficient medical tools
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based on deep learning algorithms: see [10] for a review of
AL for medical images.

Within the images themselves, the need for expertise for
annotation also varies: some areas do not require expert an-
notation (e.g., interior of melanomas), while other areas (e.g.,
outline of organs) require precise, high-quality annotation [5].

Skin cancer remains a major public health problem, with
more than 130,000 cases of melanoma per year [11], which
could benefit from computer-assisted diagnosis. Segmenting
skin lesions from images is an important step towards achiev-
ing this goal and remains a challenging task [12].

The contributions of this paper are:
• a detailed exploration of Active Learning (AL) methods

for melanoma image segmentation, combining i) the
selection of images to be annotated with ii) a merging
of human annotation for uncertain areas and model pre-
diction for others;

• the proposal of a model-agnostic, efficient, and effective
AL method for melanoma segmentation.

We compare several methods to select the most uncertain
images to minimize annotation cost and maximize segmen-
tation performance. Firstly, we identify the least confidence
method as the most efficient approach for image selection,
surpassing the segmentation performance achieved with a fully
annotated dataset using only 30% of the images. Secondly, we
show that it is possible to dramatically lower the number of
annotations while preserving segmentation quality: less than
10% of the image pixels need to be annotated after a few AL
iterations.

Section 2 presents the related work on active segmentation
learning. Section 3 describes the explored methods. Section 4
presents the results, which are further discussed in Section 5.

II. RELATED WORK

Active learning for classification has been deeply explored
to facilitate annotation labor (see [13] for a review). It can be
summarized as the principle of selecting the most informative
images to be annotated for a given task [14]. This is a powerful
approach to train models from an unlabeled dataset and reduce
annotation cost. Such a process consists of a pool of unlabeled



data and an expert (also called an “oracle”) who is able to
annotate selected images. The principle is depicted in Fig. 1:

(1) Evaluate the informativeness (using a previously trained
model) of each image in a pool of unlabeled data

(2) Select the most likely informative images
(3) Ask the oracle to annotate the selected images
(4) Train from scratch or fine-tune a new model using

the already annotated images and the newly annotated
images

(5) Evaluate the new model and repeat the AL process until
the desired performance is reached or the annotation
budget is consumed

Fig. 1. Active learning principle

Although numerous methodologies for active learning (AL)
have been proposed for image classification, the field of
active learning for semantic segmentation remains relatively
unexplored [15]. While improving the annotation process in
the medical domain is crucial due to the rarity and expense
of medical expertise, less attention has been devoted to the
segmentation of medical images [16]. The majority of existing
methods rely on benchmark datasets such as Cityscapes [17],
which are characterized by their high diversity, originally
curated to provide comprehensive coverage within their re-
spective domains [18].

Three main challenges are encountered in the adoption
of active learning (AL) for segmentation [19]: the cold-start
problem (i.e., determining the number of samples to annotate
initially), the sample selection strategy, and the pixel-wise
annotation of selected images. It has been shown that the
superiority of AL methods compared to random selection is
highly dataset-dependent [20].

In this paper, we focus on the pixel-wise nature of the
segmentation problem. We aim to reduce the annotation burden
for experts by minimizing not only the number of images to
annotate but also the number of pixels to annotate. Learning
with partial annotation raises specific challenges because clas-
sical loss functions cannot distinguish unannotated pixels from
pixels not belonging to the class [21]. Thanks to the iterative
process of active learning (AL), the combination of human
and model annotation can be explored as the model gradually
learns to make predictions, which can potentially be used as
pseudo-labels.

In the context of melanoma, several active learning (AL)
approaches have been explored using standard datasets such
as the ISIC dataset (e.g., [22], [23]). Most of the proposed
approaches rely on image-level selection and require full
annotation of the selected images. However, several works
have explored reducing the amount of annotation required per
image.

