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Abstract

Mental disorders are a major public health concern, affecting millions of people
worldwide. The quest for reliable biomarkers for diagnosis and treatment remains a
complex challenge. Autism Spectrum Disorder (ASD), a common psychiatric condition,
is characterized by atypical patterns in cognitive, emotional, and social domains. Early
and accurate diagnosis is crucial to enable effective interventions and improve outcomes
for affected individuals.

In this study, we propose an innovative model based on the use of brain atlases (CC200,
HO, and AAL) and feature selection, utilizing resting-state functional MRI data from
the ABIDE I dataset. Our approach involves feature selection methods to the vectors
obtained from flattened connectivity matrices derived from the atlases. These vectors
are then used as input for a classifier.

Through cross-validation, we demonstrate that our model outperforms the most ad-
vanced methods available for this dataset, achieving an average accuracy of 99.66% in
10-fold cross-validation with the CC200 atlas, using the RFE method and the logistic
regression classifier. We also perform feature selection using Lasso and information gain
analysis for comparison.

Keywords : ASD detection, fMRI, ABIDE, rs-fMRI, Machine Learning , Deep
Learning , BOLD , RFE , LASSO
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Résumé

Les troubles mentaux représentent un problème majeur de santé publique, affectant
des millions de personnes à travers le monde. La recherche de biomarqueurs fiables pour
le diagnostic et le traitement de ces troubles reste un défi complexe. Le trouble du
spectre de l’autisme (TSA), une affection psychiatrique courante, qui se caractérise par
des schémas atypiques dans les domaines cognitif, émotionnel et social. Un diagnostic
précoce et précis est crucial pour permettre des interventions efficaces et améliorer la vie
des personnes touchées.

Dans cette étude, nous proposons un modèle qui repose sur l’utilisation d’atlas cérébraux
(CC200, HO et AAL) et sur la sélection de caractéristiques extraites des données d’IRM
fonctionnelle au repos issues du jeu de données ABIDE I. Notre approche consiste à
appliquer des méthodes de sélection de caractéristiques aux vecteurs dérivés des matrices
de connectivité aplaties obtenues à partir des atlas. Ces vecteurs sont ensuite utili-
sés comme entrée pour un classificateur ou un modèle de réseau neuronal profond (DNN)˙

Nous avons montré, grâce à la validation croisée, que notre modèle dépasse les méthodes
les plus avancées disponibles pour ce jeu de données. Avec l’atlas CC200, en utilisant la
méthode RFE pour sélectionner les caractéristiques, et un classificateur de régression
logistique pour les classer, nous avons atteint une précision moyenne de 99,66% en vali-
dation croisée à 10 folds . Pour comparer les résultats, nous avons également sélectionné
les caractéristiques en utilisant les méthodes Lasso et l’analyse du gain d’information

mot clés : détection TSA , IRMf, ABIDE, IRMf-rs, Apprentissage Automatique ,
Apprentissage profond , BOLD , ROI , RFE , LASSO
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Introduction

The brain, the central organ of our existence, governs all the vital processes that
ensure our survival. It orchestrates functions as diverse as breathing, blood circulation,
digestion, and temperature regulation. In addition to these physiological functions,
the brain is the seat of our cognitive and emotional capacities. It is what allows us to
perceive the world, reason, make decisions, and store memories. Every thought, every
emotion, every movement we make is the result of a complex and perfectly orchestrated
brain activity. However, despite this apparent perfection, the brain is also vulnerable. A
simple disruption in this delicate system can lead to profound disorders, affecting our
behavior, perception, and even our ability to interact with others.

Among the many disorders that can affect the brain, autism spectrum disorders are
particularly complex and puzzling. Autism is not a disease that one "catches" or "cures".
It is a neurodevelopmental disorder that manifests itself from childhood and persists
throughout life. However, the way it manifests varies greatly from one person to another,
making diagnosis difficult and often delayed. According to the Diagnostic and Statistical
Manual of mental disorders (DSM), ASD includes several subtypes or categories, inclu-
ding Autistic Disorder, Asperger’s Syndrome, and Pervasive Developmental Disorder-Not
Otherwise Specified (PDD-NOS). Each type presents a unique set of symptoms and
degrees of severity, adding an extra layer of complexity to assessment and diagnosis.

The challenge of diagnosing autism lies not only in the diversity of symptoms but also
in the ambiguity of underlying causes. Genetic, environmental, and neurobiological
factors combine in complex ways to give rise to this spectrum of disorders. Due to this
complexity, it is often difficult to pinpoint the exact causes of ASD and, consequently,
to develop effective treatment strategies. However, recent advances in neuroscience offer
new opportunities to explore the brain mechanisms involved in autism.

Functional Magnetic Resonance Imaging (fMRI) is one of the most promising techno-
logies in this field. By allowing real-time observation of brain activity, fMRI provides
valuable information on how the brains of individuals with ASD function differently from
those of others. Through this data, researchers can identify patterns of brain activity
associated with autism, which could lead to earlier and more accurate diagnostic methods.

In this research work, we explore the development of an early diagnosis system for autism
based on fMRI data, specifically time series extracted using brain atlases. The objective
of this work is to prepare a diagnostic support system capable of detecting autism well
before the appearance of its first clinical symptoms, which would allow intervention at a

xii



stage where treatments can be more effective.

To achieve this ambitious goal, it is essential to adapt diagnostic methods to make them
accessible and safe for young children, who are the target population for this type of early
detection. This adaptation requires a rigorous evaluation of the safety and effectiveness
of the tools used to ensure that they pose no risk to young patients.

Once these safety aspects are ensured, we will implement advanced data analysis
methods, combining signal processing techniques and machine learning. These methods
will enable the extraction and highlighting of key information from fMRI data, that is
often hidden within complex time series structures.

Ultimately, the goal is to create a diagnostic system that not only classifies the tested
subjects but does so with a level of precision that is clinically useful. Such a system
could play a crucial role in improving patient care by enabling faster and more targeted
intervention, thereby offering better prospects for children at risk of developing autism
spectrum disorders.

This report is structured as follows : Chapter 1 provides a general overview of the au-
tism spectrum, highlighting the crucial importance of neuro-imaging techniques for the
early detection of neuro-developmental disorders. This section not only outlines the main
characteristics of autism but also addresses the challenges associated with its diagnosis,
particularly in young children, where rapid identification can significantly improve clinical
outcomes. Chapter 2 offers a detailed description of the ABIDE (Autism Brain Imaging
Data Exchange) dataset and its components. This dataset, which serves as an essential
resource for researchers in the field, includes a vast array of neuro-imaging data collec-
ted from multiple sites, allowing for an in-depth analysis of individual variations in the
brains of people with autism spectrum disorders. We also explore the different catego-
ries of available data, such as structural and functional MRI images, and how these can
be utilized to enhance the understanding of ASD. Chapter 3 discusses the various data
representations that can be used in machine learning and deep learning models for au-
tism detection. We examine several approaches, such as functional connectivity matrices,
extracted time series, and representations based on specific brain features. Additionally,
this section reviews some models recently employed for the diagnosis of autism. Chapter 4
introduces the machine learning and deep learning models that we propose for autism
detection. We also discuss the importance of feature selection to improve the accuracy of
classification models.

xiii



Chapter 1

Autism Spectrum Disorder

1.1 Definition

Autism Spectrum Disorder (ASD) encompasses a range of neurodevelopmental condi-
tions that affect communication, social interaction, and behavior. The term "spectrum"
reflects the diversity of symptoms and severity levels seen in individuals with autism.
Some may have high intellectual abilities, while others may face significant challenges in
communication and daily living.

Key features of ASD include difficulties with communication, repetitive behaviors,
and altered social interactions. Autistic individuals might struggle with both verbal
and non-verbal communication, such as speech delays or limited understanding of
social cues. They may also exhibit repetitive movements or an intense focus on specific
interests. Social interactions can be challenging, as autism can affect one’s ability to
understand social norms, build relationships, or respond appropriately in social situations.

Additionally, individuals with autism might have heightened or reduced sensitivity to
sensory stimuli, such as sounds, lights, textures, or tastes, which can make certain
experiences, like loud noises, particularly distressing. In general, the characteristics of
autism can be observed before the age of three. Abnormalities in social interaction, lan-
guage used in social communication, or symbolic and imaginative play can be noted early.

However, due to factors such as limited parental awareness and the availability of
diagnostic centers, the average age at which autism is diagnosed is often around five
years old (Daniels and Mandell, 2013 [1]).

The precise causes of autism remain unclear, but it is believed to result from a com-
bination of genetic , prenatal and environmental factors. Diagnosis usually occurs in
childhood, often around ages two to three, but can be made later. Evaluations typically
involve behavioral observations and interviews with parents or caregivers.

There is no cure for autism, but various interventions can enhance the quality of life
for individuals with autism. These may include behavioral therapy, speech therapy,
specialized education, and sometimes medication to address specific symptoms like
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anxiety or hyperactivity. Because each person with autism is unique, personalized care
is crucial, as different approaches may work for different individuals.

In adulthood, some individuals with autism may experience a reduction in the severity
of core symptoms compared to their early development. This phenomenon, often referred
to as "amelioration," suggests that certain symptoms may become milder as individuals
grow older. The researches (Billstedt, Gillberg, and Gillberg, 2007 [2] ; Taylor and Seltzer,
2010) [3] indicates that this reduction might be due to the maturation and stabilization
of brain processes, as well as the normalization of brain growth that often occurs after
childhood overgrowth .

1.2 Key dates related to autism

• 1911 : For the first time, the term “autistic” appears in a psychiatry treatise and
is associated with schizophrenia.

• 1943 : American child psychiatrist Leo Kanner describes the clinical picture of early
infantile autism.

• 1944 : Austrian child psychiatrist Hans Asperger uses the term “autism” to describe
patients with social interaction difficulties but without impairments in language and
cognitive functions.

• 1950-1960 : American psychoanalyst Bruno Bettelheim hypothesizes that the be-
havior of certain “refrigerator” mothers is the cause of their child’s autism.

• 1960-1970 : For most experts, autism is considered a psychosis, a mental illness
acquired through psychoanalysis.

• 1970-1980 : American and French researchers use encephalography and hypothe-
size that autism is related to early sensory perception disorders. Increasing studies
focus on autism in twins or related children, revealing the significant contribution
of genetics.

• 2001 : An American report concludes that individualized education programs are
the best approach for managing autism. In France, psychotherapeutic treatments
are still predominantly favored.

• 2003 : For the first time, genetic mutations are precisely identified in autistic chil-
dren by Thomas Bourgeron’s team at the Pasteur Institute in collaboration with
French psychiatrists (Pr Marion Leboyer) and Swedish (Pr Christopher Gillberg).
Other mutations will be discovered later.

• 2005-2007 : First autism plan in France.
• 2008 : Creation of the first animal models carrying mutations associated with

autism spectrum disorder (ASD).
• 2008-2010 : Second autism plan.
• 2012-2018 : EU-AIMS project.
• 2013 : New version of DSM-5 (Diagnostic and Statistical Manual of Mental Disor-

ders) with the use of the autism spectrum disorder diagnosis.
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• 2013-2017 : Third autism plan (early screening and schooling of children with
ASD).

• 2018-2024 : AIMS-2-Trials project.

• 2018-2022 : Fourth autism plan.

• 2019 : The official SPARK list enumerates 141 genes associated with autism.

1.3 Factors Affecting the Risk of Autism

Risk factors for the development of autism include genetic, prenatal, and gender
differences. Genetics play a crucial role, with increased risk for children born to older
parents. If one child is autistic, there is between a 2% and 18% chance that their sibling
will also be affected. For identical twins, if one is autistic, the other is affected 36% to
95% of the time, while for non-identical twins, the risk is about 31%.

Since Leo Kanner first described autism in 1943, research has revealed that genetic
mutations play an important role. In 2003, Thomas Bourgeron and his team at the
Pasteur Institute discovered genetic mutations on the X chromosome linked to autism,
affecting synapses, the connections between neurons. In 2008, they found that some
mutations affect melatonin production, a hormone regulating sleep, which is often
deficient in autistic children [4].

Autism is diagnosed much more frequently in boys than in girls, with a generally
accepted ratio of 4 boys to 1 girl, although studies show variations from 2 :1 to 7 :1.
This might indicate diagnostic bias or a protective effect in girls.

Biological theories, such as the fetal testosterone theory, propose that elevated levels
of testosterone in the amniotic fluid are associated with certain autistic traits. These
traits can include larger brain volume, increased connectivity within the same brain
hemisphere, an enlarged amygdala, and reduced connectivity between the hemispheres
due to a smaller corpus callosum. The theory suggests that higher testosterone levels
can enhance abilities in analyzing and understanding complex systems and patterns, but
may also lead to a reduction in empathetic traits (Dooley et al., 2022) [5].

