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Jérôme Lachaize2, Malik Tognan3

Abstract

This paper proposes a predictive control strategy to minimize the
hydrogen consumption of a modular fuel cell system hybridized with
a battery. This approach is compared with a reference solution ob-
tained using optimal control. By increasing the prediction horizon,
performances tends to the reference ones, minimizing the consumption
and aging of the modules while maintaining a solution that can be
implemented online. It is shown that the gains in energy consumption
and module aging are achieved at the expense of battery aging in both
cases.

1 Introduction

Hydrogen is recognized as a potential solution for decarbonizing the heavy
mobility sector. For this technology to become widespread, it is necessary
to reduce the hydrogen consumption of the hybrid fuel cell hybrid electric
vehicle (FCHEV) and increase their lifespan. This requires enhancement of
PEMFC-LT (Proton Exchange Membrane Fuel Cell Low Temperature) tech-
nology and the implementation of more efficient energy distribution strate-
gies. Among the various control techniques, model predictive control (MPC)
has attracted attention for FCHEV as it can handle constrained systems ef-
ficiently[1]. For fuel cell hybridized with a battery [2, 3, 4], MPC allows to
anticipate the evolution of the state of charge of the battery and reduce the
consumption over a driving cycle. In this regard, the contribution of this
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paper resides in adressing the impact of predictive control on battery and
fuel cell ageing as well as hydrogen consumption.

In this paper, a MPC strategy is proposed to minimize hydrogen con-
sumption for an hybridized modular fuel cell system for heavy-duty vehicles.
The impact on fuel cell and battery aging is analyzed, as well as the influence
of the choice of prediction horizon. To that extent, a reference solution is
obtained by solving the corresponding optimal control problem, offline and
a posteriori, with perfect knowledge of the full driving cycle.

This paper is organized as follows. Section 2 details the models de-
scribing the considered system. Section 3.1 presents the reference dispatch
strategy, which solves the optimal control problem offline and a posterioti.
Section 3.2 describes the predictive control strategy and its implementation.
Section 4 compares both strategies for different forecast horizons, in terms
of hydrogen consumption and aging.

2 Considered system

The system under consideration consists of 3 fuel cell (FC) modules hy-
bridized with a battery, it is designed for designed for heavy goods vehicles
up to 40 tonnes. It is described by a FC operation model, a FC aging model,
a battery operation model and a battery aging model. The entire system
is controlled by the power strategy, which is the focus of this paper. Two
optimisation based strategies are presented and compared. The details of
the sub-models are given in the following subsections.

Figure 1: Architecture of the considered model: the required power (Ptot)
is dispatched between the Fuel cell system (FCs) and the battery. From
this distribution, the sub-models update the state variables and the state of
health.
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2.1 FC operation model

The model consists in a mapping of the performance of a FC stack given
by a tabulation. For a given current density j and State of Health (SoH),
defined by the FC aging model, a table gives the net power output of the
module.
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Figure 2: Module H2 consumption
curve as a function of power for dif-
ferent SoH
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Figure 3: Module’s efficiency curve
as a function of power for different
SoH

Similarly, the hydrogen consumption of each module ṁiH2 is tabulated
(Figure 2). For a power demand, the module consumption increases as the
SoH of the module deteriorates. The energy efficiency of a module is defined
on the basis of its consumption ṁiH2 [g/s], the lower heating value of the
dihydrogen LHVH2 [J/g] and its power Pi.

ηi =
Pi

ṁi H2 ∗ LHVH2

(1)

To account for the compressor’s inertia, the model limits the modules
power variations in the following way:

Pmax
i (t+ 1) = Pi(ṁ

max
air (t+ 1)), (2)

where the maximum air flow of the compressor ṁmax
air is given by:

ṁmax
air (t+ 1) = ṁair(t) + ∆ṁmax

air , (3)

where ∆ṁmax
air = 0.0707 [kg.s−2].
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2.2 FC aging model

In this paper, the FC aging model is based on the superposition principle
as in [5] [6] [7]. It identifies specific degrading operating regimes and the
corresponding voltage drop of the fuel cells. Four degrading regimes are
considered:

• Start degradation δss [V]: if the i module switches from off to on δssi =
δssref , otherwise δssi = 0.

