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Balanced Splitting: A Framework for Achieving
Zero-wait in the Multiserver-job Model

Jonatha Anselmi and Josu Doncel

Abstract—We present a new framework for designing nonpreemptive and job-size oblivious scheduling policies in the multiserver-job
queueing model. The main requirement is to identify a static and balanced sub-partition of the server set and ensure that the servers in
each set of that sub-partition can only handle jobs of a given class and in a first-come first-served order. A job class is determined by
the number of servers to which it has exclusive access during its entire execution and the probability distribution of its service time. This
approach aims to reduce delays by preventing small jobs from being blocked by larger ones that arrived first, and it is particularly
beneficial when the job size variability intra resp. inter classes is small resp. large. In this setting, we propose a new scheduling policy,
Balanced-Splitting. In our main results, we provide a sufficient condition for the stability of Balanced-Splitting and show that the
resulting queueing probability, i.e., the probability that an arriving job needs to wait for processing upon arrival, vanishes in both the
subcritical (the load is kept fixed to a constant less than one) and critical (the load approaches one from below) many-server limiting
regimes. Crucial to our analysis is a connection with the M/GI/s/s queue and Erlang’s loss formula, which allows our analysis to rely on
fundamental results from queueing theory. Numerical simulations show that the proposed policy performs better than several
preemptive/nonpreemptive size-aware/oblivious policies in various practical scenarios. This is also confirmed by simulations running on
real traces from High Performance Computing (HPC) workloads. The delays induced by Balanced-Splitting are also competitive with
those induced by state-of-the-art policies such as First-Fit-SRPT and ServerFilling-SRPT, though our approach has the advantage of
not requiring preemption, nor the knowledge of job sizes.

Index Terms—Multi-server jobs, online scheduling, queueing probability, zero-wait, Erlang’s loss formula, asymptotic optimality

✦

1 INTRODUCTION

THE MULTISERVER-JOB queueing model has recently
gained traction in the performance analysis of parallel

systems because it captures a key aspect of today’s High Per-
formance Computing (HPC) and cloud computing systems
[1], [2], [3], [4]. Within this model, each job can occupy multi-
ple servers simultaneously for the entire duration of the job
itself. Servers are an abstraction for processing resources: in
HPC systems, they refer to CPUs, cores, GPUs or nodes; in
cloud systems, they refer to virtual machines or containers;
and in serverless computing, they refer to cloud functions,
instances or replicas. The number of servers required by
each job is referred to as server need of that job, and logs of
real parallel workloads from production systems reveal that
they range from one to a few thousand, depending on the
application and on the resource type [5], [6]. In turn, these
workloads run on large systems that are composed of up to
millions of resources. According to the TOP500 project [7],
the United States’ Frontier is currently the most powerful
supercomputer, reaching 8,699,904 total cores.

Recently, the interest for multiserver jobs has profoundly
increased due to the massive use of deep learning technolo-
gies and applications, which rely on highly-parallel machine
learning jobs like TensorFlow [8] to handle several aspects
of our daily life. Beyond the case of machine learning jobs,
examples of jobs that typically require a specific number of
servers are easily found in linear algebra applications that
rely on singular value or matrix decompositions, in image

• J. Anselmi is with Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP,
LIG, 38000 Grenoble, France. E-mail: jonatha.anselmi@inria.fr

• J. Doncel is with the University of the Basque Country, UPV/EHU, Barrio
sarriena s/n, 48940 Leioa, Spain. E-mail: josu.doncel@ehu.eus

processing scenarios such as neuroscience applications [9],
where different servers operate on different sets of pixels,
etc. Finally, in [10], [11] the authors show that tasks sub-
mitted to Google’s Borg Scheduler (which represent jobs
executing internet-facing services such as Docs, Sheets, and
Gmail, for instance, or jobs from the internal tools and
services) require a specific number of server, which can vary
by five orders of magnitude across jobs (see also [12]).

In multiserver-job queueing models, jobs wait in a cen-
tral queue before being processed, they then hold the simul-
taneous possession of multiple servers according to their
server needs, and finally, they leave the system permanently
upon service completion. These models differ from standard
queueing models where each job can only occupy one
server, and they present the technical challenge of design-
ing scheduling policies that can efficiently pack jobs onto
servers ensuring full capacity usage whenever the number
of jobs exceeds the number of servers. In this case, the
corresponding scheduling policy is said throughput optimal.
However, it may be impossible to design a system that
prevents a loss of capacity. For example, consider the case
where the number of servers is odd but each job requires an
even number of servers.

The fundamental problem is to design scheduling poli-
cies that yield high utilization/throughput and/or low de-
lay/makespan. A scheduling policy for the multiserver-
job model determines which jobs are processed by which
servers at any given time. This problem is nontrivial and
referred to in the literature as the “parallel on-line job
scheduling problem” [13]. Since these policies may run on
massively large computer systems, in practice HPC and
cloud platform administrators opt to use simple heuristics,
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with low computational complexity.
In the last decades, several works have addressed the

problem of designing scheduling policies for multiserver
jobs. Most existing studies focus their performance analysis
on settings in finite time or with a finite number of jobs. In
this paper, we consider an infinite stream of stochastically
arriving jobs and investigate performance (stability and
mean delays) in a steady-state regime. The scientific literature
has received relatively little attention in this queueing theo-
retic setting, which is attributed to the increased mathemat-
ical complexity caused by the non-conventional structure of
multiserver jobs. However, several new scheduling policies
and interesting related results have recently been developed
in the literature. Now, we provide an overview.