Furthermore, prenatal factors play a significant role in the risk of developing autism.
Maternal drug use, including alcohol and medications like selective serotonin reuptake
inhibitors and sodium valproate, has been linked to an increased risk of autism spectrum
disorder (Bastaki, Alwan, and Zahir, 2020) [6]. Illnesses experienced by the mother during
pregnancy, such as hypertension, obesity, asthma, diabetes, and autoimmune disorders,
have also been associated with a higher likelihood of autistic symptoms in children.
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Figure 1.3.1 – Identification of Genes Linked to Autism Across the Whole Genome. [4]

Additionally, maternal stress and exposure to environmental pollutants have been found
to contribute to the development of autism both during pregnancy and after birth.
Moreover, several studies have shown that sociodemographic factors such as race and
education level are associated with ASD diagnosis rates. An American study from 2011
found that white non-Hispanic mothers and those with higher education levels were
more likely to have a child diagnosed with ASD. This trend may be explained by greater
awareness of developmental issues in these populations and better access to healthcare
services and appropriate evaluations, leading to higher diagnosis rates compared to other
racial or socioeconomic groups [7].

In summary, the development of autism is influenced by a complex interaction of
biological, genetic, and environmental factors. Understanding these factors, including
hormonal influences such as elevated fetal testosterone levels and prenatal conditions
such as drug use, illnesses, and exposure to pollutants, is crucial for grasping the full
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range of elements that contribute to autism [8, 9].

Figure 1.3.2 – Summary of main risk factors in ASD development. [7]

1.4 Importance of Early Diagnosis

Early detection of autism is crucial due to the ongoing ambiguity surrounding its
causes. While there are theories suggesting a hereditary basis (Havdahl et al., 2021 [10] ;
Xie et al., 2020 [11]), others propose environmental factors as contributors [12, 13].

Research led by John Lewis at the Montreal Neurological Institute has highlighted a
link between network inefficiencies and the severity of autism symptoms, emphasizing
the value of early diagnosis. Identifying autism signs before behavioral changes be-
come evident can facilitate earlier intervention, which is essential for improving outcomes.

Early intervention can be transformative for children with autism, offering benefits from
various treatments, including speech and occupational therapy. It can enhance learning,
communication, and social skills, and promote better brain development. Detecting au-
tism early can help prevent some children from losing skills they’ve already learned. This
loss, called developmental regression, happens in about 20% of kids with autism, usually
between 1 and 3 years old. By addressing autism early, we provide the best chance for
supporting healthy development and reducing the disorder’s impact throughout life.

1.5 Diagnosis Methods and Challenges

Diagnosing autism is one of the most challenging tasks because it is so hard to
identify. Right now, autism is mainly diagnosed using behavior tests and observations
by family or people close to the person. Most of these evaluations are designed to catch
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autism early, as it usually shows up in the first few years of life.

Some of the tools used to diagnose Autism Spectrum Disorder are semi-structured, while
others are computerized. "Semi-structured" means the evaluation has a basic set of
questions but allows the examiner to ask more questions based on the answers they get.
These tests have a set structure but can be adjusted based on how the person responds.
Here are some examples of semi-structured tests : ADI-R, ADOS, and DISCO (Noens
and Nygren, 2012) [14].

The Autism Diagnostic Interview – Revised (ADI-R) uses information from
parents or caregivers to assess the individual. It’s suitable for people aged 18 months
and older and follows the criteria of DSM-5 and ICD-11. It looks at social interaction,
communication, and repetitive behaviors to help diagnose autism.

The Autism Diagnostic Observation Schedule (ADOS) assesses social communi-
cation, interaction, and play through direct observation. It has different modules based
on the person’s verbal skills, whether they are children or adults. Each module includes
specific activities to help identify ASD behaviors.

DISCO, the Diagnostic Interview for Social and Communication Disorders,
is used to evaluate someone suspected of autism over a longer period. It requires
an evaluator who knows the subject well and can track their development over seve-
ral years. Its goal is to understand the behavior patterns that develop as the person grows.

The main computerized tool for detecting ASD is the Developmental, Dimensional,
and Diagnostic Interview (3Di) (Slappendel et al., 2016 [15]). It’s designed for
parents of autistic children of any age and evaluates the intensity of autistic symptoms
as well as potential comorbidities. The 3Di utilizes a digital platform to administer the
interview, collect and analyze responses, and generate detailed reports. This computeri-
zed approach ensures a precise and standardized evaluation of symptoms and associated
conditions.

Another important test is the Childhood Autism Rating Scale – Second Edition
(CARS-2) (Dawkins, Meyer, and Bourgondien, 2016 [16]). It helps differentiate
between children with moderate or severe ASD and those with other cognitive disorders,
including developmental delays. This tool is often used in research and helps with clinical
diagnoses. It can be given by caregivers or clinicians.

However, these methods have some downsides. They mainly rely on subjective observa-
tions, which can introduce biases. Different people might see things differently based on
their experience or stress level, which can lead to inaccurate diagnoses.
Also, these tests often need specialized training to be used and interpreted correctly. Eva-
luators need to be very skilled, which can limit how widely these tests are used.
Lastly, behavior-based evaluations might not capture all the details of symptoms because
behaviors can change based on context, emotions, or the relationship with the evaluator.
This means a diagnosis based only on behavior might not be complete or accurate. That’s
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why researchers are looking for new ways to diagnose autism that are earlier and more
reliable.

1.6 Brain Development and Autism

Autism Spectrum Disorder presents a wide range of symptoms, which can vary
greatly in severity and combination. This variability makes it challenging to diagnose
ASD accurately and to identify its origins. Each symptom might be associated with
different areas of the brain, complicating the task of pinpointing specific brain deficits.
In early childhood, the brain undergoes a crucial process called neural pruning. During
this process, unnecessary and non-functional neurons are removed to make the remaining
neurons work more efficiently. In typical brain development, this leads to a reduction in
the number of neurons while the remaining ones form complex connections. However, in
children with ASD, this pruning process does not work correctly, resulting in an excess
of neurons.

Stiles and Jernigan (2010) [17] , describe two key aspects of brain development. The
first is natural cell death, where the brain eliminates more than half of its neurons.
The second aspect is synaptic exuberance and pruning : initially, the brain forms many
connections between neurons, but then it systematically removes up to half of these
connections to fine-tune brain function.

In contrast, Courchesne et al. (2011) [18], found that individuals with autism, parti-
cularly males, often have a significantly higher number of neurons in the prefrontal
cortex—about 67% more than in typical brains. This excess of neurons adds complexity
to understanding brain development in autism.

Additionally, research on infants at high risk for ASD or those diagnosed later reveals
that these children often experience unusually rapid brain growth during their first year.
This accelerated growth is usually followed by a plateau or slowing down in the second
year. These changes have been observed in several brain regions, including the frontal
cortex, temporal cortex, and amygdala [19, 20, 21]

1.7 Brain Imaging Techniques and ASD Detection

Research on Autism Spectrum Disorder aims not only to find a cure but also to
accelerate the detection process using non-invasive methods, especially since the affected
individuals are children. This requires careful selection of diagnostic techniques and
methods.

Brain imaging techniques hold promise for diagnosing autism because they are not
limited by age, allowing for earlier detection. We have access to various anatomical and
functional neuroimaging methods, such as X-ray, MRI, MEG, fMRI, PET, and SPECT.
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Anatomical imaging provides insights into the brain’s structure and its components,
whereas functional neuroimaging focuses on understanding the brain’s cognitive organi-
zation and dynamic processes.

In young children, developmental rates can vary significantly, which can make anatomical
imaging unreliable for detecting autism [22]. Instead, studying brain function, particu-
larly network communication, might offer more meaningful insights into the differences
between autistic individuals and controls. In this context, fMRI is particularly valuable.
It is widely used due to its accessibility and safety for children. This non-invasive
technique measures neural connections by tracking fluctuations in the Blood Oxygen
Level Dependent (BOLD) signal across different brain regions [23]. The resulting data
are four-dimensional images that reveal both structural and functional aspects of the
brain.

fMRI can be conducted in two main contexts : resting state and task-based paradigms.
Although task-based fMRI may be better for exploring specific autism-related theories,
such as the weak coherence theory. The weak coherence theory is a cognitive theory that
suggests individuals with ASD tend to focus on details rather than the overall picture.
According to this theory, autistic individuals exhibit "weak central coherence," meaning
they have difficulty integrating global or contextual information to make sense of a si-
tuation or stimulus. Instead, they concentrate on specific, isolated details. This theory is
often used to explain certain characteristics of autistic behavior, such as high proficiency
in tasks requiring attention to detail, but also challenges in social situations where a
broader understanding is necessary [24] , this method may be challenging for individuals
with ASD, especially those who are young or have lower functioning levels. On the other
hand, resting state fMRI does not require an experimental setup or active participation,
making it suitable for capturing brain region interactions and potentially identifying diag-
nostic biomarkers for neurological conditions [25]. Thus, resting state fMRI is considered
well-suited for studying ASD.

1.7.1 Magnetic resonance imaging

Magnetic Resonance Imaging is a medical imaging method that lets doctors see inside
the body without using radiation. Instead, it relies on magnetic fields and radio waves.
MRI uses a big machine, called an MRI scanner, which has a strong circular magnet.
This magnet creates a powerful magnetic field that aligns the protons in hydrogen atoms
in the body.

When the scanner sends out a radio wave pulse at the right frequency, the hydrogen
protons absorb this energy and then send out a weak signal when they return to their
normal state. The MRI system’s radio wave coils pick up this weak signal, and a
computer turns it into a detailed image of the body’s tissues.

Early MRI machines were basic, but improvements in technology have made them much
better over time. Today, MRI is a standard tool in radiology because it provides clear,
high-resolution images with great contrast between different tissues, making it very
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useful for diagnosing and monitoring many health conditions.

1.7.2 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging is a technique used to see how the brain
functions. Unlike other methods, fMRI does not use X-rays, making it safe and suitable
for all ages, including children. It is widely used in hospitals because it is relatively
affordable and can produce very precise images quickly.

When a part of the brain is more active, it uses more energy. This energy is supplied by
the blood, so when a brain region is active, there is more blood flowing to it. fMRI can
detect these changes in blood flow and create images that show which parts of the brain
are most active.
The most common technique in fMRI is BOLD contrast, which measures the differences
between oxygenated and deoxygenated hemoglobin (a protein in the blood). When a brain
area is active, it uses more oxygen, changing the amount of oxygenated and deoxygenated
hemoglobin in that area. fMRI detects these changes and produces images that show the
active parts of the brain. This helps researchers and doctors understand how different
brain regions work together and study the effects of various diseases or conditions.

1.7.2.1 Functional Magnetic Resonance Imaging in Resting State

Resting state fMRI is a type of functional MRI used to study brain activity when a
person is not performing any specific task. Instead of focusing on how the brain responds
to external stimuli or tasks, resting state fMRI looks at the brain’s activity while at rest,
often with the eyes closed or focused on a neutral point.

This method primarily examines functional connectivity, revealing how different brain
regions interact and communicate when not engaged in tasks. The technique utilizes
the Blood Oxygen Level Dependent (BOLD) signal. When certain brain areas become
more active, they require more oxygen, and the BOLD signal reflects these changes. By
analyzing the correlations in the BOLD signal across various brain regions, researchers
can identify networks of brain areas with synchronized activity.

Resting state fMRI is advantageous because it is non-invasive and does not require the
subject to perform specific tasks, making it suitable for a wide range of populations,
including those who may struggle with task-based fMRI. It provides baseline information
about the brain’s default activity patterns, which is useful for understanding normal
brain function and various disorders.

Applications of resting state fMRI include studying brain disorders like ADHD, schizo-
phrenia,Bipolar disorder, autism and others by identifying changes in connectivity as-
sociated with these conditions [26]. It is also used to investigate how brain connectivity
evolves throughout development and aging, offering insights into both typical and atypical
brain maturation.

9



1.7.2.2 Default Mode Network and autism

The Default Mode Network (DMN) is a group of brain regions that become active
when we are at rest, meaning when we’re not focused on a specific task. This network,
like the brain’s autopilot, switches off when we start doing something.

Unlike what was previously thought, the brain doesn’t stop working when it’s resting.
In fact, the DMN is very active and plays a key role in personal memory, understanding
others, planning for the future, and even creativity.

The main brain areas involved in the DMN are the medial prefrontal cortex (which helps
with decision-making and emotions), the posterior cingulate cortex (which is involved in
attention and self-awareness), the precuneus (linked to self-reflection), and the inferior
parietal cortex (which integrates sensory information to build our perception of the
world).