• Open Circuit Voltage (OCV) δOCV [V]: when a module’s voltage ap-
proaches its OCV, i.e. when U > U∗,

δOCV = kOCV (U − U∗)nOCV

with U∗ = 0.802[V ]. When U <= U∗,

δOCV = 0

• Operational degradation δj [V]:the degradation are proportionals to
the current density within the FC cells:

δj = kjj

with j the current density in [A.cm−2].

• Power transition δpt [V]: only increases in power are counted, as the
model assumes that a drop in the power supplied by a module does
not cause any damage.

δpt = kpt
j

Jlim

∆j

Jlim −∆j

npt

Where ∆j is the variation in current density over one second, Jlim =
2.35 [A.cm−2].

Table 1: aging model coefficients

Coefficient δssref kOCV nOCV kj kpt ntp

Value 2e-6 7.09e-7 2 2.49e-9 7.81e-6 2

The above coefficients (Table 1) have been adjusted based on a FC load
derived from a Hyundai Nexo over a WLTC homologation cycle and an
expected life of 10,000 hours at this load. This model and its parameters
have not yet been experimentally validated.
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Based on these 4 degradation regimes, the model calculates the instan-
taneous degradation δtoti (t) of each module:

δtoti (t) = δssi (t) + δOCV
i (t) + δji (t) + δtpi (t) (4)

then the (SoH) variation of the modules dSoH i(t).

dSoH i(t) =
δtoti (t)

∆Vmargin
(5)

Where ∆Vmargin represents the maximum acceptable voltage drop to
consider that a cell is still in working order and δtoti (t) the total instantaneous
degradation of the i module at time t. The SoH of modules is updated as
follow:

SoHi(tk + 1) = SoHi(tk) +

∫ tk+1

tk

dSoH i(t)dt (6)

When a FC module is new, its (SoH) is equal to 1. When the SoH
reaches 0, the module is considered to have reached the end of its life. Us-
ing the curve bundle in Figure 3, the aging of modules is reflected in their
performance during a simulation.

2.3 Battery operation model

The battery operation model used is an internal resistance model, its param-
eters have been extracted from an internal resistance model of the Simcenter
AMESim software, validated on experimental data [8]. The battery power
and its voltage are given by:{

Pbat = Ub ∗ Ib
Ub = Ubat ocv − Ib ∗Rb(SoC, Pbat)

(7)

Where Ubat ocv is the open circuit voltage of the battery, Ib is the cur-
rent flowing through the battery and Rb(Soc, Pbat) is its internal resistance
varying with the state of charge (SoC) of the battery and the sign of Pbat.
In this work it is obtained from a tabulation. For a given battery power Pbat

and charge level SoC, Ib is calculated as follows:

Ib =
Ubat ocv −

√
U2
bat ocv − 4Rb(Soc, Pbat)Pbat

2Rb(Soc, Pbat)
(8)

From Ib the model estimates the variation in the battery’s state of charge
(dSoC) using the following formula:
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dSoC =
−Ib

3600 ∗Qbat
(9)

Where Qbat represents the battery storage capacity. The SoC is updated
as follow:

SoC(tk + 1) = SoC(tk) +

∫ tk+1

tk

dSoC(t)dt (10)

2.4 Battery aging model

The battery aging model used in this word is based on the work of [9] [10] .
Due to limitations in space, it is not possible to develop this model in this
paper. For a given battery power, SoC and capacity, it returns the updated
battery capacity and the corresponding capacity loss.

2.5 Simulated scenarios

In this paper, the reference strategy and the MPC are compared over a
Lyon-Milan driving cycle (Figure 4).
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Figure 4: Full driving cycle power profile. Two distinct zones can be identi-
fied. In the first half (zone 1), the vehicle ascends to cross the Alps, requiring
a high average power (shown in dashed black). In the second half (zone 2),
the vehicle descends, requiring less average power.