1.1 Common scheduling policies and positioning
The list of scheduling policies for multiserver jobs inves-
tigated in the literature is huge [3], [4], [13], [14] and our
goal here is to provide the necessary high-level background
highlighting the difference of our work. In general, it is
difficult to establish whether a policy is better than another
because the answer strongly depends on i) the assumptions
made on the underlying architecture and ii) the information
available to the scheduler. In this respect, existing schedul-
ing policies may be classified according to whether they
require preemption or job-size awareness:
• A scheduling policy is preemptive if jobs can be stopped

during their execution and resumed afterward at any
point in time. While preemption may improve perfor-
mance theoretically, it has some important limitations.
First, as discussed in [2], stopping and resuming jobs
come with non-negligible switching costs, and job mi-
gration is also involved. Due to analytical intractability,
existing queueing models do not usually take these costs
into account, which leads to optimistic performance
analyses. A further disadvantage of preemption is the
starvation of jobs requiring a large number of servers.

• A scheduling policy is size aware if at any point in time
the scheduler knows the remaining processing time of
each job together with its server need. Here, the cel-
ebrated example is the Shortest Remaining Processing
Time scheduling discipline, which in the single-server
job model is known to minimize delays in a strong
sense [15]. The downside of this requirement is that
in practice such information is rarely available. While
users of HPC systems usually submit jobs together with
estimations of their running times, it is well known that
these are largely imprecise; see [16, Section 1.1]
In turn, existing performance analyses of the

multiserver-job queueing model may be classified according
to whether they consider a transient or steady-state regime.
The former considers the scheduling of a finite number of
jobs, while the latter considers an infinite stream of jobs
entering the system at the jump times of an exogenous
stochastic point process. In this paper, we are interested
in the steady-state regime. In this setting, a primary
performance objective concerns throughput optimality,
which roughly means that “the system is stable whenever
the arrival rate is smaller than the service rate”. Then,
another important objective concerns the analysis of mean

delay, or mean response time. Unfortunately, tractable
analytical formulas for mean delays are usually out of
reach, even assuming that jobs arrive according to a Poisson
process. For this reason, existing approaches investigate
dynamics in some limiting regime of practical interest as
this often leads to the identification of simple asymptotic
formulas that turn out to be extremely accurate in the
pre-limit. In the literature, researchers have considered
limiting regimes where i) the arrival rate approaches the
boundary of the stability region from below while keeping
constant the overall number of servers (heavy traffic limiting
regime) [3], or ii) the traffic demand grows to infinity
together with the total number of servers (many servers
limiting regime) [17], [18]. In this paper, we are interested
in the latter approach, as it fully captures the nature of real
computer systems, which are composed of thousands, if not
millions, of servers [7].

The requirements and features of the most common and
newest scheduling policies proposed in the literature are
summarized in Table 1; we point the reader to Section 2
for more details about these scheduling policies. In the list,
we point out Balanced Splitting, a scheduling policy that we
propose in this work and discuss below.

1.2 Balanced Splitting

We introduce a new framework, referred to as Bal-
anced Splitting Framework (BSF), for the design of non-
preemptive, job-size oblivious scheduling policies in the
multiserver-job model. The main idea is to reduce interfer-
ence between small and large jobs by keeping them separate
to some extent. It works as follows. First, divide jobs into
classes, where a job class is determined by its server need
and its service time probability distribution. Then, identify
a static sub-partition of the server set, say A := ∪iAi, in
proportion to the relative demand of each job class i, where
static means independently of the job arrival process. Fi-
nally, ensure that each subset of servers Ai can only process
jobs of class i and in a first-come first-served order. The
servers outside A are called helpers and their set is denoted
by H. Within BSF, we propose the following policy:

BalancedSplitting-π: Upon arrival of a class-i job,
send it to servers in Ai if enough idle servers for im-
mediate processing exist, otherwise send it to the helper
set for potential processing by the servers in H. In
the helper set, process jobs according to π, an auxiliary
scheduling policy for multiserver jobs. Upon completion
of service of a class-i job in Ai, assign to Ai the oldest
class-i job that is waiting for service in the helper set,
provided that it exists.

While π can be any of the policies discussed above, to
preserve a simple structure we assume that it is nonpre-
emptive, size-oblivious, and only acting on the helpers, i.e.,
it operates independently of the state of the servers in A.

1.3 Main contribution

Our main objective is to develop a scheduling policy yield-
ing the so-called zero-wait property, i.e., a condition where
the mean job waiting time vanishes when the system size



3

Requirements Performance︷ ︸︸ ︷ ︷ ︸︸ ︷
Preemptive Size-aware Throughput optimality Many-server

delay asymptotics

First-Come First-Served No No Almost∗ [18] Yes [18]

Most Servers First [19], [20] Yes No No [2] N/A

First-Fit Back-Filling No No ? N/A

First-Fit SRPT Yes Yes ? N/A

Max-Weight [2] Yes No Yes N/A

GreedySRPT [4] Yes Yes ? N/A

ServerFilling [21] Yes No Yes∗∗ N/A

ServerFilling-SRPT [3] Yes Yes Yes∗∗ N/A

ServerFilling-Gittins [3] Yes No Yes∗∗ N/A

BalancedSplitting-π
(this paper) No No Almost∗ Yes

∗: No in general and yes asymptotically in a many-server limiting regime, under mild conditions.
∗∗: Provided that the overall number of servers and all the server needs are a power of two.

Table 1
Summary of the requirements and performance of the most common and latest scheduling policies.

grows large together with the traffic demand. In the queue-
ing literature, this property has been considered in several
works, e.g., [22], [23], [24], while for now it has received
less attention in multiserver-job queueing models [18]; see
Section 2 for more details. Within our approach, we address
this objective by investigating the following question:

Within BalancedSplitting-π, under which conditions
on the model parameters is it possible to neglect the
probability, say PH, that a job is sent to the helper set H
upon its arrival?

Here, the idea is the following: if PH is “small”, then the im-
pact of the auxiliary policy π is “neglibible” and the overall
performance is captured by the dynamics that only occur in
the A system. This implies the zero-wait property because
jobs that join the A system are processed immediately upon
arrival.