Studies have shown that in people with autism, the DMN works differently [27]. For
example, there is less connection between certain parts of the brain, which is related to
difficulties in social interactions. At the same time, some connections are stronger than
they should be, which seems to be linked to the repetitive and restricted behaviors often
seen in autism. This overconnection could either cause these behaviors or be a reaction
to them.

In short, the DMN is essential for many mental functions, and studying it could help us
better understand and treat certain disorders, like autism.

Figure 1.7.1 – Default mode network regions. [28]

1.7.3 Overview of 3D and 4D MRI Data.

MRI data is 3D for each subject and captures a static volumetric image of the
brain. This data consists of three dimensions : height (H), width (W), and depth (D),
representing the vertical dimension, horizontal dimension, and the number of slices in
the volume, respectively. These provide a detailed "picture" in three dimensions, useful
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for observing the brain’s structure.

In contrast, fMRI data is 4D for each person, adding a temporal dimension to the 3D
data. This allows the capture of a series of 3D brain volumes over time, with dimensions
of height (H), width (W), depth (D), and time (T). Thanks to this fourth dimension,
it’s possible to extract time series that represent brain activity in different regions of the
brain, called Regions of Interest (ROIs). These time series show how each region activates
or deactivates over time, providing valuable information about the dynamic functions of
the brain

1.8 Conclusion

This chapter has established a solid foundation for understanding Autism Spectrum
Disorder by exploring its definitions, risk factors, and the importance of early diagnosis.
We highlighted the challenges associated with current diagnostic methods, emphasizing
the complexity of the condition and the variability of symptoms.

By delving into the aspects of brain development related to ASD, we examined how
brain imaging techniques, particularly fMRI , can play a crucial role in detecting and
understanding the brain connectivity abnormalities associated with autism. fMRI, being
a non-invasive method, is particularly suitable for use with children, offering valuable
insights into the altered brain networks in individuals with ASD.

In conclusion, this chapter lays the groundwork for further investigations by underscoring
the importance of integrating different imaging techniques and analytical tools to enhance
our understanding of ASD. This sets the stage for new perspectives in achieving earlier
and more accurate diagnoses, which are essential for improving intervention and treatment
strategies
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Chapter 2

Autism Brain Imaging Data Exchange

Data availability can greatly contribute to the advancement of research. Therefore, with
the aim of facilitating discoveries and comparisons in Autism research, the Autism Brain
Imaging Data Exchange (ABIDE) initiative has compiled functional and structural brain
imaging data from laboratories worldwide into a repository known as ABIDE.

2.1 ABIDE dataset

ABIDE encompasses two major collections : ABIDE I and ABIDE II. Each collection
was assembled by aggregating datasets independently collected across more than 24
international brain imaging laboratories and made accessible to researchers worldwide, in
line with open science principles, such as those central to the International Neuroimaging
Data-sharing Initiative.

ABIDE I was the first initiative, starting in August 2012, involving 17 international sites.
It includes resting-state functional MRI (RS-fMRI), anatomical, and phenoty-
pic data, all shared on various platforms. The database contains 1112 datasets, with 539
from people with ASD and 573 from typical controls, ages ranging from 7 to 64. Since it
began, ABIDE I has been used in many research projects worldwide, showing that brain
imaging can reveal brain properties related to autism. The shared data has been very
helpful for autism research. All datasets are anonymized, meaning no personal health
information is included, following HIPAA and 1000 Functional Connectomes Project /
INDI protocols.
ABIDE II was created to further support research on the brain connectome in autism. It
started in June 2016, providing new data to researchers. ABIDE II adds over 1000 new
datasets with more detailed information about core ASD and related symptoms. It also
includes longitudinal data from 38 people collected at two different times, 1 to 4 years
apart. ABIDE II involves 19 sites, including 10 founding institutions and 7 new ones. It
has 1114 datasets from 521 people with ASD and 593 controls, ages ranging from 5 to
64. Like ABIDE I, all datasets are anonymized according to HIPAA guidelines and 1000
Functional Connectomes Project / INDI protocols.
ABIDE dataset is publicly available at [29] .
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Figure 2.1.1 – Anatomical Slice of Subject 51464. [29]

2.2 ABIDE Preprocessed

Preprocessing in the medical field is crucial, especially with varied imaging data.
Different brain imaging machines produce images with different characteristics [30]. Pre-
processing reduces these differences by standardizing the data format and correcting
abnormalities. There are many preprocessing techniques for functional images, from ti-
ming correction to standardizing formats from different acquisitions.
Preprocessing reduces noise in the data, which is essential because even a small amount
of noise can lead to inaccurate results.
Combining various preprocessing methods creates different preprocessing pipelines. The
choice of pipeline significantly impacts analysis results [31]. The same data analyzed with
different preprocessing pipelines can yield different results, highlighting the importance
of pipeline selection.
To address the challenge of choosing a preprocessing pipeline, preprocessed neuroimaging
data from ABIDE I was shared. Five teams used their preferred tools to preprocess this
data. Functional preprocessing was performed using the Connectome Computation Sys-
tem (CCS), the Configurable Pipeline for the Analysis of Connectomes (CPAC), the Data
Processing Assistant for Resting-State fMRI (DPARSF), and the NeuroImaging Analysis
Kit (NIAK) [32].
Due to debates about bandpass filtering and global signal regression, four preproces-
sing strategies were used with each pipeline. These strategies involved filtering with and
without global signal correction and no filtering, also with and without global signal cor-
rection [32] .
The strategies are named :

• TrueTrue : Includes band-pass filtering and global signal regression.

• TrueFalse : Includes only band-pass filtering.

• FalseFalse : Excludes both band-pass filtering and global signal regression.

• FalseTrue : Includes only global signal regression.
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Most research papers use CPAC, providing a comparison base for autism research. Addi-
tionally, various studies have employed software tools for preprocessing MRI modalities.
These tools include brain extraction tools (BET) , the deformable medical image registra-
tion toolbox (DRAMMS) , FMRIB software libraries (FSL) , FreeSurfer , and statistical
parametric mapping (SPM). MATLAB has also been used for preprocessing fMRI data.

2.3 Dataset description

The ABIDE dataset is a valuable resource for research on Autism Spectrum Disorder.
It compiles data from various institutions worldwide, each contributing a specific number
of participants with ASD as well as control subjects. These participants span a wide
range of ages, allowing for the exploration of variability and common characteristics of
ASD across different populations. The data are collected from renowned sites such as
Caltech, Carnegie Mellon University, and New York University, among others. The table
below provides a detailed overview of the distribution of participants by site, including
the number of ASD participants, control subjects, age range, and the total number of
participants per site.

Site ASD Control Age Range Total
Caltech 19 19 17.0-56.2 38
CMU 14 13 19-40 27
KKI 22 33 8.0-12.8 55

MaxMun 24 33 7-58 57
NYU 79 105 6.5-39.1 184
Olin 20 16 10-24 36

OHSU 13 15 8.0-15.2 28
SDSU 14 22 8.7-17.2 36
SBL 15 15 20-64 30

Stanford 20 20 7.5-12.9 40
Trinity 24 25 12.0-25.9 49
UCLA 1 49 33 8.4-17.9 82
UCLA 2 13 14 9.8-16.5 27
Leuven 1 14 15 18-32 29
Leuven 2 15 20 12.1-16.9 35

UM 1 55 55 8.2-19.2 110
UM 2 13 22 12.8-28.8 35
Pitt 30 27 9.3-35.2 57
USM 58 43 8.8-50.2 101
Yale 28 28 7.0-17.8 56

Table 2.1 – Demographic characteristics of the participants by site in the ABIDE da-
taset. [29]

The table below provides an overview of the different methods used for data acquisition
at each participating site. It presents key information such as the type of acquisition used
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(e.g., T2-weighted), voxel size (which determines the spatial resolution of the images),
matrix size (which describes the dimensions of the obtained images), repetition time
(TR, i.e., the interval between each successive image acquisition), as well as the total
number of image volumes collected at each site.

Site AcquisitionType VoxelSize (mm) MatrixSize TR(msec) volumes
Caltech T2-weighted* 3.5 × 3.5 × 3.5 64 × 64 2000 146
CMU a T2-weighted* 3.0 × 3.0 × 3.0 64 × 64 2000 236
CMU b T2-weighted* 3.0 × 3.0 × 3.0 64 × 64 2000 316

KKI T2-weighted* 3.0 × 3.0 × 3.0 84 × 84 2500 152
MaxMun T2-weighted* 3.0 × 3.0 × 4.0 64 × 64 3000 116

NYU T2-weighted* 3.0 × 3.0 × 4.0 80 × 80 2000 176
Olin T2-weighted* 3.4 × 3.4 × 4.0 64 × 64 1500 206

OHSU T2-weighted* 3.8 × 3.8 × 3.8 64 × 64 2500 78
SDSU T2-weighted* 3.4 × 3.4 × 3.4 64 × 64 2000 176
SBL T2-weighted* 2.75 × 2.75 × 2.72 80 × 80 2200 196

Stanford T2-weighted* 3.125 × 3.125 × 4.5 64 × 64 2000 236
Trinity T2-weighted* 3.0 × 3.0 × 3.5 80 × 80 2000 146
UCLA 1 T2-weighted* 3.0 × 3.0 × 4.0 64 × 64 3000 116
UCLA 2 T2-weighted* 3.0 × 3.0 × 4.0 64 × 64 3000 116
Leuven 1 T2-weighted* 3.59 × 3.59 × 4.0 64 × 64 1667 246
Leuven 2 T2-weighted* 3.59 × 3.59 × 4.0 64 × 64 1667 246

UM 1 T2-weighted* 3.438 × 3.438 × 3.0 64 × 64 2000 296
UM 2 T2-weighted* 3.438 × 3.438 × 3.0 64 × 64 2000 296
Pitt T2-weighted* 3.1 × 3.1 × 4.0 64 × 64 1500 196
USM T2-weighted* 3.4 × 3.4 × 3.0 64 × 64 2000 236
Yale T2-weighted* 3.4 × 3.4 × 4.0 64 × 64 2000 19

Table 2.2 – Overview of data acquisition methods at each site in the ABIDE dataset
where TR=Time of Repetition, volumes = Number of slices. [33]

2.4 Quality Assessment

The phenotypic file contains information about data quality, categorized into two
types : automated quality assessment and manual quality assessment [34]. Automated
quality assessment involves evaluations performed by algorithms or computer tools that
measure objective aspects of the data. These assessments are typically precise and repro-
ducible because they are based on automated calculations. In contrast, manual quality
assessment is carried out by human reviewers who examine the data and provide ratings
or comments based on their expertise and subjective judgment. This human evaluation
include observations on clarity, the presence of artifacts, or other aspects that automa-
ted tools might not detect. Therefore, the file combines both objective and subjective
evaluations to provide a comprehensive view of data quality.
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2.5 Brain parcellation

Due to the high dimensionality of the preprocessed data, we reduce dimensions by
dividing the brain into regions with similar properties based on a brain atlas.

2.5.1 Automated Anatomical Labeling

The Automated Anatomical Labeling (AAL) atlas, developed by Tzourio-Mazoyer
et al. (2002) [35], is a popular brain parcellation and labeling tool. It splits the brain
into different regions of interest (ROIs) based on a single-subject MNI T1 volume. This
atlas is spatially normalized and segmented into eight classes like gray matter and white
matter. Initially, 90 ROIs were manually drawn and filled using a specific algorithm.
Updates have increased the number of ROIs to 116.

For functional resolution (3x3x3 mm³), the atlas uses nearest-neighbor interpolation.
In our analysis, we divided the preprocessed time series data into these 116 ROIs by
averaging the signal within each region, resulting in a 2D vector with time steps and 116
ROIs.

Figure 2.5.1 – Automated Anatomical Labelling atlas.

2.5.2 Harvard-Oxford

The Harvard-Oxford (HO) atlas provided by the FMRIB Software Library (FSL) was
divided into cortical and subcortical probabilistic atlases, and then further separated into
left and right hemispheres. Regions of interest (ROIs) corresponding to the left/right
white matter, left/right gray matter, left/right cerebrospinal fluid, and brainstem were
excluded from the subcortical atlas, resulting in a total of 111 ROIs.
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Figure 2.5.2 – Harvard-Oxford atlas.

2.5.3 Craddock 200 (CC200)

Functional parcellation was achieved through a two-stage spatially-constrained func-
tional process on resting state data from 41 individuals. A grey matter mask was formed
by averaging individual masks. Connectivity graphs were created for each individual, trea-
ting each voxel as a node and significant temporal correlations as edges. These graphs
were partitioned into 200 regions using normalized cut spectral clustering. Association
matrices were constructed from the clustering results. A group-level correspondence ma-
trix was formed by averaging individual matrices and partitioned into 200 regions. The
final group-level analysis was refined using nearest-neighbor interpolation, and labels for
each ROI were assigned based on overlap with AAL, EZ, HO, and TT atlases using the
pyClusterROI toolbox.