Such reduction may rely on rough annotations, such as
bounding boxes or image-level labels, which have been ex-
plored to reduce the need for pixel-wise annotations but still
present insufficient results for medical applications [19]. This
has led to the consideration of pixel-wise human annotations.
For instance, the authors of [24] estimate uncertainty using
Monte Carlo Dropout methods [25], [26]. During the AL
process, at the image level, they propose manually annotating
the most uncertain images and pseudo-annotating, with the
trained model, some images (all pixels) when the uncertainty
is below a threshold. [24] achieved a segmentation quality,
according to the Dice similarity evaluation [22], [23], of 74%
on the ISIC dataset after 9 AL iterations. [19] proposed a
multi-stage method to reduce the need for pixel-wise anno-
tation. They rely on three stages: (1) the selection of the
most valuable images to annotate based on pixel entropy
uncertainty, region consistency, and image diversity; (2) expert
annotation of the most uncertain super-pixels for the selected
images; and (3) iteration of the super-pixel annotation process
for the selected images. [27] proposed an interactive process
based on the combination of model prediction (U-Net model
with conditional random fields) and human correction. The
correction of the proposed annotation is repeated until a
satisfactory annotation is obtained.

Other approaches have been studied in different medical
domains, such as [18]. Instead of annotating the whole image
during the AL process, their approach aims to select the
most uncertain image patches. The uncertainty is estimated
by calculating the difference between the prediction from the
original images and a transformed version of these images.

Although this approach reduces the annotation effort, it
requires annotating entire patches and does not rely on the
model’s predictions for pseudo-labels.

All of these approaches reduce the quantity of annotation
required but: i) do not directly exploit the combination of
within-image pseudo-labeling (i.e., with the trained model)
and human annotations for the most uncertain areas, ii) require
several iterations per selected image, and iii) do not rely on



AL to leverage this progressive learning. In this paper, we
explore, in the context of melanoma, the selection of the most
informative images (summarizing the uncertainty at the pixel
level) and the combination of human annotation for the most
uncertain areas and model annotations for the other areas.

III. PROPOSED FRAMEWORK

A. Uncertainty estimation at pixel and image levels

We focus on image selection methods that consider the
informativeness of images (step 1 in Fig. 1), particularly
those relying on uncertainty estimation [28]. Uncertainty-
based methods aim to select the most uncertain samples
for annotation [14]. In segmentation tasks, the uncertainty
estimation of an image depends on the uncertainty estimation
of each of its pixels.

We consider three major informativeness estimations1: least
confidence [19], entropy [19], and Monte Carlo Dropout [25].

The least confidence approach involves selecting the images
for which the model is the least confident. The least confidence
score for one pixel is defined in Equation (1):

UncertaintyLeastConfidence(ŷ) = |0.5− ŷ| (1)

where ŷ is the predicted value by the model for one pixel y
of an input image.

The entropy approach consists in selecting the images with
the maximum of information. The entropy score is defined,
for one pixel, as:

UncertaintyEntropy(ŷ) = −ŷ log2 ŷ (2)

The Monte Carlo (MC) Dropout method is based on prior
work showing that Dropout can be used to estimate model
uncertainty [26], especially for semantic segmentation [25].
Similar to [24], we compute the standard deviation of N
predictions of the model at the pixel level. The Monte Carlo
(MC) Dropout uncertainty score is defined in Equation (3):

UncertaintyMCDropout(ŷ) =

√√√√ 1

N

N∑
j

(ŷj − ȳ)2 (3)

where N is the number of Dropout samples and ŷj one of the
N predictions for one pixel, with ŷ = {ŷj}.

The uncertainty scores mentioned above are calculated at the
pixel level. These pixel-level uncertainties are summarized at
the image level using classical metrics such as mean, median,
or sum [29]. In this paper, we focus on summing the pixel
values at the image level.

1Methods based on margin are not considered in this paper, as they require
at least two classes in the images to be applied.