We answer the question above in the affirmative within
two limiting regimes of practical interest that are motivated
by the huge size of real systems. Specifically, in Theorems 1
and 2 we show that PH vanishes in both a subcritical and a
critical many-server limiting regime where also the server
needs are allowed to scale to infinity. In the former, the
demand and the overall number of servers grow to infinity
in proportion while the load ρ is kept fixed to a constant
less than one. In the latter, the difference is that at the same
time the load ρ approaches one from below. Both regimes
have been widely considered in the queueing literature [25],
[26], [27], and in our case they are well justified because of
the massive size of modern computer systems. The critical
many-server regime considered in this paper corresponds
to the Halfin-Whitt regime, which has been mainstream in
the queueing literature since the seminal work in [26]. This

regime aims to balance between efficiency and quality of
offered service and is also known as Quality and Efficiency
Driven (QED).

At the core of our proofs, there is connection a con-
nection with the M/GI/s/s queue, which is a well-studied
object in queueing theory since the pioneering works of Er-
lang. More specifically, we show that the dynamics induced
by BalancedSplitting-π can be bounded by the dynamics
of a modified version of BalancedSplitting-π ensuring that
the A system can be decomposed into multiple independent
M/GI/s/s queues. Within this decomposition, the A system
becomes tractable from a mathematical point of view and
the question above can be essentially rephrased as “Under
which conditions is it possible to make the blocking probability of
an M/GI/s/s queue vanish?”. This question has a long history
in queueing theory since the work of Erlang (see, e.g., [28]),
and here we use existing theorems to establish our results.

Figure 1 plots the simulated mean response time induced
by BalancedSplitting-π and other scheduling policies in
the critical many-server limiting regime. Here, the server
needs grow with rate fk = ⌊(k/32)2/3⌋ where k is the
overall number of servers, and the load ρ = ρ(k) sat-
isfies (1 − ρ)

√
k/fk → θ = 0.7 as k → ∞. Job sizes

are highly variable and follow the model of “several small
and few large” jobs, which is typical in HPC and cloud
systems. The relative demand of large resp. small jobs is
80 · 0.05fk = 4fk resp. 0.95fk; see the figure caption for
details. For BalancedSplitting-π, we assume that the auxil-
iary policy π is First-Come First-Served (FCFS). First, we
notice that BalancedSplitting-π outperforms FCFS. It also
performs better than ServerFilling, which is preemptive,
and provides average response times that are competitive
with those achieved by ServerFilling-SRPT and First-Fit
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Figure 1. Simulated mean response time in the critically loaded limiting
regime (Halfin–Whitt). Small resp. large jobs arrive with probability 0.95
resp. 0.05. Small jobs have server need and mean service time equal
to (fk, 1), where fk = ⌊(k/32)2/3⌋. Large jobs have server need and
mean service time equal to (2fk,40), (4fk,20) or (8fk,10), with equal
probability. Service times are exponentially distributed and all inde-
pendent. Arrivals are Poisson. Each simulation run uses 106 arrivals.
The curves associated to ServerFilling-SRPT and First-Fit SRPT almost
overlap.

SRPT, but without incurring the cost of preemption, nor
requiring the knowledge of job sizes. In Section 6, we will
complement our analysis by presenting an additional set of
numerical simulations against both synthetic and real data
traces. These will provide further evidence of the benefits of
our approach and scheduling policy.

2 SCHEDULING POLICIES REVIEW

This section complements Section 1.1 and reviews in more
detail the most common and latest scheduling policies pro-
posed in the literature (see also Table 1). Several of these are
considered in this paper for benchmarking purposes.
• FCFS: First-Come First-Served. Jobs are processed in

order of arrival if there are enough servers to meet
their needs, otherwise they wait in the central queue. A
queueing theoretic analysis of the resulting multiserver-
job queueing model is challenging even assuming
exponentially-distributed job durations and Poisson ar-
rivals [1], [18].

• Most Servers First. At all times, jobs with the highest
server need are processed first among all jobs that can
be served, with preemption [19], [20]. This policy is also
known as Best-Fit [2].

• Least Servers First. At all times, priority is given to jobs
with the smallest server needs [21]. Within the same
parameter settings used for Figures 1, 2 and 3, our
simulations indicate that the response times induced by
Least Servers First are huge. In fact, this policy does not
seem stable within the considered range of parameters.
For this reason, in the remainder we omit in our plots
the corresponding numerical results.

• First-Fit Back-Filling. As FCFS, but if there are idle
servers and jobs waiting in the queue that can be exe-
cuted, then the first arrived job that fits the idle servers
is processed. Several variants of this “Back-Filling” type
of policy are available in the literature [4], [29].

• First-Fit Shortest Remaining Processing Time (SRPT).
Serve the jobs with the least remaining processing time,
regardless of their server needs. If a job has a higher
server need than the remaining number of servers avail-
able, skip that job and continue through the list of jobs,
placing jobs into service if sufficient servers are available,
until all servers are full, or all jobs are assigned. This
policy resembles policies like “Smallest Area First” and
EASY BackFilling [4].

• MaxWeight. At all times, choose a packing x that max-
imizes

∑
nQnxn where Qn is the number of jobs with

server need n that are in the system and xn is the
number of jobs with server need n that are served by
packing x [2]. While MaxWeight is throughput optimal,
it is not practical as it requires the scheduler to solve an
NP-hard optimization problem any time a job arrives or
departs. There is a myopic version MaxWeight that is
nonpreemptive and allocates a new job to a server using
current queue length information at job departure times.
Under some technical assumptions, it can achieve any
arbitrary fraction of the stability region [2].

• ServerFilling. Identify the minimum set of jobs M that
collectively require a number of servers at least equal
to k, in order of arrival. If such a set is empty, all jobs
present in the system are served simultaneously (if any
exist), otherwise, the jobs in M are ordered by their
server needs, from largest to smallest (with ties broken
by arrival order), and placed into service in that order
until no more servers are available. The overall number
of servers k and server needs do not need to be a power
of two. If k is not a power of two, a job j in M may
not be packed in even when idle servers exist, and in
this case the scheduling is completed with all the jobs
arrived later than j blocked and some servers unused.
ServerFilling has been proposed in [21].