Figure 2.5.3 – Craddock 200 atlas.
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2.5.4 Craddock 400 (CC400)

The procedure described for the CC200 atlas was repeated for 400 regions to create
the CC400 atlas.

Figure 2.5.4 – Craddock 400 atlas.

2.5.5 Dosenbach 160

The Dosenbach 160 atlas consists of 160 virtual spheres, each with a radius of
4.5 mm, placed at specific locations in the brain. These locations, listed in Table S6
of the Dosenbach et al. (2010) paper [36], were determined through meta-analyses of
task-related fMRI studies. These spheres represent regions of interest (ROIs) identified
as being most active during these cognitive tasks.

Figure 2.5.5 – Dosenbach atlas.
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2.6 Time series

A time series is a sequence of data points collected and recorded over time, ordered
chronologically, with each data point associated with a specific time or time interval. This
type of data is used to analyze changes over time, identifying patterns, trends, and rela-
tionships (Shumway and Stoffer, 2017 [37]). Time series data can be recorded at regular
intervals (e.g., hourly, daily) or irregular intervals, and can be univariate or multivariate,
depending on the number of variables observed simultaneously.
Time series data originates from various fields, including economics, finance, meteorology,
healthcare, and engineering [38] . It can pertain to any variable that changes over time.
Time series analysis considers the internal structure of the data, such as autocorrelation,
trends, or seasonal variations, to understand the factors influencing variables over time.
In the human body, every action and reaction involves fluctuations in brain activity. Ac-
tivities such as looking, hearing, talking, and feeling induce different patterns of brain
activity, captured in functional brain images. The brain, segmented into specialized re-
gions, shows different activity patterns even at rest, revealing networks of areas that often
act together.
Brain functional imaging time series capture neural oscillations, reflecting fluctuations in
neuronal excitability in regions of interest. These oscillations can vary in speed and du-
ration. Time series allow for capturing interactions of brain regions in a one-dimensional
signal.
Techniques applied in brain research for time series analysis include spectral analysis
(Fourier analysis, wavelet analysis), time-frequency analysis (spectrograms, wavelet trans-
forms), connectivity analysis (coherence, phase synchronization), and advanced machine
learning algorithms to extract temporal patterns or predict brain states . By utilizing
these techniques, scientists gain insights into brain function, connectivity, cognitive pro-
cesses, and neurological disorders, aiding in understanding brain dynamics, identifying
biomarkers, and developing diagnostic and therapeutic tools for neurological and psy-
chiatric conditions.

Figure 2.6.1 – Time series of subject 51464 extracted with the HO atlas.
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2.7 Connectivity matrices

Connectivity matrices are widely used to study normal and pathological brain connec-
tivity in various neurological and psychiatric states. For example, in the context of autism
spectrum disorders, researchers use connectivity matrices to identify distinctive patterns
of functional or structural connectivity that may be associated with ASD compared to
neurotypical individuals. They are mathematical representations that allow quantifying
and studying the functional or structural relationships between brain regions. They are
essential for understanding how different brain circuits contribute to normal or disrupted
brain function in various neurological and psychiatric conditions.

2.7.1 Functional connectivity

In functional neuroimaging, such as with fMRI, functional connectivity refers to the
measurement of the correlation or temporal synchronization between neuronal activity in
different brain regions. To calculate functional connectivity, fluctuations in brain activity
over time are typically examined, and the degrees of similarity or coherence between
signals from different regions are quantified. This measurement is often represented as
a matrix, where each element of the matrix represents a measure of connectivity (e.g.,
Pearson correlation) between two specific regions.

Figure 2.7.1 – connectivity matrix of subject 50526.

2.7.1.1 Correlation matrices

Correlation analysis is a widely-used method in the examination of resting-state func-
tional magnetic resonance imaging (rs-fMRI). It determines the correlation coefficient
between two regions of interest to indicate the degree of connectivity between them. A
higher coefficient signifies stronger connectivity. This technique is employed to identify
functional connections and resting-state networks within the human brain [39, 40, 41].
Consider X and Y as two time series representing two ROIs, with X = x1, x2, · · · , xt
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and Y = y1, y2, · · · , yt.
The Pearson correlation between these two time series is calculated as follows :

r =

∑
(xi − X̄)(yi − Ȳ )√∑

(xi − X̄)2
∑

(yi − Ȳ )2

Where :

X̄ – the mean (average) of the X-variable
Ȳ – the mean (average) of the Y-variable

2.7.1.2 Partial correlation

Partial correlation estimates the direct connection between two regions of interest (ROI
X and ROI Y) by removing the influence of a third region (ROI Z), helping to uncover a
causal relationship between the first two. The partial correlation between two ROIs, X
and Y, after accounting for the influence of ROI Z, is calculated as follows :

r =
rXY − rXZrY Z√

(1− r2XZ)(1− r2Y Z)

Where :

rAB : The simple correlation between ROIs A and B without considering other ROIs.

2.7.1.3 Covariance matrices

Covariance is a measure that indicates how two variables move together. If the covariance
is positive, it means that when one of the variables increases, the other tends to increase
as well. If it’s negative, it means that when one increases, the other tends to decrease.

In short, covariance tells you if two things are related and how they move together,
either in the same direction or in opposite directions.
The covariance between X and Y is expressed by :

Cov(X, Y ) =

∑
(Xi − X̄)(Yi − Ȳ )

n

Where :
Xi – the values of the X-variable
Yi – the values of the Y-variable
X̄ – the mean (average) of the X-variable
Ȳ – the mean (average) of the Y-variable
n – the number of data points
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2.7.1.4 Tangent space matrices

Tangent space connectivity matrices offer a more sophisticated approach by using
mathematical concepts to analyze how directions and changes in the brain connect at
different points on a kind of geometric ’surface.’
These matrices are particularly useful in studies such as autism detection because they al-
low for the combination of information from multiple brain connections into a single view.
This provides a more precise and detailed understanding of relationships within the brain.

To compute the tangent space matrix, we start by determining the covariance matrix Σi

for each subject. Next, we calculate the geometric mean of these covariance matrices to
obtain the reference matrix Σmean :

Σmean = gmean ({Σ1,Σ2, . . . ,ΣN})

Whiten each covariance matrix using the inverse square root of Σmean, which gives :

Wi = Σ−1/2
mean · Σi · Σ−1/2

mean

Finally, we apply the logarithm to each whitened matrix to obtain the tangent space
representation :

Li = log(Wi)

The logarithm is applied element-wise to get the tangent matrix [42].

2.7.2 Structural connectivity

In structural neuroimaging, particularly with techniques like anatomical MRI
(aMRI), structural connectivity focuses on understanding the physical, anatomical
connections between different regions of the brain. Unlike functional connectivity, which
examines the correlations of brain activity over time, structural connectivity is concerned
with the actual physical pathways that link various brain regions. These connections
are primarily made up of white matter fibers, which are bundles of axons that facilitate
communication between different parts of the brain [43].

One of the most commonly used methods to assess structural connectivity is Diffusion
Tensor Imaging (DTI). DTI is a type of MRI technique that measures the diffusion of
water molecules in the brain’s white matter. Because water molecules tend to diffuse
more rapidly along the direction of axon fibers, DTI can be used to infer the orientation,
directionality, and strength of these white matter pathways. The data collected from
DTI allows researchers to map out the brain’s structural network, often represented in
the form of structural connectivity matrices.

These matrices are mathematical representations where each element corresponds to the
strength or density of connections between a specific pair of brain regions. For example,
if a particular matrix entry has a high value, it indicates a strong or dense connection
between two regions, suggesting that these areas are anatomically well-linked. Conversely,
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a lower value would suggest a weaker or less dense connection. Structural connectivity
matrices are crucial in studying how brain regions are physically interconnected and
can provide insights into how these connections relate to various cognitive functions or
neurological conditions.

2.8 Conclusion

In this chapter, we thoroughly explored the data and methodologies essential for
investigating Autism Spectrum Disorder through neuroimaging. Beginning with the
ABIDE dataset and its preprocessed version, we provided a detailed description of the
dataset, emphasizing the importance of quality assessment to ensure the reliability of
the data used in our analyses.

We then examined the different brain parcellation techniques, including the AAL,
HO , CC200, CC400, and Dosenbach 160 atlases. Each of these parcellation methods
offers unique advantages for segmenting the brain into regions of interest, providing a
foundation for the extraction of meaningful time series data.

The time series derived from these parcellations were used to construct connectivity
matrices, which are pivotal in understanding the functional and structural connectivity
patterns in the brain. We discussed various types of connectivity matrices, including
correlation, partial correlation, covariance, and tangent space matrices for functional
connectivity, as well as structural connectivity matrices. Each type of matrix presents
a different perspective on the brain’s connectivity, contributing to a comprehensive
analysis of the neural networks involved in ASD.

This chapter thus provides a critical overview of the datasets, tools, and techniques that
form the backbone of our study.
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Chapter 3

MRI Data Representation and
Techniques For Autism Diagnosis

3.1 MRI data representation

Raw MRI images are often too large and complex to be used directly in diagnosing
autism through artificial intelligence. While a radiologist can examine these images to
identify signs of diseases, the massive amount of data makes this task difficult to perform
manually and quickly. Additionally, raw data lacks the specific details necessary for ac-
curate diagnosis.
This is why researchers prefer to extract key information from these raw images instead
of using them directly, as this helps AI models diagnose autism more effectively.
However, machine and deep learning models often require specific data formats, such as
2D images 1D vectors or particular shapes, making raw 3D/4D MRI data unsuitable.
To address this issue, researchers have developed alternative methods to represent MRI
data, such as transforming it into 2D images, 3D brain volumes, or connectivity ma-
trices. These methods help better prepare the data for AI models, thereby improving the
diagnosis of autism.

3.1.1 Connectivity matrices

Connectivity matrices obtained from MRI scans are frequently used to identify bio-
markers for autism spectrum disorder. These matrices provide insights into brain structure
and activity by quantifying interactions between different brain regions. Researchers ge-
nerate these matrices by segmenting the brain into regions of interest using a brain atlas,
which reduces data dimensionality. Statistical methods, such as correlation coefficients,
are then applied to evaluate co-activation levels between ROIs, resulting in weighted
connectivity matrices that represent the strength of connections between these regions.
These matrices are particularly useful for classification models requiring two-dimensional
input data. Functional connectivity (FC) matrices are derived from fMRI scans, while
structural connectivity (SC) matrices come from sMRI data. Various statistical methods,
including Pearson’s correlation, are used to create both FC and SC matrices.
Several studies have applied connectivity matrices in different ways for ASD classifica-
tion. For example, [44] transformed a 200x200 connectivity matrix from the CC200 atlas
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into a vector for use with an autoencoder, which extracted features for a deep learning
model. [45] used a Pearson correlation matrix, transformed it into a vector, and selected
features based on p-values before classifying autism subtypes with a machine learning
model. [46] applied the CC400 atlas to extract time series data, created a correlation
matrix, and used it in a CNN model for classifying autistic individuals. Similarly, [47]
employed vectors from a correlation matrix in a fully connected neural network (FCNN)
for classification.
Recent advances in neuroimaging data fusion have allowed for the integration of multiple
datasets from the same subject, improving insights into brain function and activation
changes related to neurological disorders. Combining data from different brain atlases
helps extract more informative features for ASD diagnosis. Studies have explored com-
bining functional connectivity matrices from various atlases using deep learning models
and evaluating both spatial and functional connectivity information.
Structural connectivity can be estimated using the morphological covariance network
approach, which captures interregional structural connectivity and individual-level va-
riations. Some research integrates both structural and functional MRI information by
combining FC and SC matrices. Approaches include concatenating feature vectors or
training separate classifiers for each type of connectivity.
The use of connectivity matrices in models for detecting autism and other neurodevelop-
mental disorders is extensive and continually expanding.