B. Partial human annotation of images

In the majority of proposed AL methods for segmentation,
entire images or image patches are annotated (step 3 in
Fig. 1). A qualitative exploration of the uncertainty maps
during the AL process showed that only limited areas have
high uncertainty. We found that these areas are generally
located on the border between the two classes: background
and melanoma.

Based on these results, we explore the partial annotation
of images selected by the AL process. To do this, the expert
only annotates the most uncertain areas. The following steps
are followed to combine model and human annotations (see
Fig. 2):

1) Produce the model probabilities
2) Select the most uncertain images

a) Binarize the uncertainty mask with a defined
threshold τu (e.g., .25)

b) Binarize the predicted mask with a defined thresh-
old τb (e.g., .50)

c) Annotate the most uncertain areas with human
annotation (”Selected human annotation” in Fig. 2)
and annotate the most certain areas with the bi-
narized prediction mask (”Selected model annota-
tion” in Fig. 2)

3) Repeat the AL process until desired performance is
reached or the annotation budget is consumed

IV. EXPERIMENTS

A. Dataset

The dataset from the ISIC Challenge 2018 [30], [31] is uti-
lized in the following experiments. It contains RGB images of
melanoma along with the corresponding segmentation masks
(see an example image and related annotations in Fig. 3). For
this paper, we used the images and annotations from Task 1
of the 2018 challenge: it includes 2,594 training images, 100
validation images, and 1,000 test images.

B. Evaluation measure

Our experiments consider binary segmentation. In this case,
the ground truth segmentation Sgi for one image i may be
represented by a pair < Sgmi , Sg

b
i > where Sgmi is the set

of pixels labeled as melanoma and Sgbi is the set of pixels
labeled as background. The automatic segmentation Sai for
the same image i contains < Sami , Sa

b
i > where Sami is the

set of pixels classified as melanoma and Sabi is the set of
pixels classified as background. The performance is evaluated
using the Dice similarity coefficient, defined in equation (4):

Dice(Sgi, Sai) =
2|Sgmi ∩ Sami |
|Sgmi |+ |Sami |

(4)

The score is computed per image and averaged over the
images in the dataset. It varies between 0 and 1, with a higher
value indicating better segmentation performance.



Fig. 2. Partial annotation principle

C. Network architecture

Several architectures [1] have been proposed for image
segmentation, including Mask R-CNN [3] and U-Net [4]. U-
Net is especially suitable for medical image segmentation as it
delivers excellent performance even with limited data [32]. A
modified version of U-Net has been chosen, but the proposed
approach is model-agnostic. Compared to the original U-
Net architecture, a ResNet-18 [33] backbone pre-trained on
ImageNet [34] was used. Furthermore, before each increase
in the number of filters in the U-Net architecture, 1x1 con-
volutions are incorporated, and batch normalization [35] is

Fig. 3. One image and its annotations, from ISIC 2018 [30], [31] - Task 1
(ISIC 0000009)

added after each convolution layer to enhance performance
and generalization.

D. Hyper-parameters

The following hyper-parameters were used to train the
networks during the experiments:

• Image size: 512 x 512 pixels
• Batch size: 32
• Cold start2: 128 fully annotated images
• Number of most informative images selected at each AL

iteration3: 32
• Number of AL iteration4: 40
• Data augmentation:

– Random rotation (± 30%)
– Random horizontal flip (50% of the time)
– Random vertical flip (50% of the time)
– Random Color Jitter: Brightness (± 20%), Contrast

(± 20%), Saturation (± 20%)
– Random Blur: σmin=0.01, σmax=0.2, kernel size=5
– Normalization 5: MeanRed,Green,Blue = (0.485,

0.456, 0.406) SDRed,Green,Blue = (0.229, 0.224,
0.225).

• Learning rate: .01
• Number of epochs (per AL iteration): 10
• Optimizer: Stochastic gradient descent with learning

rate=0.01, momentum=0.9, and weight decay=0.0001
All the experiments were carried out on a NVIDIA A6000

48 Go.

E. Simulated active learning

Comparing AL methods in a prospective way (i.e., actually
asking an expert to annotate the selected images) is problem-
atic because the selection will influence future item selection
and, therefore, the results. To compare the approaches, similar
to [36], we simulate the active learning process using the fully
annotated dataset of melanoma ISIC 2018 [30], [31].