• ServerFilling-SRPT [3]. Order jobs in increasing order of
remaining size rj , breaking ties arbitrarily, so that rj1 ≤
rj2 , . . . for jobs j1, j2, etc. Here, the size of a job is its
remaining service time times its service need. Let m∗ be
the smallest integer such that

m∗∑
m=1

njm ≥ k,

where njm is the server need of job jm If there is no
such index, then serve all jobs in the system simul-
taneously (if any exists). Otherwise, serve the jobs in
M := {j1, j2, . . . , jm∗} prioritizing jobs of largest server
need until no servers remain or the next job cannot fit,
breaking ties by smallest remaining size.

• ServerFilling-Gittins [3]. Identical to ServerFilling-SRPT
except that jobs are ordered in increasing order of Gittins
rank, which for a job with server need i, service time
Si and age (time spent in the system) a is defined
as infb>a E[min(Si, b)− a | Si > a]/P (Si ≤ b | Si > a).
If the service times of jobs with a given server need
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are deterministic or if job sizes are known, then
ServerFilling-Gittins and ServerFilling-SRPT are equiv-
alent.
Most of the existing policies require preemption. As

discussed above, this is costly in practice.
Throughput optimality for the recent ServerFilling-*

policies holds if the overall number of servers k and all the
server needs are a power of two. Within this assumption,
it is possible to perfectly pack jobs into the server set
whenever the overall amount of server need exceeds the
number of servers. The family of DivisorFilling-* policies
discussed in [3] weakens this assumption requiring that all
server needs are a divisor of k. Their applicability remains
limited because in practice the overall number of servers is
hardly a power of two [7]. One of our goals is to develop a
scheduling policy that is more flexible in this respect.

2.1 Queueing probability and the zero-wait property
In the queueing literature, many-server limiting regimes
have been extensively considered to evaluate the queueing
probability, i.e., the probability that an arriving job needs
to wait upon arrival. In several cases, this probability con-
verges to zero in the limit, yielding the zero-wait prop-
erty [25], [26], [27], [28]. In the multiserver-job queueing
model however, only a few results are available. In [18],
the authors analyze the FCFS scheduling policy under the
assumption that service times follow an exponential dis-
tribution. While they prove that FCFS is not throughput
optimal, the suboptimality gap vanishes in a many-server
limiting regime and the zero-wait property is achieved. In
this paper, we follow a similar approach to theirs, but with
respect to our new policy BalancedSplitting-π.

3 FRAMEWORK

This section contains our contribution from a modeling and
algorithmic point of view. First, it describes the multiserver-
job queueing model as in [18]. Then, it defines the proposed
Balanced Splitting framework introducing two scheduling
policies and related performance indicators.

3.1 Multiserver-job queueing model
We consider a queueing system where an infinite stream of
jobs needs to be processed by k parallel servers working
with unitary speed. Jobs join the system following a Poisson
process with rate λ and can be partitioned into C classes.
A job is of class i with probability αi, for all i = 1, . . . , C .
Class-i jobs require the simultaneous possession of ni ≤ k
servers for a random amount of time equal in distribution
to the random variable Di, for all i = 1, . . . , C . After
processing, they leave the system. In the following, ni (a
constant) and Di will be respectively referred to as “server
need” and “service time” of class-i jobs. The stochastic
sequences of job inter-arrivals, service times, and classes are
assumed i.i.d. and independent.

Let di := E[Di]. We denote by ϱi := αidini the relative
demand induced by class-i jobs, and let ϱ :=

∑C
i=1 ϱi. We

assume that the load

ρ :=
λ

k
ϱ < 1, (1)

which is necessary to ensure stability (positive Harris re-
currence) of the underlying Markov process. Note that (1)
corresponds to the usual stability condition “the overall
arrival rate is less than the overall service rate”.

Within the model described above, a scheduling policy is
a rule that decides which jobs are processed by the servers
at any point in time.

3.2 Partitioning the set of servers
For a set S, let |S| denote its cardinality. We let sets (Ai)i
and H form a partition of the set of servers {1, . . . , k} such
that for all i

|Ai| =
⌊
ψ
k

ni

ϱi
ϱ

⌋
ni =: ai (2a)

|H| = k −
C∑
i=1

ai (2b)

where ψ = 1 if k
ni

ϱi

ϱ is an integer for all i, and otherwise
ψ = max{x ∈ [0, 1] : k −

∑
i⌊x k

ni

ϱi

ϱ ⌋ni ≥ maxi ni}.
The servers in Ai will only process jobs of class i, while

the servers in H will process jobs of potentially any class
and are interpreted as helpers. We refer to ∪iAi as the A
system.

The parameter ψ ensures that the helper set contains
enough servers to serve jobs of any class, provided that it is
non-empty. To minimize the interference between different
job classes, and therefore to fully exploit the benefits of our
approach, we want the helper set to be small compared to
A. To achieve this, it should be clear that ψ should be as
close as possible to one. However, the choice ψ = 1 may
not always be convenient because the resulting number of
helpers may be less than some job’s server need. Hence, the
choice of ψ given above.

In the following, our analysis assumes that ai > 0 for all
i; if this is not the case, one can always redirect class-i jobs
to the helpers.

Finally, we notice that the helper set is empty only
when k

ni

ϱi

ϱ is an integer for all i. This condition has “zero
measure” because ϱi is a real number. To avoid unnecessary
and minor complications, e.g., divisions by zero, in the
remainder we assume that H is non-empty (|H| ≥ maxi ni).
If H would be empty, all of our results remain true trivially.