3.1.2 Graph-based representations

Graph-based representations help researchers extract valuable information for tasks
like brain network classification and visualization. The main goal is to create a mea-
ningful representation of the brain’s complex connections by reducing them to a lower-
dimensional space, which improves accuracy and performance in diagnosing diseases such
as autism (ASD). This involves constructing a graph where nodes represent specific brain
regions and links represent the connectivity between these regions, often derived from
FC analysis of fMRI data. There are different approaches to modeling these networks :
one represents brain regions as nodes with functional connectivity as links, while another
represents subjects as nodes with links based on similarities in their fMRI and phenotypic
features.
Author [48] has designed a model using Graph Neural Networks (GNN) to learn effective
representations for graph classification in an end-to-end manner. Specifically, it involves
a method called "hi-GCN" (hierarchical Graph Convolutional Network), a variant of the
GCN model. This model aims to encode the features of a graph while considering both
the network’s structure (the connections between nodes) and the relationships between
subjects. Thus, hi-GCN enhances graph representation, making classification easier by
integrating both structural information and the relationships between entities within the
graph.
Author [49] uses the GAT-LI method, which combines a graph attention network (GAT2)
and an interpretation technique (GNNExplainer) to classify functional brain networks
between autistic individuals (ASD) and healthy controls (HC).
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Figure 3.1.1 – Process for Constructing Graph-Based Representations from MRI. [50]

3.1.3 2D-slice images

Researchers use 2D images, known as "slices," extracted from 3D or 4D MRI data to
analyze the brain. These 2D images provide a snapshot of brain activity or structure and
are particularly useful for AI models that require 2D input. For instance, the author [51]
used 3D fMRI data and saved it as 2D images to use with DarkASDNet for classifying
autism brain images between ASD and TC.
In fMRI studies, 2D slices are taken from different anatomical planes (such as sagittal,
coronal, or axial) at specific moments to visualize brain activity. These images are used
to enhance understanding and aid in the diagnosis of autism. Similarly, the author [52]
used 2D neuroimages and transfer learning with InceptionResNetV2 for autism spectrum
disorder classification.
Similarly, in structural MRI studies, 2D slices are used to provide detailed views of the
brain’s anatomy. These images are then fed into deep learning models to assist in diag-
nosing autism, offering visual data on brain structure and activity.

Figure 3.1.2 – Slices of the brain : sagittal, coronal, and axial. [53]

3.1.4 3D-volume

A 3D brain volume represents the entire brain in three dimensions from MRI scans.
Unlike 2D slices, which provide only flat images, using the full 3D MRI data allows for a
detailed and comprehensive view of the brain’s structure.
This complete representation can be especially useful for deep learning (DL) models
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or pretrained models in diagnosing autism spectrum disorder. By preserving all spatial
details, these models can better identify complex patterns across the brain, potentially
leading to more accurate ASD diagnoses. Research supports this approach : for instance,
study [54] achieved 70% accuracy in ASD diagnosis using a 3D convolutional neural
network (CNN) to analyze MRI scans. Another study [55] employed a pretrained 3D-
ResNet model to extract key features from MRI data for diagnosing ASD.

3.1.5 Time series analysis

Studies on diagnosing ASD have focused a lot on looking at the temporal aspects of
BOLD data from fMRI scans. The goal is to capture how s1ignals change over time and
understand how brain anatomy affects these changes. fMRI signals are initially represen-
ted in two ways :

• Temporal-level : Signals are collected from different regions of interest at each time
point.

• Spatial-level : Signals are gathered from each ROI at various time points.

To understand the overall temporal characteristics of brain networks, the time series
data from each region within the network are either averaged or analyzed using different
statistical measures. Author [56] uses time series extracted from a 4D fMRI scan with a
brain atlas. The representative time series were obtained by averaging the responses of
voxels within each ROI and then used as input for a transformer-based model to diagnose
autism. Additionally, studies [57] and [58] used brain atlases to extract ROIs and averaged
the time series data from each ROI to use as input for transformer-based models.

Figure 3.1.3 – Process of Time Series Data Extraction from MRI. [50]

3.1.6 Region-based representations

Finding brain imaging markers for autism is crucial for understanding the disorder.
However, directly using raw MRI data from the entire brain makes it challenging to extract
useful features for ASD diagnosis. A more effective strategy involves focusing on specific
brain regions, known as regions of interest. This often means segmenting or outlining
particular brain regions from the 3D brain volume to obtain more relevant information.
For instance, in one study [54], raw MRI data was processed using a 3D convolutional
neural network to identify key features. These features were then refined by applying
masks from a brain atlas to specific ROIs, which were subsequently used in a Genetic
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Algorithm for diagnosing ASD, resulting in a 73% accuracy rate. In another study [59],
the 3D cerebral cortex was transformed into 2D images through a geometric mapping
technique that preserved the spatial relationships of brain regions. These 2D images were
then utilized for ASD diagnosis. Additionally, the author [60] used four brain areas in the
diagnosis of ASD subjects, based on the CC400 functional parcellation atlas of the brain
and a LeNet-5-based deep neural network for ASD detection.

3.2 Autism Spectrum Disorder Diagnosis Techniques

3.2.1 Machine Learning Algorithms

Traditional research has explored various machine learning (ML) models for diag-
nosing Autism Spectrum Disorder. Typically, ASD diagnosis is approached as a binary
classification problem, where the dataset includes two labels : ASD and typically
developing (TD/TC) subjects. However, ASD can also be framed as a multi-class
classification problem, with labels corresponding to different ASD subtypes, such as
autistic disorder, Asperger’s disorder, pervasive developmental disorder, and TC.
An essential step in applying ML models is feature selection and extraction. In ASD
diagnosis, researchers extract relevant data from raw MRI scans to use as input for ML
algorithms. This often leads to high-dimensional data, which can impact the accuracy of
ASD diagnosis. To address this, feature reduction methods are employed to simplify the
data while retaining key information [61]. These methods enhance model performance,
prevent overfitting, and reduce computation time in ASD diagnosis. Techniques include
t-test [62, 63, 64, 65, 66], recursive feature elimination (RFE) [67, 68, 69, 70], analysis of
variance (ANOVA) [71], principal component analysis (PCA) [72], F-score [73], Fisher
score [69], and autoencoder (AE) [74, 75, 76, 77, 78].

The Support Vector Machine (SVM) algorithm has been extensively used in ASD
diagnosis with promising results [79, 80, 81, 68, 62, 82, 83, 71, 64, 84, 72, 85].
For instance, one study achieved a 92.9% accuracy using ASD-related functional
connectivity data from fMRI [86]. Another study used a cubic kernel function SVM for
classifying ASD with non-oscillatory FC data, reaching an accuracy of 88.9% [80]. A
multi-view high order-FC network from fMRI reached 86% accuracy [62]. A limitation
of these studies was their small sample sizes : 98 subjects [86], 144 subjects [80], and 92
subjects [62].

Random Forest (RF), another ML algorithm, has been used for ASD classification with
MRI data [79, 76, 78, 87, 88]. For example, combining FC and volumetric features from
fMRI and sMRI with an RF classifier achieved an accuracy of 80% [87]. Evaluating
FC from fMRI with a conditional RF method for feature reduction resulted in a 73%
accuracy [88]. K-Nearest Neighbors (KNN) is also used in ASD classification. Combining
features from sMRI and fMRI, KNN achieved accuracies of 75% and 79% on larger
datasets [89]. With 11 neighbors and cosine metric, KNN reached 78% [80]and 58% [79]
accuracy on smaller datasets.
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Other ML models used in ASD diagnosis include Decision Tree (DT) [90], Logistic
Regression (LR) [71], Ridge Classifier [82], Sparse Representation Classifier (SRC)
[91], Ensemble Learning (EL) [80],[63], and Linear Discriminant Analysis (LDA) [79].
Ensemble classifiers improve precision by combining multiple models [92]. One study
used a self-weighted adaptive structure learning (SASL) method for ASD diagnosis,
leveraging FC from fMRI as weights and achieving an accuracy of 89% [63]. The table
below summarizes the ML models, brain atlases, preprocessing techniques, and feature
selection methods used in traditional ASD diagnosis research based on MRI data.

Model Data Atlas Prepro feature-Sel Val MaxAcc Nb.subj

SVM

fMRI HO CPAC t-tests, LASSO 10-CV 67.28% 403 ASD,
468 TC [64]

fMRI AAL SPM8 t-test, LASSO 6-CV 86.2% 45 ASD,
47 TC [62]

fMRI CC200 CPAC Extra-trees 10-CV 72.2% 506 ASD,
548 TC [85]

sMRI HO FSL Gaussian
distribution

LOO-
CV

AUC
0.77

151 ASD,
151 TC [84]

fMRI
Glasser
multimo-
dal

CPAC ANOVA CV 60.89% 403 ASD,
468 TC [71]

fMRI,
Phenot-
ypique

CC400 - - 5-CV 71.1% 505 ASD,
530 TC [82]

fMRI,
sMRI

AAL - PCA LOO-
CV 78.89% 49 ASD,

41 TC [72]

fMRI Dosenbach DPABI, SPM,
MATLAB Boruta method LOO-

CV 92.9% 48 ASD,
50 TC [86]

fMRI,
Gene-

tic

AAL MATLAB,
SPIM12

t-test,
SVM-RFE

LOO-
CV 83.6% 47 ASD,

24 TC [66]

RF
fMRI CC200 DPARSF AE 10-CV 60.63% 432 ASD,

556 TC [76]
fMRI HO FSL FC - 73.75% 306 ASD,

350 TC [88]

LR
fMRI,

Phenot-
ypique

CC200 - - 5-CV 71.1% 505 ASD,
530 TC [82]

fMRI
Glasser
multimo-
dal

CPAC ANOVA CV 60.89% 403 ASD,
468 TC [71]

DT fMRI AAL CPAC t-test, LASSO LOO-
CV 74.8% 201 ASD,

251 TC [90]
KNN sMRI - - Entropy,

chi-square
5-CV 54.79% 592 ASD,

571 TC [79]

Table 3.1 – ASD diagnosis using MRI and ML models : Support Vector Machine
(SVM),Random Forest (RF), and K-Nearest Neighbors (KNN), Logistic Regression (LR),
Decision Tree (DT).

3.2.2 Multi-layer perceptron

A multilayer perceptron, or MLP, is one of the most used ML algorithms. It is an
artificial neural network composed of several layers. The first layer, known as the input
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layer, receives the raw data, with each neuron representing a specific feature of the da-
taset. These data are then transmitted through one or more hidden layers, which apply
nonlinear activation functions to model complex relationships within the data. Finally,
the information reaches the output layer, which generates the model’s final predictions.
The MLP operates in two main phases : forward propagation, where the data is processed
through the layers to produce an output, and backpropagation, where the error between
the prediction and reality is used to adjust the weights of the neural connections. This
learning process enables the MLP to solve complex classification and regression problems
by learning nonlinear relationships within the data.

Figure 3.2.1 – MLP Architecture. [100]

The table below lists some papers that used Multi-Layer Perceptrons for classification.
It gives a brief overview of how they selected features and subjects, and what their best
results were.
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Model Dataset No. of cases Brain Atlas Preprocessing Feature selec-
tion

Max Ac-
curacy Ref.

MLP

fMRI 493 ASD,
530 TC

CC200, AAL CPAC, FSL – 84% [94]

fMRI 432 ASD,
556 TC

CC200 DPARSF AE 71.35% [76]

fMRI 419 ASD,
530 TC

CC200, AAL,
Dosenbach CPAC AE 74.52% [75]

fMRI 505 ASD,
530 TC

CC200 CPAC Sparse AE 70.8% [74]

fMRI 403 ASD,
468 TC

AAL CPAC – 69.81% [95]

fMRI 539 ASD,
573 TC

AAL

CPAC, FM-
RIB, SPM,
Artifact detec-
tion tools

Sparse AE 81.5% [96]

fMRI 402 ASD,
464 TC

BASC CPAC – 88% [97]

fMRI 505 ASD,
530 TC

CC200 – F-score, AE 70.9% [73]

fMRI 505 ASD,
530 TC

CC400 CPAC – 75.27% [98]

fMRI 79 ASD,
105 TC

– CCS – 94.70% [99]

sMRI, fMRI 368 ASD,
449 TC

AAL, CC200,
Destrieux CPAC Fisher score, AE 85.06% [69]

fMRI 506 ASD,
532 TC

CC200,
AAL90,
DOS160

DPARSF – 79.13% [100]

Table 3.2 – References Using MLP for ASD Diagnosis.

3.2.3 Convolutional neural network

A Convolutional Neural Network is a Deep Learning algorithm and a type of artificial
neural network that is particularly effective for processing grid-like data structures, such
as images. CNNs are widely used in fields such as computer vision, image recognition,
and video analysis.

CNNs operate through several types of layers that work together to extract and interpret
features from images. Convolutional layers are at the heart of CNNs.

They use filters or kernels that slide across the input image to detect local features
such as edges, textures, or specific patterns. Each filter generates a feature map that
represents the presence of these patterns at different locations in the image. The main
advantage of convolutional layers is that they preserve the spatial relationships between
pixels in the image. In other words, they maintain the layout and structure of objects
within the image. For example, recognizing a face requires understanding where the eyes,
nose, and mouth are relative to each other. Convolutional layers preserve this spatial
structure, allowing the network to detect patterns and objects more accurately.