It is assumed that, over the 6-hour driving cycle, fuel cells do not age
enough to cause significant over-consumption. For this reason, a constant
SoH is assumed when solving the optimal control and MPC optimisation
problems. Aging is then accounted for when simulating the resulting power
dispatch strategies.
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3 Methodology

3.1 Optimal control

The considered optimal control problem is as follows:

min
PFCs

tend∑
t=t0

ṁH2 FCs(t)

s.t. PFCs + Pbat = Ptot

0 ≤ PFCs ≤ Pmax
FCs

Pmin
bat ≤ Pbat ≤ Pmax

bat

SoC(tend) = SoCtarget

(11)

where Ptot is the total power to be supplied by the system, PFCs the power
supplied by the FC system and Pbat the power supplied by the battery.
ṁH2 FCs(t) is the hydrogen consumption of the multi-modular system for a
given time step.

It minimizes consumption over the entire driving cycle. It is solved back-
ward by dynamic programming (DP) using [11]. The solution is guaranteed
to be optimal for a given model and discretisation step. As this method
requires knowledge of the entire driving cycle and is computationally expen-
sive, it is not suitable for online applications and should be regarded as a
reference solution to tend to. In this paper, the optimal control solution is
used as a reference to evaluate the MPC strategy.

3.2 Model predictive control

In this section, the power dispatch strategy consists of a model predictive
controller. It takes forecast of the power demand as an input to determine
the dispatch at each time. The optimisation problem is similar to (11) but
covers a shorter and moving prediction horizon rather than the complete
driving cycle. This renders the method suitable for online implementation.

The MPC solves the following optimisation problem for every time step
of the driving cycle:

min
PFCs

tk+H∑
t=tk

ṁH2 FCs(t)

s.t. PFCs + Pbat = Ptot

0 ≤ PFCs ≤ Pmax
FCs

Pmin
bat ≤ Pbat ≤ Pmax

bat

SoC(tk +H) = SoCtarget

(12)

where Ptot is the total power to be supplied by the system, PFCs the power
supplied by the FC system and Pbat the power supplied by the battery.
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ṁH2 FCs(t) is the hydrogen consumption of the multi-modular system for a
given time step.

As for optimal control, problem (12) is solved through DP using [11]:

• If the problem is feasible, the DP algorithm returns a vector of optimal
commands for the next H seconds. The first instant of the command
is applied as the power setpoint for the multi-modular system.

• Sometimes the SoC constraint from (12) is infeasible. This occurs,
for instance, when the state of charge (SoC) at a given time t is less
than the target SoC and the average predicted power is greater than
the maximum power that can be supplied by the fuel cell stack Pmax

FCs .
In this case, the battery is forced to have an energy deficit over the
prediction horizon in order to meet the power demand. Consequently,
the SoC is forced to fall, and the constraint SoC(t +H) = SoCtarget

cannot be met.

In the event that (12) is infeasible, the battery SoC is compelled to decline.
To mitigate this, the modules operate at maximum power, limiting SoC
drop. Increasing the value of the forecast horizon reduces the number of
instances where the optimisation problem becomes infeasible.

4 Results

In this section, the two methods presented in the previous section are applied
on the driving cycle visible on Figure 4. It should be recalled that optimal
control is considered as a reference to evaluate the performances of the MPC,
and will be referred to as the reference solution in this section.

The power distribution achieved by predictive control with a prediction
horizon H = 350 and the reference solution are shown on Figure 5a . While
MPC covers a much wider range of power, it is more responsive to variations
in the driving cycle. The reference power distribution reflects particularly
well the two stages of the driving cycle, with a first zone of high power and
a second of medium power.

Figure 6 shows the frequency at which the modules are used for different
power ranges over the driving cycle. The results are indicated for several
predictive control horizons along with the reference solution. As the predic-
tion horizon increases, the modules spend less time operating at very low
and very high power levels. This is reflected in the narrowing of the his-
togram of MPC around low to medium power levels, which corresponds to
the area of maximum module efficiency. The power distribution appears to
tend towards that of the reference solution, which is a logical consequence
of the similarity of the respective optimisation problems.