3.3 Balanced Splitting framework
The Balanced Splitting Framework (BSF) specifies a prin-
ciple for scheduling policies. Namely, a scheduling policy
belongs to BSF if the subset of servers Ai, defined in
Section 3.2, process jobs of class i only and according to
FCFS. In this manner, job class information is exploited to
reduce the interference between jobs with different server
need requirements, as their processing is forced to occur on
different sets of servers.

Inside BSF, we propose the scheduling policy Balanced
Splitting-π, denoted by BS-π, defined as follows.

Definition 1. BS-π is the BSF policy that is based on the
following rules:

1) Upon the arrival of a class-i job, send it to servers in Ai if
enough idle servers for immediate processing exist, otherwise
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send it to the helper set for potential processing by the
servers in H.

2) In the helper set, process jobs according to π, an auxil-
iary scheduling policy for multiserver jobs. The policy π is
nonpreemptive, size-oblivious, and operates independently of
the A system.

3) Upon completion of service of a class-i job in Ai, assign to
Ai the oldest class-i job that is waiting for service in the
helper set, provided that it exists.

Several other policies can comply with the BSF principle
above. First, π may be preemptive and/or size-oblivious.
Then, point (iii) in Definition 1 may be tweaked to assign
to the servers in Ai the class-i job in the helper set with
the highest remaining size or with the highest expected
remaining size, as this would reduce the workload on the
helper set the most. We do not consider these size-aware
variants because we want to keep the overall structure as
simple as possible.

The following remark summarizes the minimal require-
ments needed by BS-π.

Remark 1. BS-π is nonpreemptive and size-oblivious. The sched-
uler only needs to know the class of each arriving job and, to build
the A system, the overall number of servers together with the
relative demands ϱi, which can be estimated a priori by user-
profiling techniques. In particular, it does not need to know the
arrival rate of jobs.

3.4 Problem statement
Given a scheduling policy π, Rπ denotes the mean response
time (or delay) induced by π, i.e., the mean time spent in
the system by a job. In this paper, we are mainly interested
in analyzing the mean response time induced by BS-π. This
comes with the technical difficulty of choosing the auxiliary
policy π, which in principle is “arbitrary” and would require
a separate analysis; for π generic, analytical formulas for
Rπ are not available. To overcome this difficulty, it is then
convenient to introduce the steady-state probability that a
job, upon arrival, needs to use the servers in the helper
set. Let PH denote such probability. If PH is “small”, then
the contribution of π on the mean response time induced
by BS-π is “small”. This motivates us to investigate the
following problem.

Problem 1. We are interested in understanding under which
conditions it is possible to drive PH to zero.

4 MAIN RESULTS

This section presents our main results about the perfor-
mance induced by the proposed policy BS-π. The key
observation, which will be used in our proofs, is that a class-
i job is processed either by servers in Ai or by servers in H,
disjointedly. This holds true because the number of servers
dedicated to class-i jobs is a multiple of ni, by construction
of the set of servers Ai. This property will be exploited to
show that the mean number of busy servers in the Ai system
is lower bounded by the mean number of busy servers of an
independent M/GI/s/s queue; see Section 5.1. In light of
this connection, we will present our results using standard
performance indicators that are relevant to this queue, for

which we recall some of its main properties before stating
our results.

4.1 Preliminaries

The M/GI/s/s queue is a crucial component of queueing
theory and the investigation of the blocking probability, i.e.,
the probability that an incoming job finds all servers busy,
is undoubtedly one of the most studied subjects in the
literature. Assuming that the arrival process is Poisson with
rate λ and that the mean service time of each server is d, it is
well known that the blocking probability, which we denote
by Es(λ d), is given by the Erlang’s loss formula:

Es(λ d) =
(λ d)s

s!

(
s∑

ℓ=0

(λ d)ℓ

ℓ!

)−1

. (3)

This is connected to the mean response time, denoted byRs,
through the relation

Rs = d (1− Es(λ d)). (4)

Also, we recall the following classical result due to Er-
lang [28].

Lemma 1. Suppose that the arrival rate λ and the number of
servers s in an M/GI/s/s queue grow to infinity while the load (or
utilization) ρ = λd/s approaches one and (1− ρ)

√
s→ θ where

θ is a fixed constant. Then,

lim
s→∞

√
sEs(λd) =

ϕ(θ)

Φ(θ)
,

where Φ(x) and ϕ(x) denote the standard normal cumulative
distribution function (CDF) and density, respectively.

The scaling in Lemma 1 satisfies the conditions that
define the Halfin-Whitt limiting regime [26].

4.2 Stability

We say that the scheduling policy π is throughput optimal if
Rπ <∞ whenever the load ρ is less than one.

Our first result provides a sufficient condition for stabil-
ity; see Section 5 for a proof.

Proposition 1. Assume that π is throughput optimal. If

λ

|H|

C∑
i=1

ϱiEsi(λαidi) < 1, (5)

then RBS-π <∞.

It is not clear whether BS-π is throughput optimal
(when π is throughput optimal on the helper set). The
problem is that service capacity can be lost as follows. Sup-
pose that (x1, . . . , xI , h1, . . . , hC) is a “state” of the system
where xi resp. hi denotes the number of class-i jobs in Ai

resp. in H. For simplicity, suppose also that there are only
two classes, i.e., C = 2, and that n1 < n2. Then, a loss of
capacity occurs in state ( a1

n1
, 0, h1, 0) with h1 > ⌊ |H|

n1
⌋, as one

class-1 job that is waiting for service in the helper set may be
processed by the servers in A2. This does not occur due to
the static server set partitioning of the proposed approach,
which forces jobs of different classes not to interfere with
each other.
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In the following, we show that (5) is eventually true if
the number of servers is large enough. In other words, this
means that BS-π is throughput optimal asymptotically.

4.3 Subcritically loaded many-server regime
Now, we consider a limiting regime where the demand λϱ
and the overall number of servers k grow to infinity in
proportion while the load ρ is kept fixed to a constant less
than one. In the multiserver-job model, there are several
ways to accomplish this as both the arrival rate λ and
needs ni, for all i, can grow with k. To identify a proper
scaling of the system parameters, we consider a sequence of
models indexed by k and add the superindex (k) to refer to
the k-th system.