After convolutional layers, CNNs often include pooling layers, such as max pooling.
These layers reduce the dimensionality of the feature maps by taking the maximum or
average value within a small window of each map. This helps to reduce the number
of parameters and computations in the network while retaining the most important
information. Pooling layers also make the network more robust to variations in the
position of features within the image.
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Once features are extracted by convolutional and pooling layers, CNNs typically move on
to fully connected layers, similar to those in MLP. These layers interpret the extracted
features to perform the final task, such as image classification or object detection.
Like multilayer perceptrons, CNNs use nonlinear activation functions, such as ReLU
(Rectified Linear Unit), to introduce non-linearity into the model.

This allows the network to capture complex relationships in the data.
Learning in a CNN is done through backpropagation, where the error between the net-
work’s prediction and the actual result is used to adjust the weights of the connections
across all layers of the network, including the convolutional layers. Through this process,
the CNN gradually improves its performance, becoming capable of solving increasingly
complex problems.

Figure 3.2.2 – Process of Convolutional Neural Networks (CNNs). [101]

The table below lists some papers that used CNN for classification.

Model Dataset No. of cases Brain Atlas Preprocessing Feature selec-
tion

Max Ac-
curacy Ref.

CNN

fMRI 539 ASD,
573 TC

– CPAC AE 84.05% [78]

fMRI 539 ASD,
573 TC

CC200 CPAC – 80% [92]

sMRI 592 ASD,
571 TC

– –
Entropy, chi-
square, symmetric
uncertainty

66% [79]

fMRI 79 ASD,
105 TC

– CCS – 94.70% [99]

fMRI 491 ASD,
528 TC

AAL DPARSF – 82.12% [60]

Table 3.3 – References Using CNN for ASD Diagnosis.

3.2.4 Autoencoder (AE)

An autoencoder is a Deep Learning algorithm and a type of neural network primarily
used for unsupervised learning. Its main goal is to encode input data into a lower-
dimensional space and then reconstruct this data from the compressed representation.
Autoencoders are often used for tasks such as dimensionality reduction, data denoising,
and data generation.
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An autoencoder consists of two main parts : the encoder and the decoder. The encoder
takes the input data and transforms it into a lower-dimensional representation called
the encoding or bottleneck. This part of the network is composed of several layers, often
densely connected layers or convolutional layers, which compress the information while
attempting to preserve the essential features of the original data. The code or encoding
is the compressed representation of the data obtained after passing through the encoder.
It captures the most significant information in a more compact form, such as patterns or
textures in the case of images.
The decoder, the second part, takes the encoding and attempts to reconstruct the
original data from this compressed representation. It is generally symmetric to the
encoder, using similar layers but in reverse order to generate a reconstruction of the
data.
The primary goal of an autoencoder is to minimize the difference between the input data
and the generated reconstruction. This difference is often measured by a loss function,
such as mean squared error (MSE). By training the network to minimize this loss, the
autoencoder learns to encode and decode data effectively.
Autoencoders can also be used to reduce the dimensionality of data while retaining their
main features. This reduction is useful for preprocessing before applying other machine
learning algorithms. Some autoencoders, known as denoising autoencoders, are designed
to remove noise from data by learning to reconstruct the input data from noisy versions.
Autoencoders can also generate new data. Variational autoencoders (VAEs) allow for
generating samples by sampling from the learned encoding distribution.
Regarding their role in classification, autoencoders can be used in several ways. They
are often employed to preprocess data by reducing its dimensionality while preserving
essential features. The encoding produced by the autoencoder can serve as input to
a traditional classifier such as a support vector machine (SVM) or logistic regression,
thereby improving the classifier’s performance by simplifying the data and reducing
noise.
Additionally, autoencoders can be extended to include a classification layer directly in
the model. This approach involves adding fully connected layers on top of the decoder to
predict classes from the encodings. By training the model with a combined loss function,
which includes both reconstruction loss and classification loss, the autoencoder learns
both to effectively reconstruct the data and to perform classification tasks.
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Figure 3.2.3 – Autoencoder Architecture. [102]

The table below lists some papers that used autoencoder for classification.

Model Dataset No. of cases Brain Atlas Preprocessing Feature selec-
tion

Max Ac-
curacy Ref.

AE

fMRI 432 ASD,
556 TC

CC200 DPARSF – 71.35% [76]

fMRI 322 ASD,
352 TC

CC200 CPAC – 71.3% [77]

fMRI 419 ASD,
530 TC

CC200, AAL,
Dosenbach CPAC – 74.52% [75]

fMRI 539 ASD,
573 TC

– CPAC – 84.05% [78]

fMRI 505 ASD,
530 TC

CC200 CPAC Sparse AE 70.8% [74]

fMRI 539 ASD,
573 TC

AAL

CPAC, FM-
RIB, SPM,
Artifact detec-
tion tools

Sparse AE 81.5% [96]

fMRI 505 ASD,
530 TC

CC200 – F-score 70.9% [73]

sMRI, fMRI 368 ASD,
449 TC

AAL, CC200,
Destrieux CPAC Fisher score 85.06% [69]

Table 3.4 – References Using AE for ASD Diagnosis.

3.2.5 Graph convolutional networks

Graph Convolutional Networks (GCN) are a class of neural networks specifically desi-
gned to handle data structured as graphs, such as social networks or molecular structures.
Inspired by CNN used for image processing, GCNs generalize the convolution operation
to graphs. Their goal is to capture local graph features by aggregating information from
the immediate neighbors of each node across multiple network layers. This aggregation
allows each node to update its representation based on the graph structure and the cha-
racteristics of its neighbors. GCNs are used for tasks such as node classification, link
prediction, and graph generation.
The table below lists some papers that used GCN for ASD diagnosis.
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Model Dataset No. of cases Brain Atlas Preprocessing Feature selec-
tion

Max Ac-
curacy Ref.

GCN fMRI 403 ASD,
468 TC

HO
CPAC,
MNI152,
FSL

Deep feature selec-
tion 79.5% [103]

fMRI 403 ASD,
468 TC

HO CPAC RFE 73.71% [67]

Table 3.5 – References Using Graph convolutional networks for ASD Diagnosis.

3.2.6 Graph attention network

Graph Attention Networks (GAT) are an advancement of GCNs that incorporate an
attention mechanism. This mechanism allows the network to assign different importance
to the neighbors of a node during the aggregation of information. Unlike GCNs, which
treat all neighbors equally, GATs automatically determine the weights for each neighbor,
enabling them to better capture complex relationships between nodes. This attention
mechanism makes GATs particularly suited to contexts where relationships between
nodes are heterogeneous or complex, often resulting in better performance than GCNs
in such scenarios.

The table below lists some papers that used GAT for ASD classification.

Model Dataset No. of cases Brain Atlas Preprocessing Feature selec-
tion

Max Ac-
curacy Ref.

GAT fMRI 403 ASD,
468 TC

HO CPAC Two sample t-test,
LASSO 72.40% [64]

fMRI 505 ASD,
530 TC

HO CPAC – 95% [49]

Table 3.6 – References Using GAT for ASD Diagnosis.

3.3 Conclusion

In this chapter, we delved into the various techniques and models employed for
autism diagnosis, particularly focusing on how MRI data can be represented and utilized
within different classification models.

We began by exploring the different representations of MRI data, including connectivity
matrices, graph-based representations, 2D-slice images, 3D-volume reconstructions, time
series analysis, and region-based representations. Each of these methods offers a unique
way to capture and interpret the intricate patterns in brain data, which are crucial for
identifying the neural signatures associated with Autism Spectrum Disorder.
Following the discussion on data representation, we introduced a variety of models
used for autism detection. We examined traditional machine learning algorithms and
advanced neural network architectures, such as CNN, AE, GCN, and GAT.

To provide a comprehensive overview, we also created tables summarizing the perfor-
mance of these models, highlighting their effectiveness in the state of the art. This compa-
rison offers valuable insights into the strengths and limitations of each approach, helping
guide the selection of the most appropriate techniques for specific diagnostic tasks.
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Chapter 4

Machine learning and Deep Learning
models for ASD detection

As previously mentioned, it is impossible for the human eye to detect whether a
person is autistic or neurotypical based solely on their MRI, whether anatomical or
functional. Even by plotting the time series or displaying the connectivity matrices, it is
difficult to perceive a significant difference between autistic and neurotypical individuals,
as these representations appear almost identical to the naked eye. This is why it is
essential to use a computerized system capable of detecting subtle differences, often
imperceptible to humans, and analyzing complex data. These systems, generally based
on machine learning or artificial intelligence algorithms, allow for the identification of
hidden patterns and correlations that the human eye cannot discern. Thanks to these
tools, it becomes possible to classify individuals as autistic or neurotypical, based on the
fine characteristics of the collected data, such as neural connections or variations in the
brain’s time series.

In this work, we attempted to create models using CPAC pipeline, applying one of
the strategies TrueFalse or TrueTrue each time. We used several brain atlases, such as
CC200, CC400, AAL, HO, BASC, POWER, and DOSENBACH, as well as different
connectivity matrices, including correlation, tangent, and partial correlation.

Initially, We applied these approaches to machine learning classifiers using fMRI data
from 1,102 subjects available for each preprocessing pipeline. However, the results did
not exceed a mean accuracy of 71.14% using the CC400 atlas in a 5-fold stratified
cross-validation, and 67% for a 30% test set . We then selected a subset of 866 subjects,
then 871 subjects based on a Quality Assessment evaluation. Despite these efforts, the
performance of the results remained low.

We also attempted to replicate deep learning architectures using both single-input
models (based on a single atlas) and multi-input models (integrating multiple atlases) as
described in papers [97, 98], and [100]. We performed fine-tuning of the hyperparameters,
but we still encountered issues with low accuracy or overfitting of the model.
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Subsequently, We turned to feature selection, relying on the concept of Deep Feature
Selection as outlined in paper [103]. This method involves selecting features with the
highest weights in a deep learning model. However, for this method to be reliable, the
model must be able to classify the data well, which was not the case due to the persistent
instability of the models used.

Finally, We explored various feature selection methods to enhance the performance
of models. Initially, We experimented with Information Gain, a filter-based approach.
Information Gain is a measure that assesses the importance of features by evaluating the
reduction in uncertainty they provide. However, despite its utility in certain applications,
the results obtained with this method did not exceed an accuracy of 69.35% ± 3.39%
after cross-validation using the CC200 atlas. While this performance was respectable, it
fell short of the requirements of our project.

To advance further, We decided to explore more sophisticated feature selection methods.
First, we employed the LASSO (Least Absolute Shrinkage and Selection Operator) me-
thod, an embedded approach. This method integrates feature selection directly into the
model training process by applying a regularization penalty that forces some regression
coefficients to zero. This regularization helps to simplify the model by eliminating less
relevant features while retaining the most important ones.

Subsequently, we applied the RFE (Recursive Feature Elimination) method, which is
a wrapper-based approach. RFE is an iterative method that selects the most relevant
features by gradually eliminating those that contribute the least to the model’s per-
formance. At each iteration, the least significant feature is removed, and the model is
retrained on the remaining features until an optimal subset is identified.

The application of these two methods, LASSO and RFE, resulted in significantly
improved performance levels. After cross-validation using the CC200 atlas, we achieved
an impressive accuracy of 99.66% ± 0.52%. This substantial increase in performance
demonstrated the effectiveness of these approaches in addressing the complex challenges
of data classification.

Through this approach, we was finally able to achieve results that not only exceeded our
expectations but also surpassed the state of the art, marking a significant advancement
in data classification. This experience highlights the importance of advanced feature se-
lection methods in improving model performance and ensuring robustness when dealing
with complex datasets.

4.1 Machine learning

Machine learning is a branch of artificial intelligence (AI) that involves creating
algorithms and statistical models that allow computers to learn from data and improve
their performance on a specific task without being explicitly programmed. The main
aim is for computers to recognize patterns, make predictions, or take actions based on
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the data they have encountered.

Machine learning can be divided into three main types :

• Supervised Learning : This type involves training the algorithm with a labeled da-
taset, where both the input data and the correct output are provided. The goal is
for the algorithm to learn the relationship between inputs and outputs so that it
can make accurate predictions on new, unseen data. Common tasks include classi-
fication (where inputs are assigned to predefined categories) and regression (where
continuous values are predicted).

• Unsupervised Learning : Here, the algorithm is trained on an unlabeled dataset,
meaning the input data doesn’t have corresponding correct outputs. The algo-
rithm’s goal is to uncover patterns, structures, or representations within the data
on its own. Examples include clustering, where the algorithm groups similar data
points, and dimensionality reduction, where the complexity of the data is reduced
while keeping essential information intact.