2Number of randomly selected images to initialize model training.
3To avoid incomplete batch size, we select the same size as batch size.
4To reduce the computational cost of the experiments, we limited the

number of AL iterations to around 50% of the full dataset.
5Values used for the pretraining on Imagenet.



TABLE I
COMPARISON OF UNCERTAINTY ESTIMATION METHODS AT IMAGE-LEVEL

(DICE SCORE IN %)

AL Method Val. dataset7 Test dataset
Random selection 87 85
Full dataset 84 83
Least confidence 88 87
Entropy 87 86
MC Dropout 86 85
ALS+UNET [23] - 81
SA+AS [22] - 86

At each AL iteration, the model was fine-tuned using
all available annotated data (previously and newly annotated
images), in accordance with the survey by Budd et al. [10].

V. RESULTS

At each iteration, we selected the 32 most uncertain im-
ages to annotate based on the described uncertainty metrics.
Using these newly annotated data, we fine-tuned the model,
calculated the segmentation performance on the validation
dataset (100 images), and then repeated the process until the
annotation budget was reached. Finally, we evaluated the last
trained model on the test dataset (1000 images).

A. Comparison of uncertainty estimation methods at image-
level

We first compared the selection methods for data annotation
at the image level. We evaluated three AL methods (Least
Confidence, Entropy, Monte Carlo Dropout) and two baselines:

• Full dataset: the model was trained on the fully annotated
training dataset. For a fair comparison, the same number
of iterations as for 40 AL iterations was used: 81406.

• Random selection: the images to annotate were randomly
selected at each AL iteration.

The Dice scores are presented in Table I. The evolution of
segmentation performance over the AL iterations is presented
in Fig. 4.

The least confidence method showed the best performance.
It resulted in a 4.8% improvement on the test dataset com-
pared to training on the fully annotated dataset, and a 2.4%
improvement compared to random selection.

B. Combination of human and model annotation

Based on the best selection method at the image level (i.e.,
least confidence), we evaluated the segmentation performance
based on the combination of human annotation for the most
uncertain pixels and model prediction for the others during
training, following the principle depicted in Fig. 2. Apart from
the performance of the model, the distribution of annotation
between the expert and the model is determined by two
parameters, τu and τb:

6At each AL iteration, the model is trained for 10 epochs. The number of
iterations per epoch increased at each AL iteration, as the number of training
samples increased. The number of iterations can be considered cumulative as
the model weights adjusted in the prior AL iteration are reused for the next
AL iteration training.

7Performance on the validation dataset at the last AL iteration.

Fig. 4. Dice score over number of annotated images - Full annotation

• τu is the uncertainty threshold, determining from which
probability value the model’s prediction is considered
certain.

• τb is the threshold for binarizing model predictions,
determining the probability value at which the prediction
switches from one class to another.

We evaluated three values for each parameter. The higher
the value, the higher the confidence requirement of the model
in the prediction:

• τu: 0.125, 0.25, 0.375
• τb: 0.25, 0.5, 0.75

To reduce computational cost and training time, we limited
the number of AL iterations to 20. Moreover, to estimate
the reduction in the number of pixels to be annotated by
combining human annotation and model predictions, we cal-
culated the percentage of pixels that the user should have
annotated over the AL process. We distinguished between
positive pixels (which require annotation by humans) and all
pixels (both negative and positive). For a fair comparison, we
also calculated the percentage of positive pixels annotated in
the full training dataset, which is around 21%.