First, we introduce the sequence (fk)k such that

fk = o(k), fk ∈ N. (6)

Then, we let k → ∞ with the following scaling:

λ(k) = λ
k

fk
(7a)

n
(k)
i = ni fk (7b)

α
(k)
i = αi, D

(k)
i = Di, (7c)

which ensures that the network load ρ(k) remains constant
to ρ = λϱ < 1. This subcritical regime has been widely
considered in the queueing literature; e.g., [25].

Within this regime, the next result shows that the prob-
ability that an arriving job is routed to the helper set, P (k)

H ,
converges to zero; see Section 5 for a proof.

Theorem 1. Let (6) and (7) hold. As k → ∞, P (k)
H → 0 and

R
(k)
BS-π →

∑
i αidi.

4.4 Critically loaded many-server regime
Proceeding in a similar way as above, we now consider
a limiting regime where the demand λϱ and the overall
number of servers k grow to infinity in proportion but at
the same time, the load ρ approaches one from below. Here,
let the sequence (fk)k satisfy again the conditions in (6) and
consider the following scaling:

λ(k) → ∞ (8a)(
1− ρ(k)

)√ k

fk
→ θ, θ > 0 (8b)

n
(k)
i = ni fk (8c)

α
(k)
i = αi, D

(k)
i = Di. (8d)

This scaling satisfies the conditions that define the Halfin-
Whitt regime [26]. Within this scaling and since fk = o(k),
the following result implies that the probability that a job
is routed to the helper set PH vanishes as k → ∞, and it
also provides a convergence speed; see Section 5 for a proof,
which is based on Lemma 1.

Theorem 2. Let (6) and (8) hold. As k → ∞,

lim
k→∞

√
k

fk
P

(k)
H ≤ θ

C∑
i=1

αi

θi

ϕ(θi)

Φ(θi)
, θi := θ

√
ϱi
niϱ

(9)

where Φ(x) and ϕ(x) denote the standard normal cumulative
distribution function (CDF) and density, respectively.

5 PROOFS OF OUR MAIN RESULTS

In this section, we provide proofs for our main results along
with the intuition behind our strategy. Roughly speaking,
the general strategy for proving our results is as follows.
Since the dynamics underlying BS-π are presumably in-
tractable to investigate due to the complex interactions
between the A and H systems, we first define a modified
version of BS-π where the A and H systems are indepen-
dent. Here, we show that the A system behaves exactly
like a set of parallel M/GI/s/s queues. Then, we connect
this modified version to BS-π by showing that it provides
bounds on the performance metrics of interest. Finally, we
rely on these bounds to develop our asymptotic results.

5.1 Modified policy and connection with the M/GI/s/s
queue
Let us define the following modified version of BS-π, de-
noted by ModifiedBS-π.

Definition 2. ModifiedBS-π is the BSF policy where an arriv-
ing job of class i is sent to Ai if Ai contains enough idle servers
for immediate processing, otherwise it is irrevocably sent to the
helper set, for all i. The helper set processes jobs according to an
auxiliary scheduling policy π for multiserver jobs that operates
independently of the state of the A system.

Note that ModifiedBS-π is a scheduling policy that
satisfies the BSF principle. The main difference with re-
spect to BS-π is that jobs that upon arrival are sent to
the helper set will be certainly processed by the helpers,
while within BS-π they may be reassigned to the A system.
For this reason, one expects that it performs worse than
BS-π. From a mathematical point of view, the advantage
of ModifiedBS-π over BS-π is that the dynamics of the A
system are autonomous and therefore they can be analyzed
independently of the H system – this is not true within BS-π
because arrivals to the A system depend on the state of the
helper set.

At this point, the key observation for the dynamics
induced by ModifiedBS-π is that a class-i job is processed
either by servers in Ai or by servers in H. In other words,
it is not possible that a job is processed by servers in H,
preempted and then processed by servers in Ai. In addition,
the decision whether a job is assigned to the A or H system
is irrevocable and made upon job arrival. In view of this, the
system enjoys the following property.

Property 1. Within ModifiedBS-π, the process of the number of
servers occupied in each Ai subsystem divided by ni is the process
of the number in an M/GI/si/si queue where si = ⌊ψ kϱi

niϱ
⌋, the

arrival rate is λαi and service times are distributed as Di.

Now, it remains to establish the connection between the
performance induced by BS-π and ModifiedBS-π. This is
stated in the following proposition.

Proposition 2. Let λBS-π
i and λModifiedBS-π

i denote the arrival
rates of class-i jobs at the A system induced by BS-π and
ModifiedBS-π, respectively. Then,

λBS-π
i ≥ λModifiedBS-π

i . (10)
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Proof. Within ModifiedBS-π, the arrival rate of class-i jobs
at the A system is λαi minus the rate of blocked jobs of the
M/GI/si/si queue defined in Property 1. Therefore,

λModifiedBS-π
i = (1− Esi(λαidi))λαi. (11)

For λBS-π
i , we notice that Esi(λαidi) is higher than or equal

to the probability that an incoming job will be processed by
the helper set as BS-π may redirect that job to ni servers
in Ai.

The following corollary of Proposition 2 is then straight-
forward.

Corollary 1. Let PModifiedBS-π
H denote the probability that a job,

upon arrival and within ModifiedBS-π, needs to use the servers
in the helper set. Then,

PH ≤ PModifiedBS-π
H . (12)

5.2 Proof of Proposition 1

In view of Property 1, the arrival rate of class-i jobs at the
H system induced by ModifiedBS-π corresponds to the rate
of dropped jobs of the M/GI/si/si queue in Property 1.
Therefore, the load induced by ModifiedBS-π on the H
system ρModifiedBS-π

H is given by

ρModifiedBS-π
H =

λ

|H|

C∑
i=1

ϱiEsi(λαidi).