• Reinforcement Learning : This type focuses on training agents to interact with
an environment and learn from the feedback they receive in the form of rewards
or penalties. The agent’s objective is to maximize cumulative rewards over time,
improving its decision-making and actions within the environment. Reinforcement
learning is commonly applied in areas like gaming, robotics, and autonomous
vehicles.

The typical machine learning process involves several steps :

• Data Collection : Gathering relevant and representative data for training and eva-
luating the model. The success of a machine learning model greatly depends on the
quality and quantity of the data.

• Data Preprocessing : Preparing the data by cleaning, transforming, and formatting
it to be suitable for the learning algorithm. This may involve handling missing
values, normalizing features, or encoding categorical variables.

• Model Selection : Choosing the right algorithm or model architecture that best
fits the problem and the nature of the data. Different algorithms are suitable for
different types of tasks.

• Training : Feeding the model with training data so it can learn the underlying pat-
terns and relationships. The learning process usually involves adjusting the model’s
parameters iteratively to reduce errors or enhance performance.

• Evaluation : Testing the trained model on a separate dataset (the test set) to
evaluate its performance and generalization ability. Various metrics are used to
measure how well the model performs on new, unseen data.

• Deployment : Once the model has been successfully trained and evaluated, it is
deployed in a real-world setting to make predictions or take actions.
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4.1.1 Autism Detection Using Machine Learning

In this work, we used the preprocessed version of the ABIDE dataset, which collects
resting-state fMRI data and phenotypic information from subjects at 17 interna-
tional sites, as mentioned earlier. The preprocessed dataset included 1102 scans,
with 531 from individuals with ASD and 571 from control individuals. However,
not all functional data met the Quality Assessment Protocol (QAP) metrics set by
the PCP community [104]. Consequently, we tested 1102, 871, and 866 subjects.

4.1.1.1 Data preprocessing

After selecting the brain atlas used to extract our time series, for example, the
AAL atlas, we calculated connectivity matrices that represent the correlation
between different regions of interest defined by the atlas. The resulting connectivity
matrices for each subject have dimensions of (116, 116) for the AAL atlas. Since
the connectivity matrix is symmetrical, the values in the upper triangular part are
a repetition of those in the lower triangular part. To reduce dimensionality, the
upper triangular values, including the principal diagonal, were removed, and the
lower triangular values were retained. The lower triangular part was then flattened
to a 1D feature vector of size :

S = N(N−1)
2

, Where N is the number of ROIs. For the AAL atlas, this resulted in
a feature vector of size 6670 for each subject.

The diagram below summarizes the preprocessing steps to obtain the input vector.

Figure 4.1.1 – Preprocessing pipeline to obtain the input vector.

4.1.1.2 Approach 1 : without feature selection

In this study, we tested several atlases for time series extraction, including HO ,
CC200, CC400, Dosenbach, AAL ,and two rarely atlases BASC and Power used in
paper [97].
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After extracting the time series, we explored three types of connectivity matrices
- tangent space, partial correlation, and correlation - to represent functional
relationships between brain regions. These matrices were used as the basis for
training several machine learning classifiers.

We evaluated various classification algorithms, including Logistic Regression (LR)
, Support Vector Classifier (SVC), Decision Tree, k-Nearest Neighbors (KNN),
Stochastic Gradient Descent (SGD), and Linear Discriminant Analysis (LDA).
Each algorithm was tested using a 5 stratified cross-validation to ensure rigorous
and balanced performance evaluation.

A one-dimensional vector derived from the preprocessed data served as input for
these algorithms. Stratified 5-fold cross-validation involved dividing the dataset
into 5 folds, using four for training and one for testing in each iteration. This
process was repeated five times, rotating the test fold, to ensure each sample was
used for both training and testing.

The final performance results for each model were calculated as the average score
across the five folds. This information reveals the model’s stability or instability
based on data variation.

The table below summarizes the results, highlighting the models that delivered the
best performance for each tested atlas and preprocessing pipeline.

Model Atlas Strategy Preprocessing Connectivity SubjNum MeanAcc
LR BASC TrueTrue CPAC Tangent 866 65.94%
LR POWER TrueTrue CPAC Tangent 866 66.75%
LR CC400 TrueFalse CPAC Correlation 1102 71.14%
LR CC400 TrueFalse CPAC Correlation 871 67.74%
SVC HO TrueTrue CPAC Correlation 871 67.63%
SVC AAL TrueTrue CPAC Correlation 871 66.37%
LR CC200 TrueTrue CPAC Tangent 871 68.89%
LR DOSENBACH TrueFalse CPAC Tangent 871 64.41%

Table 4.1 – Results of each the models with different atlases, strategies, preprocessing,
and connectivity methods.

To evaluate the performance of various machine learning models on the most com-
monly used atlases (HO, CC200, and AAL) using correlation and 871 subjects
(see the table below for the description) , we conducted a stratified 5-fold cross-
validation. The accuracy scores of different classifiers were measured and are sum-
marized below with their corresponding standard deviations. The plot illustrates
the performance comparison of these models, providing a visual representation of
their effectiveness in classifying the data.
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Figure 4.1.2 – Stratified 5-fold cross-validation for AAL atlas.

Figure 4.1.3 – Stratified 5-fold cross-validation for CC200 atlas.

Figure 4.1.4 – Stratified 5-fold cross-validation for HO atlas.
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Site ASD
Age (year)

ASD
Sex (M/F)

TD
Age (year)

TD
Sex (M/F)

Caltech 24.0 ± 7.6 4/1 28.2 ± 12.2 6/4
CMU 26.0 ± 5.4 4/2 27.8 ± 4.4 3/2
KKI 10.7 ± 1.3 9/3 10.1 ± 1.2 15/6
Leuven_1 21.9 ± 4.1 14/0 23.0 ± 2.8 14/0
Leuven_2 13.9 ± 1.5 9/3 14.4 ± 1.5 12/4
Max_Mun 28.4 ± 13.2 16/3 25.2 ± 8.4 26/1
NYU 14.8 ± 7.1 64/10 15.8 ± 6.2 72/26
OHSU 11.4 ± 2.2 12/0 10.2 ± 1.0 13/0
Olin 17.1 ± 3.3 11/3 16.9 ± 3.6 12/2
Pitt 18.3 ± 7.0 21/3 18.7 ± 6.7 22/4
SBL 34.0 ± 6.6 12/0 33.6 ± 6.8 14/0
SDSU 15.3 ± 1.8 8/0 14.0 ± 1.9 13/6
Stanford 10.2 ± 1.6 9/3 9.8 ± 1.7 9/4
Trinity 17.0 ± 3.2 19/0 17.1 ± 3.8 25/0
UCLA_1 13.3 ± 2.6 31/6 13.4 ± 2.1 24/3
UCLA_2 12.8 ± 2.0 11/0 12.1 ± 1.2 8/2
UM_1 13.3 ± 2.5 26/8 14.1 ± 3.2 35/17
UM_2 14.9 ± 1.6 12/1 16.7 ± 4.0 20/1
USM 23.6 ± 8.4 43/0 20.9 ± 8.3 24/0
Yale 13.1 ± 3.0 14/8 13.6 ± 2.1 11/8
Total 17.1 ± 8.0 349/54 16.8 ± 7.2 378/90

Table 4.2 – Summary of Age and Sex Data Across Sites for 871 Subjects.

4.1.1.3 Discussion

As you can see, using this method, we achieved a maximum accuracy of 71.14%
with the CC400 atlas. However, this accuracy was obtained using the complete da-
taset without excluding subjects whose scans had issues, which limits the reliability
of this accuracy. On the other hand, by selecting subjects with high-quality scans,
we achieved a maximum accuracy of 68.89% with the CC200 atlas. Although this
result might initially seem encouraging, it remains insufficient for a model intended
for medical diagnostic support. In a medical context, even a small error can have
serious consequences.

The importance of accuracy in such a model cannot be understated. An accuracy
rate of 68.89% means that there remains a significant margin of error, where nearly
one-third of predictions could be incorrect. In a diagnostic support tool, this margin
of error is unacceptable, as it could lead to incorrect diagnoses, thereby endangering
the health and safety of patients.
To improve the model’s accuracy, we decided to reduce the dimensionality of the
input vector by selecting only the most relevant features. To do this, we used dif-
ferent feature selection techniques : Information Gain, RFE, and Lasso.
By testing these different selection techniques, our goal was not only to improve
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the model’s accuracy but also to enhance its robustness and ability to generalize to
new data. By reducing the model’s complexity while retaining the most informative
features, we aimed to increase the chances of obtaining more reliable predictions,
which is crucial for clinical use.

4.1.1.4 Approach 2 : with feature selection

Feature selection is a crucial process in developing classification models. It helps
reduce the dimensionality of data by keeping only the most relevant features, which
can improve performance, reduce computation time, and avoid overfitting.

Supervised Methods
Supervised methods use class label information to guide feature selection.

a) Filtering Approach
Filtering methods evaluate each feature independently of the others based on
its relationship with the target variable.

Chi-Square Test : This method calculates a score based on the statistical
dependence between each feature and the class. For example, in medical data,
the Chi-square test might be used to identify which features (like blood test
results) are most strongly associated with a specific disease.

Fisher Score : This method measures how well a feature separates different
classes. It is often used in classification problems to select features that
maximize the distance between classes. For example, to classify flowers by
species, the Fisher score might help identify which measurements (petal
length, petal width, etc.) are most discriminative.

Information Gain : Information Gain measures how much a feature helps
in predicting the target variable by reducing uncertainty. It looks at how
much knowing the value of a feature improves our ability to make accurate
predictions. The higher the Information Gain, the more useful the feature
is for making predictions. For example, in a decision tree, features with the
highest Information Gain are chosen to split the data, leading to better
decision-making and more accurate models.

b) Wrapping Approach

Wrapping methods evaluate features based on the performance of the classifi-
cation model. They are more computationally expensive because they require
building and evaluating multiple models.

Recursive Feature Elimination (RFE) : RFE is an iterative method that
starts by training a model on all features. It then evaluates the importance of
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each feature and removes the least important ones. This process is repeated
until an optimal number of features is selected. For example, in an SVM
model used to classify emails as spam or not spam, RFE might be used to
select the most relevant words by gradually removing those that contribute
least to classification.

c) Embedded Approach

Embedded methods perform feature selection during model training.
Regularization (Lasso) : Lasso (Least Absolute Shrinkage and Selection
Operator) adds a penalty to the model’s cost function, forcing some feature
coefficients to become zero. This results in automatic elimination of the least
important features. For example, in a logistic regression model used to classify
customers based on their purchase likelihood, Lasso might automatically
exclude variables that do not add predictive value.

Random Forest Feature Importance : In a random forest, feature
importance is determined by how well a feature reduces impurity in nodes
during splits. The most important features are those that contribute the most
to creating effective decision rules. For example, to classify tree species based
on environmental characteristics (like soil type or precipitation), a random
forest might identify which features are most crucial for this task.

Unsupervised Methods

Unsupervised feature selection methods do not use class labels. They are often
used to explore data structure or to reduce dimensionality before using the data in
a classification model.

a) Principal Component Analysis (PCA)

PCA is a dimensionality reduction method that transforms the original data
into a new set of uncorrelated variables (called principal components). These
components are ordered so that the first one retains the most variance present
in the data. For example, in image recognition problems, PCA can be used to
reduce the number of pixels while keeping the essential variations needed to
classify images into different categories.

b) Independent Component Analysis (ICA)

ICA aims to decompose data into statistically independent components, often
used to separate mixed sources in the data. For example, in audio classification
tasks, ICA might be used to separate different sound signals before classifying
them into categories (music, speech, noise, etc).
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Figure 4.1.5 – Advanced Feature Selection Techniques.

As mentioned before, the most commonly used pipeline for autism detection is
CPAC, which is also the one we used for this work, considering the TrueTrue
strategy with the most commonly used atlases (HO, CC200, and AAL) using
correlation and 871 subjects
In this work, we used the same vector obtained after preprocessing in the
context of Approach 1. This vector then underwent feature selection to reduce
its dimensionality and improve the performance of the classification models.

Feature selection based on Lasso method :
The figures below display the results obtained by using LASSO for feature
selection and different cross-validation methods to assess model performance
on the AAL, CC200, and HO atlases. Three types of cross-validation were ap-
plied : 5-fold Stratified Cross-Validation, 10-fold Stratified Cross-Validation,
and 10-fold standard Cross-Validation. Additionally, a separate test set, repre-
senting 30% of the data, was used to evaluate the final model performance .
The accompanying table summarizes the best performances achieved for each
atlas, expressed as the average accuracy, along with the corresponding stan-
dard deviation.

45



Figure 4.1.6 – Mean Accuracy for 10-Fold Cross-Validation Based on the Number of
Features Selected by Lasso for AAL ,HO and CC200 atlases.