The results are presented in Table II. The more we increase
the certainty threshold (τu), the more surface area the expert
will have to analyze and annotate, but this does not improve
performance. Conversely, reducing the uncertainty threshold
will speed up annotation time but reduce performance. The
binarization threshold (τb) does not seem to have a significant
influence. Furthermore, as shown in Fig. 5, during the first
iterations, the expert should positively annotate around 10%
of the images, then the percentage drastically drops to less
than 5% to positively annotate.

VI. DISCUSSION

In this paper, we explored several methods of active learning
applied to melanoma segmentation. For this purpose, we
firstly compared various selection methods, including random
selection, least confidence, entropy, and Monte Carlo dropout.



TABLE II
DICE SCORES AND PERCENTAGE OF ANNOTATED PIXELS ACCORDING TO

CERTAINTY (τu) AND BINARIZATION (τb) THRESHOLDS

τu τb
Dice
(%)

Mean % of
annotated pixels

Mean % of pixels
to verify/annotate

0.125
0.25 80 2 12
.50 81 5 11
.75 81 3 11

.25
0.25 84 5 19
0.50 83 6 18
0.75 83 5 18

0.375
0.25 84 9 32
0.50 82 9 32
0.75 82 10 32

Full dataset 83 21 100

Fig. 5. Dice score and Percentage of pixels to be annotated during the AL
process - τu=0.25 & τb = 0.25

The results showed that random selection is challenging to
surpass, as also noted by [16]: Only the Least Confidence and
Entropy methods outperformed random selection.

Based on the most effective approach (i.e., least confidence),
we showed that the combination of model and human anno-
tation significantly reduces the need for expert annotation.
After a few iterations, less than 5% of the pixels needed
to be annotated. Over all 20 AL iterations, the expert only
needed to annotate an average of 5% of the pixels compared
to 21% without our approach. Additionally, they only needed
to analyze 19% of the pixels (including both melanoma and
background pixels), compared to 100% of the pixels in the
standard approach.

While this approach allows for performance similar to
training on a fully annotated dataset, it remains inferior to
the segmentation performance achieved with a least confidence
selection where all pixels in the selected images are annotated.
This could be due to poor segmentation performance or
overconfidence of the model during the initial AL queries,
leading to poor quality annotations for part of the training
dataset. Updating the initial (model) annotations using the
more efficient segmentation model obtained through the AL
process could be explored, particularly by studying when to
carry out these re-annotations (e.g., performance improvement
threshold on a validation dataset). Such an approach could

indeed improve performance, but at the expense of longer
training time.

The experiments reported here rely on human annotation
using annotations available from a fully annotated dataset.
It would be interesting to evaluate, under real annotation
conditions with experts, the time saved using this pseudo-
annotation method. We could also compare the benefit of
providing pseudo-annotations even for uncertain areas.

Several limitations can be pointed out. First, the perfor-
mance of this approach must be evaluated on other datasets.
Second, the dataset used contains only one class (0: back-
ground; 1: melanoma), limiting the annotation complexity
and the segmentation problem. Finally, although the proposed
approach is model-agnostic, it has only been evaluated with
the U-Net architecture.

VII. CONCLUSION

Building a good medical segmentation tool using deep
learning is often limited by the availability of annotated
images. When these images do exist, they are usually few
in number and not fully annotated, primarily because an-
notation must be done by medical specialists and is very
time-consuming. In this paper, we explored Active Learning
methods to reduce both the number of images to annotate and
the number of pixels to annotate per image. In the context
of melanoma segmentation, we showed that it is possible to
obtain similar results by annotating only 30% of the images
and by annotating less than 5Hence, this paper paves the way
to facilitate the segmentation of medical images in fields where
data is available but not annotated. Future work will aim to
extend this approach to more complex medical data, such as
3D images.
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[36] S. Ayache and G. Quénot, “Video Corpus Annotation Using Ac-
tive Learning,” in Advances in Information Retrieval, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, C. Macdonald,
I. Ounis, V. Plachouras, I. Ruthven, and R. W. White, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, vol. 4956, pp. 187–198,
series Title: Lecture Notes in Computer Science.