Finally, Proposition 2 ensures that the load at the helper set
induced by BS-π is smaller than or equal to ρModifiedBS-π

H .

5.3 Proof of Theorem 1

For the M/GI/s(k)i /s(k)i queue in Property 1, the offered
load λ k

fk
αidi and the number of servers s(k)i = ⌊ kϱi

nifkϱ
⌋ both

grow to infinity with the same rate, as k → ∞, and their
ratio converges to λϱ. Within this regime, it is known that
the loss probability converges to zero, i.e.,

E
s
(k)
i

(
λ
k

fk
αidi

)
→ 0

provided that λϱ < 1, which is the case in our setting.
Now, for the probability that in the k-th system an ar-
riving job is routed to the helper set, P (k)

H , Property 1
and Corollary 1 imply that P (k)

H ≤ P
(k),ModifiedBS-π
H =∑C

i=1 αiEs
(k)
i

(λαidik/fk). Therefore, P
(k)
H → 0 and

RBS-π →
∑

i αidi follows by (4).

5.4 Proof of Theorem 2

Recall that the M/GI/s(k)i /s(k)i queue in Property 1 has
arrival rate λ(k)αi, service times distributed as Di and
s
(k)
i = ⌊ψ(k) kϱi

nifkϱ
⌋. Thus, its load is

ρ
(k)
i := λ(k)αidi/s

(k)
i .

Within the scaling (8), the following proposition states that
also each M/GI/si/si queue in Property 1 scales in the
Halfin-Whitt regime.

Proposition 3. Let (6) and (8) hold. As k → ∞, s(k)i → ∞,
ψ(k) → 1 and (

1− ρ
(k)
i

)√
s
(k)
i → θi. (13)

Proof. Since fk = o(k) and ψ(k) ≤ 1,
s
(k)
i =

⌊
ψ(k) k

nifk

ϱi

ϱ

⌋
→ ∞. For x ∈ [0, 1],

k −
∑

i⌊x k

n
(k)
i

ϱi,j

ϱ ⌋n(k)i ≥ maxi n
(k)
i if and only if

k

fk
−

C∑
i=1

⌊
x

k

nifk

ϱi,j
ϱ

⌋
ni ≥ max

i
ni. (14)

The RHS is constant in k while the LHS grows to infinity
sublinearly in k. So, (14) holds true for all k large enough.
Using the definition of ψ in Section 3.3, the floor function
⌊·⌋ gives

ψ(k) = 1, ∀k large enough. (15)

It remains to prove (13). We obtain

1 ≥ lim
k→∞

1− ρ
(k)
i

1− ρ(k)
= lim

k→∞

1− λ(k)αidi⌊ψ(k) kϱi

nifkϱ
⌋−1

1− ρ(k)

≥ lim
k→∞

(
1− λ(k)αidi

ψ(k) kϱi

nifkϱ
− 1

)
1

1− ρ(k)

= lim
k→∞

ψ(k) − ρ(k)

1− ρ(k)
= 1

where the last equality follows by (15). Therefore,

lim
k→∞

(
1− ρ

(k)
i

)√
s
(k)
i = lim

k→∞

(
1− ρ(k)

)√⌊
ψ(k)

kϱi
nifkϱ

⌋

= lim
k→∞

(
1− ρ(k)

)√ k

fk

√
ϱi
niϱ

= θ

√
ϱi
niϱ

= θi

which proves (13).

Since each M/GI/s(k)i /s(k)i queue scales in the Halfin-
Whitt regime, we can apply Lemma 1 to our case to obtain
that

ϕ(θi)

Φ(θi)
= lim

k→∞

√
s
(k)
i E

s
(k)
i

(λ(k)αidi)

=

√
ϱi
niϱ

lim
k→∞

√
k

fk
E

s
(k)
i

(λ(k)αidi).

In view of Property 1, the probability that an arriving job is
routed to the helper set within ModifiedBS-π is given by

P
(k),ModifiedBS-π
H =

C∑
i=1

αiEsi(λαidi). (16)

Substituting in (16), we obtain

lim
k→∞

√
k

fk
P

(k)
H =

C∑
i=1

αi lim
k→∞

√
k

fk
Esi(λ

(k)αidi)

= θ
C∑
i=1

αi

θi

ϕ(θi)

Φ(θi)
.
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Finally, the result follows by Corollary 1.

6 EMPIRICAL COMPARISON

We present the results of a numerical study that compares
the simulated mean response times induced by our policy
BalancedSplitting (BS-π, Definition 1) to that of other state-
of-the-art scheduling policies discussed in Section 2. In our
test bench, we test with respect to different traffic conditions
and real data traces. We consider scenarios where, roughly
speaking, jobs are either large or small, with respectively
low and high probability of arriving, as this pattern is
ubiquitous in real applications; see, e.g., [16, Section 2.1].

In our simulation setup, the auxiliary policy π used for
BS-π is First-Come First-Served (FCFS), and the following
consideration has been taken into account.

Remark 2. We have always chosen the overall number of
servers and the server needs to be all powers of two because the
ServerFilling-* policies require this assumption for throughput
optimality. This choice has been made to better stress the quality
of the proposed policies as in this case ServerFilling-SRPT is
also optimal for minimizing the mean response time in heavy
traffic [3].

6.1 Heavy-traffic and subcritical limiting regime

In Figure 1, we have presented simulation results related to
the critically loaded limiting regime. Here, we complement
those results by considering the subcritical and heavy-traffic
regimes. In the latter, we recall that the load ρ approaches
one from below but the overall number of servers is con-
stant. The results are illustrated in Figure 2, where we have
used the same job classes, service time distributions and
server needs used for Figure 1. Also, each simulation run is
based on 106 arrivals.