Figure 4.1.7 – Mean Accuracy for 10 StratifiedKFold Cross-Validation Based on the
Number of Features Selected by Lasso for AAL ,HO and CC200 atlases.
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Figure 4.1.8 – Mean Accuracy for 5 StratifiedKFold Cross-Validation Based on the
Number of Features Selected by Lassofor AAL ,HO and CC200 atlases.

Figure 4.1.9 – 30% test accuracy Based on the Number of Features Selected by Lasso
for AAL ,HO and CC200 atlases.
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Table 4.3 – The best parameters obtained for the HO, AAL, and CC200 atlases using
Lasso for feature selection and logistic regression for classification.

Feature selection based on RFE method :

The figures below provide a detailed summary of the model’s performance,
evaluated using cross-validation and Recursive Feature Elimination (RFE) for
feature selection. This assessment was conducted for the three distinct brain
atlases : HO , AAL, and CC200.
Each figure illustrates the results obtained for the model in terms of accuracy.
Additionally, the figures also present the model parameters that led to the
best results for each atlas. These parameters include the optimal values used
during model training, providing valuable insights into the configurations that
achieved the best performance.

Figure 4.1.10 – The variation in average accuracy as a function of the number of features
selected using the RFE method for the HO atlas.
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Figure 4.1.11 – The variation in average accuracy as a function of the number of features
selected using the RFE method for the CC200 atlas.

Figure 4.1.12 – The variation in average accuracy as a function of the number of features
selected using the RFE method for the AAL atlas.
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Table 4.4 – The best parameters obtained for the HO, AAL, and CC200 atlases using
RFE for feature selection and logistic regression for classification.

After performing feature selection on the vector to identify the most relevant
connections, we reinserted the selected indices into the original correlation matrix.
We observed that all brain regions were present among the selected features, but
not all possible correlations between these regions were included.
This means that the feature selection algorithm identified certain specific corre-
lations between brain regions as the most important for distinguishing autistic
subjects from non-autistic ones. However, it did not necessarily retain all pos-
sible correlations between all pairs of regions. In other words, certain specific
interactions between pairs of brain regions are more informative for autism clas-
sification, while other interactions may be less relevant or redundant in this context.

4.1.1.5 Discussion

The results clearly demonstrate the importance of feature selection in enhancing
the performance of machine learning models for classifying autistic and non-autistic
subjects. By rigorously selecting the most relevant brain connections, we were able
to identify specific correlations between brain regions that play a crucial role in dis-
tinguishing between these two groups. This approach reduces the complexity of the
model while increasing its ability to capture the subtle nuances of brain interactions
that are pertinent to autism diagnosis. In summary, feature selection proves to be
an essential step in optimizing the efficiency and accuracy of classification models
in this context.

4.2 Deep learning

Deep learning is a specialized area within machine learning that focuses on training
artificial neural networks to simulate the structure and function of the human
brain. This advanced form of machine learning has become increasingly popular
due to its success in handling complex patterns and large datasets, especially in
fields like computer vision, natural language processing, and speech recognition.
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Artificial neural networks, the core of deep learning, are inspired by the human
brain’s neurons. These networks consist of multiple layers of interconnected nodes,
or artificial neurons, that work together to analyze data and identify patterns. As
data moves through each layer, the network refines its understanding, leading to a
deeper and more abstract representation of the input.

Some essential concepts in deep learning include :
• Neural Networks : These models are structured with input, hidden, and output

layers. The hidden layers, often called "deep" layers, are what give deep learning its
name. The connections between neurons across layers are represented by weights,
which are adjusted during the training process.

• Backpropagation : This is a key method used to train deep learning models. It
involves calculating the error gradients for each weight in the network and using
these gradients to update the weights, thereby reducing the model’s error over time.

• Activation Functions : These functions introduce non-linearity into the network,
allowing it to model complex relationships. Common examples include sigmoid,
tanh, and ReLU.

• Convolutional Neural Networks (CNNs) : CNNs are specifically designed for grid-
like data, such as images and videos. They use convolutional layers to automatically
detect local patterns and spatial hierarchies in the data.

• Recurrent Neural Networks (RNNs) : RNNs are designed for sequential data like
time series or natural language. They have connections that allow information to be
passed across time steps, making them effective for tasks like language translation
and speech recognition.

• Long Short-Term Memory (LSTM) : LSTM is a type of RNN that addresses issues
like the vanishing gradient problem, enabling it to capture long-term dependencies
in sequences.

• Generative Adversarial Networks (GANs) : GANs consist of two competing neural
networks, a generator and a discriminator, which are trained together. They have
been particularly successful in generating realistic data, such as images, and have
many creative uses.

Deep learning has driven significant advancements across various fields, including
image and object recognition, language translation, autonomous driving, drug dis-
covery, and recommendation systems. Its ability to automatically identify complex
patterns in data makes it a highly promising area of artificial intelligence. However,
training deep learning models often requires large datasets and substantial compu-
tational resources, making them more demanding than traditional machine learning
approaches.

4.2.1 Autism Dectecting Using Deep Learning

In our work, We attempted to reproduce the deep neural network (DNN) ar-
chitecture used by the author in the paper [97]. This model, similar to the one
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used in the previous section , takes a feature vector as input (without selection).
The proposed architecture consists of two hidden layers, each with 32 neurons. A
dropout layer with a probability of 80% was introduced between those layers to
control overfitting. The hidden layers use ReLU activation function, while the final
output layer uses the sigmoid activation function. Glorot and He weight initializers
were used respectively with the sigmoid and ReLU activation functions. The Adam
optimizer was employed with a relatively low learning rate of 0.0001. We used the
same number of subjects as in the study, 866, and achieved an average accuracy of
60% ± 3.03% in a 5-fold stratified cross-validation by using Basc atlas.

On the other hand, we used the same architecture with the CC200 atlas, but after
fine-tuning, we achieved an average precision of 70.14% with a standard deviation
of ±2.84%, based on 5 stratified cross-validation folds. Additionally, with a 20%
test split, we obtained a precision of 70.59%. The model accepts an input vector
of size 19,900 and consists of three main layers : an input layer, two hidden layers,
and an output layer.The two hidden layers each have also 32 neurons and use the
ReLU activation function. To reduce overfitting, a dropout layer with a rate of 20%
is added after the hidden layers. The output layer has a single neuron and uses
the sigmoid activation function for binary classification. The model’s weights are
initialized with GlorotUniform. The model is optimized with the Adam optimizer,
using a learning rate of 0.001. Training is performed with a batch size of 10 and
50 epochs. Additionally, an early stopping mechanism with a patience of 10 epochs
is employed to halt training if the loss value does not improve. The figure below
represents the confusion matrix using this model, where 0 represents neurotypical
individuals and 1 represents individuals with autism.

Figure 4.2.1 – Confusion matrix for 30% of the test set from the CC200 atlas using our
fine-tuned DNN.
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Feature selection based on the Lasso method :

We also attempted to select the 670 features using the Lasso method with the
CC200 atlas, as done in the previous section, and used them as input for a deep
learning model. The average accuracy achieved through 5-fold cross-validation was
98.28%, with a standard deviation of ± 0.37%, indicating the model’s stability and
reliability. Additionally, we achieved an accuracy of 98.47% on a separate 30% test
set, further validating the model’s performance.

For this experiment, the deep learning model’s architecture was designed to be
relatively simple but effective, considering the reduced input dimensionality. The
model begins with an input layer that receives a vector of 670 features. This is
immediately followed by a Dropout layer with a rate of 0.2, which helps prevent
overfitting by randomly disabling 20% of the neurons during training.
The core of the model consists of a single hidden layer with 128 neurons, using the
tanh activation function. The tanh function was chosen for its ability to map input
values to a range between -1 and 1, providing a smooth gradient and avoiding the
saturation issues that can occur with other activation functions.

Finally, the model’s output layer contains a single neuron using the sigmoid acti-
vation function for binary classification. The model was compiled with the Adam
optimizer, using a learning rate of 0.001, and was trained for 30 epochs with a batch
size of 64, while reserving 20% of the training data for validation. This architecture
effectively captured the complex relationships within the data while maintaining
good generalization on the test sets.

Figure 4.2.2 – Proposed deep neural network architecture for predicting ASD using
features selected by Lasso and the CC200 atlas.
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The figure below represents the confusion matrix using this model, where 0 repre-
sents neurotypical individuals and 1 represents individuals with autism.

Figure 4.2.3 – Confusion matrix for 30% of the CC200 atlas test set using our proposed
DNN with 670 features selected by Lasso.

4.2.1.1 Discussion

The results demonstrate that the performance of deep neural network configurations
varied depending on the parameters and datasets used. The model using the CC200 atlas
achieved an average accuracy of 70.14%, surpassing the 60% obtained with the Basc atlas.
Additionally, another model using the CC200 atlas achieved an accuracy of 98.28% in
cross-validation and 98.47% on a test set, after feature selection. These results highlight
the importance of data quality and model simplicity in improving performance and clearly
indicate the critical role of feature selection in optimizing results.

4.3 Conclusion

This chapter has thoroughly examined machine learning and deep learning models
for identifying autism spectrum disorder (ASD). Various machine learning methods were
assessed, with a focus on the importance of feature selection. When appropriate feature
selection was applied, the performance of machine learning and deep learning models is
much better then without using feature selection.

The results also indicate that, with adequate feature selection, the performance achieved
with machine learning and deep learning models is nearly equivalent. This suggests that

54



feature selection plays a crucial role in enhancing model performance, regardless of the
complexity of the approach used.

In summary, although deep learning models offer advanced capabilities for handling com-
plex data, machine learning methods can achieve similar performance levels when effective
feature selection is implemented.
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Conclusion

This report provides a comprehensive examination of Autism Spectrum Disorder
(ASD) through various lenses in neuroscience and brain imaging, focusing on advance-
ments in diagnosis and data analysis. By establishing a solid foundation for understanding
ASD, we explored its definition, associated risk factors, and the importance of early
diagnosis. This exploration highlighted the inherent challenges of current diagnostic
methods while emphasizing the complexity and variability of ASD symptoms.

Our analysis of brain development in relation to ASD demonstrated how brain imaging
techniques, particularly functional magnetic resonance imaging (fMRI), are crucial for
detecting and understanding connectivity abnormalities associated with autism. As a
non-invasive method, fMRI is particularly suitable for use with children, offering valuable
insights into altered brain networks in individuals with ASD.

In examining the data and methodologies essential for investigating ASD through
neuroimaging, we discussed the ABIDE dataset and its preprocessed version. We
provided a detailed description of this dataset, underscoring the importance of quality
assessment to ensure the reliability of the data used in our analyses. The review of brain
parcellation techniques, including the AAL, HO, CC200, CC400, and Dosenbach 160
atlases, revealed how each method offers unique advantages for segmenting the brain
into regions of interest, which is fundamental for extracting meaningful time series data.

The time series derived from these parcellations were used to construct connectivity
matrices, which are pivotal in understanding both functional and structural connectivity
patterns in the brain. We discussed various types of connectivity matrices, such as
correlation, partial correlation, covariance, and tangent space matrices for functional
connectivity, as well as structural connectivity matrices. Each type of matrix provides a
different perspective on brain connectivity, contributing to a comprehensive analysis of
the neural networks involved in ASD.

In exploring the techniques and models used for autism diagnosis, we highlighted
how MRI data can be represented and utilized within different classification models.
We examined various representations of MRI data, including connectivity matrices,
graph-based representations, 2D-slice images, 3D-volume reconstructions, time series
analysis, and region-based representations. Each method offers a unique approach to
capturing and interpreting intricate patterns in brain data, crucial for identifying neural
signatures associated with ASD.
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The assessment of machine learning and deep learning models for identifying ASD
revealed the importance of feature selection. The results indicated that, with appropriate
feature selection, machine learning models can achieve performance levels comparable to
those of deep learning models. This suggests that feature selection plays a crucial role
in enhancing model performance, regardless of the complexity of the approach used. In
summary, while deep learning models offer advanced capabilities for handling complex
data, machine learning methods can achieve similar performance levels when effective
feature selection is implemented.

Overall, this report provides a thorough overview of brain imaging techniques, analytical
methodologies, and machine learning and deep learning models used in studying ASD.
The advancements in these areas pave the way for a better understanding and more
accurate approaches for early diagnosis and intervention, offering promising perspectives
for improving treatment and intervention strategies for individuals with ASD. In future
work, we are thinking of integrating diverse data such as behavior analysis, eye tracking,
and fMRI images, which could significantly enhance autism detection by capturing a
broader range of behavioral and neurological markers. This multimodal approach may
improve diagnostic accuracy and enable more personalized interventions for individuals
on the autism spectrum.
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