It results in a diminution in both consumption and modules aging, which
are represented on Figure 7. A shift from a five-second prediction horizon
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(a) Modules power over the driving cycle for both strategies. The
reference power distribution is smoothed around two values, each
corresponding to a zone in the driving cycle (see Figure 4)
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(b) Battery power over the driving cycle for both strategies. In
the reference case, the battery absorbs all the variations in power
required by the driving cycle. Predictive control allows less variations
of battery power as the driving cycle variations are absorded by the
modules.

Figure 5: Power distribution for both strategies

to 350 seconds allows for a notable reduction in overconsumption, from
approximately 13% to 2%. As the prediction horizon is extended beyond
350 seconds, the points become more compact. Doubling the prediction
horizon from 300 seconds to 600 seconds results in consumption gains of less
than 1%.

As the prediction horizon increases, power fluctuations are reduced, lead-
ing to a significant decrease in power transients and a reduction in the time
the modules spent operating at low power. This limits the open circuit
voltage degradation. However, as the modules operate more frequently at
medium power levels, the operational degradation slightly increases. We can
also notice a reduction of module stops, resulting in a decrease of start-stop
degradation. This is visible on Figure 8. It should be noted that if the
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Figure 6: Histogram of the power supplied by the modules over the driving
cycle for each strategy. As the prediction horizon increases, the histogram
of MPC narrows around low to medium power levels, corresponding to the
area of maximum module efficiency.
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Figure 7: Hydrogen consumption and voltage drops induced by each distri-
bution strategy are expressed relatively to the reference solution.
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Figure 8: Impact of the forecast horizon on the FC degradation. Vloss =
SoH(tend) ∗ ∆Vmargin represents the voltage drop for a fuel cell over the
driving cycle.

MPC reduces both the consumption and the FC ageing, only the hydrogen
consumption is part of the cost function (12). In addition to reducing power
transition, OCV and start-stop degradation, the power range of high effi-
ciency and the power range of low operationnal degradation are coincident.

As the prediction horizon increases, the MPC has a longer time horizon
to ensure that the SoC remains above 50%. This allows for longer charge
and discharge of the battery (Figures 5b and 9), leading to a reduction in
battery capacity (Table 2). For the reference solution, module aging and
consumption are much lower than with predictive control, but at the cost of
a very sharp deterioration in battery capacity, due to the over solicitation
of the battery (as seen in Figures 5b and 9).

Table 2: Capacity loss (Qloss) of a battery cell for different strategies

Strategies DP MPC H = 350 MPC H = 5

Qloss [A.h] 6.600e-2 1.906e-2 1.238e-2

Qloss
Qloss Reference

1 0.288 0.1875
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Figure 9: Evolution of the battery SoC over the driving cycle for each strate-
gies. In order to minimize consumption over the driving cycle, the dynamic
programming solution uses almost the full amplitude allowed by the bat-
tery [0.2-0.8]. The SoC induced by predictive control remains fairly stable
around 0.5.

5 Conclusions and outlooks

In this paper, a MPC strategy that minimizes hydrogen consumption has
been implemented to dispatch power in a hybridized modular fuel cell system
for heavy-duty transportation. The results are evaluated by comparison with
a reference case which is the solution of the corresponding optimal control
problem, solved offline and a posteriori for the whole driving cycle.

The longer the prediction horizon, the more information the MPC has to
manage power distribution. This allows to limit high power operation and
shut down modules less frequently. The power demanded from the modules
is smoother, reducing the degradation associated with OCV, high power,
power transients and start-stops. Both consumption and module aging are
reduced by extending the prediction horizon. However, the battery is more
stressed, increasing its corresponding degradation.

In this work the cost function only minimises the hydrogen consumption,
to limit the burden on the battery it would be interesting to include the
battery aging in the objective function. Moreover, the prediction provided
to the MPC is assumed to be accurate. Future work will study the impact
of an error in the prediction on the performance of the MPC.
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