In the heavy traffic scenario (Figure 2.a), BS-π performs
almost optimally up until moderate loads ρ ≤ 0.9, that is
up until the point where the helper set is slightly used.
For higher loads, the helper set utilization becomes non-
negligible and the intrinsic inefficiencies of FCFS, which
is not throughput-optimal, start deteriorating performance,
though the resulting response times are significantly smaller
than the ones induced by FCFS, Most-Servers-First and
ServerFilling.

In the subcritical scenario (Figure 2.b), BS-π provides
again excellent performance, with average response times
that are close to those achieved by ServerFilling-SRPT and
First-Fit SRPT, which are preemptive and size-aware.

6.2 Real HPC workloads

We now assess the performance of the proposed poli-
cies against real data traces from the Parallel Workloads
Archive [5], [6]. We consider the “cleaned version” of
two datasets commonly used for HPC system benchmarks:
namely, the SDSC (San Diego Supercomputer Center) SP2
log [30] and the KIT (Karlsruhe Institute of Technology)
FH2 log [31]. For each job accounted for in this dataset,
we follow the Standard Workload Format (SWF) [32] to
extract arrival time (Submit Time), service time (Run Time)

Figure 2. Simulated mean response time in the heavy-traffic (a) and
subcritical (b) regimes. Small resp. large jobs arrive with probability 0.95
resp. 0.05. Server needs and mean service times are as in Figure 1.
Arrivals are Poisson.

and server need (Number of Allocated Processors). Within
these datasets, most jobs require a number of cores that is a
power of two; for SDSC SP2, these jobs account for 84.4% of
all jobs. Therefore, they are ideal to stress the performance
of the proposed policy BS-π because within this setting,
ServerFilling-SRPT minimizes the mean response time in
heavy traffic [3]. To stress the performance of our algorithm
even further, we remove from our analysis those jobs whose
server needs is not a power of two. To limit the cost of sim-
ulations, we consider jobs with a server need no larger than
64. In our framework, this gives two models with C = 7
classes for both datasets, whose parameters are given in
Tables 2 and 3. Then, Figure 3 plots the simulated response
times within both datasets and for k = 512 and k = 1024
servers. As expected ServerFilling-SRPT and First-Fit SRPT
always provide the best delays. Also, all plots show that
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E[Di] std(Di) ni αi

10519.71 18267.03 1 0.2321
1436.82 6250.19 2 0.1496
5643.69 18123.7 4 0.1624
9248.53 18468.51 8 0.1652
10601.46 17050.63 16 0.156
12139.59 22654.86 32 0.0807
8302.33 19074.81 64 0.054

Table 2
Model parameters extracted from the SDSC SP2 dataset.

E[Di] std(Di) ni αi

1845.19 11440.31 1 0.7851
1470.13 5237.83 2 0.018
11169.87 38631.83 4 0.0406
3167.33 19727.29 8 0.0137
5706.45 17212.04 16 0.0539
60673.08 92531.56 32 0.0493
61343.42 106094.97 64 0.0393

Table 3
Model parameters extracted from the KIT FH2 dataset.

the proposed policy BalanceSplitting provides significantly
better results than ServerFilling, which is preemptive, and
FCFS, for almost all loads. We ought this gain to the large
variability of service times across job classes and that our
framework can reduce the interference between large and
small jobs. In fact, especially in Table 3 we observe that
the jobs that require 32 or 64 servers have huge service
time requirements (relative to the other jobs), and within
BS-π, their execution does not interfere with the execution
of smaller jobs.

7 CONCLUSION

We have proposed Balanced-Splitting, a nonpreemptive and
job-size oblivious scheduling policy for multiserver jobs that
operate on a static and balanced partitioning of the server
set. Our main results show that the proposed policy has
the zero-wait property asymptotically. More precisely, the
probability that a randomly arriving job needs to wait for
service vanishes when the system size grows to infinity.
Numerical simulations have shown that Balanced-Splitting
provides much better delay performance than other com-
mon scheduling policies such as FCFS. Also, its average
response time is competitive with the one induced by state-
of-the-art preemptive and size-aware policies.

We have assumed that the static and balanced parti-
tioning of the server set only depends on the class of
each job. In our work, the class of a job is essentially
determined by its server need, which is reasonable because
this information is available precisely. To define the server
set partitioning, we have assumed the per-class knowledge
of the probability distribution of service times, which in
practice can be obtained by user profiling techniques. We
believe that a better partitioning of the server set may be

obtained in a size-aware setting. Here, a class of a job would
be determined by its server need and whether its service
time belongs to a specified interval. Of course, the scheduler
needs to know the size of each incoming job to properly
assign to the proper subset of servers and, in contrast to the
approach followed in this work, this would make any policy
size-ware. On the other hand, we believe that a balanced
size-aware partitioning yields better delay performance. We
leave this question as future research.
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(France). He has previously held research posi-
tions at LAAS-CNRS (France), INRIA Grenoble
(France) and BCAM-Basque Center for Applied
Mathematics (Spain), teaching positions at EN-

SIMAG (France), INSA-Toulouse (France) and IUT-Blagnac (France)
and invited professor positions at CentraleSupelec (France), Inria Paris
(France) and David laboratory (France).

http://www.jstor.org/stable/1427769
http://www.jstor.org/stable/20443573
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html

	Introduction
	Common scheduling policies and positioning
	Balanced Splitting
	Main contribution

	Scheduling policies review
	Queueing probability and the zero-wait property

	Framework
	Multiserver-job queueing model
	Partitioning the set of servers
	Balanced Splitting framework
	Problem statement

	Main results
	Preliminaries
	Stability
	Subcritically loaded many-server regime
	Critically loaded many-server regime

	Proofs of our main results
	Modified policy and connection with the M/GI/s/s queue
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2

	Empirical comparison
	Heavy-traffic and subcritical limiting regime
	Real HPC workloads

	Conclusion
	References
	Biographies
	Jonatha Anselmi
	Josu Doncel


