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Abstract. Experimental and numerical investigations are carried out on an autoparametric system consisting of

a composite pendulum attached to a harmonically base excited mass-spring subsystem. The dynamic behavior of

such a mechanical system is governed by a set of coupled nonlinear equations with periodic parameters. Particular

attention is paid to the dynamic behavior of the pendulum. The periodic doubling bifurcation of the pendulum

is determined from the semi-trivial solution of the linearized equations using two methods: a trigonometric ap-

proximation of the solution and a symbolic computation of the Floquet transition matrix based on Chebyshev

polynominal expansions. The set of nonlinear differential equations is also integrated with respect to time using

a finite difference scheme and the motion of the pendulum is analyzed via phase-plane portraits and Poincaré

maps. The predicted results are experimentally validated through an experimental set-up equipped with an opto-

electronic set sensor that is used to measure the angular displacement of the pendulum. Period doubling and chaotic

motions are observed.

Keywords: Dynamic instability, autoparametric system, experiment, chaotic motion, nonlinear motion, symbolic

computational technique, Chebyshev polynomials.

1. Introduction

Autoparametric systems consist of parametrically excited subsystems nonlinearly coupled to

externally excited subsystems [1]. Many authors have studied this type of system, which dis-

plays various phenomena and, under particular conditions, may offer an unintuitive dynamic

behavior (see, for example, [2–4]). The phenomena, common to several scientific domains

(chemistry, electronics, electromechanical, etc.), reveal a universal nature and, for that reason,

are interesting to investigate [5].

The main aim of the present study is to make an experimental contribution to the analysis

of autoparametric mechanical systems. In the present case, the system consists of a compound

pendulum hinged to a mass-spring subsystem that is harmonically based-excited. A similar

problem has been theoretically investigated in [6, 7] where the mass-spring subsystem is force-

excited.

The following section describes the set of coupled nonlinear equations governing the phys-

ical problem. The stability and bifurcation of the semi-trivial solution, which corresponds

to the bottom equilibrium position of the pendulum [8], is investigated by two methods. In

the first approach, the solution is approximated by a two-term trigonometric function and

the method of harmonic balance is applied. The second method uses a shifted Chebyshev
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Figure 1. Schematic of the experimental set-up.

polynomials expansion of the time-periodic state matrix and Picard’s iteration technique to

obtain the Floquet transition matrix in a symbolic form [9], which can be used to predict

the primary bifurcation of period doubling. The time response of the solutions of the set of

nonlinear equations is also obtained by using the Runge–Kutta method contained in the MAT-

LAB software package. In Section 3, the experimental set-up is described and measurement

procedures are provided. A comparison of numerical and experimental results is presented in

Section 4. Attention is paid to the bifurcation diagram and to the time response of the system

that, under certain conditions, exhibits chaotic behavior [10].

2. Equations of Motion and Numerical Investigations

2.1. EQUATIONS

Let the parametrically excited subsystem be a compound pendulum hinged at point O and

let m, L and Io be its mass, length and moment of inertia with respect to O, respectively.

Furthermore, let the externally excited subsystem be composed of a mass M that is assumed

to move vertically and a linear spring k (Figure 1). The two degrees of freedom of the system

are the vertical displacement of the mass along z, and θ the angular position of the pendulum.

Let c and c1 be the damping coefficients of the vertical and angular motions, respectively. The

base of the spring has a vertical harmonic displacement of amplitude a and frequency ω. The
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equations, which govern the dynamic behavior of the system with a simple pendulum, are well

known (see, for example, [11]). In the case of a compound pendulum, the equations become

similar and can be written as

(M + m)z̈ + cż + kz + ml(θ̈ sin θ + θ̇2 cos θ) = (M + m)aω2 cos ωt,

mρ2θ̈ + c1θ̇ + mgl sin θ + ml(z̈ − aω2 cos ωt) sin θ = 0, (1)

where the dot denotes a derivative with respect to time t and l is the location of the center

of mass with respect to O. The radius of gyration ρ = (I0/m)1/2. It is convenient to use a

nondimensional form in which the prime denotes the derivatives with respect to τ , the new

dimensionless time variable

w′′ + Kw′ + q2w + γ (θ ′′ sin θ + θ ′2 cos θ) = εη2 cos ητ,

θ ′′ + K1θ
′ + sin θ + (w′′ − εη2 cos ητ) sin θ = 0, (2)

with

τ = ω1t, w =
zl

ρ2
, ε =

al

ρ2
,

γ =
ml2

(M + m)ρ2
, η =

ω

ω1

, q =
ω0

ω1

,

ω0 =

√

k

M + m
, ω1 =

√

gl

ρ2
, (3)

where ω0 is the natural frequency of the externally excited subsystem and ω1 the natural

frequency of the parametrically excited subsystem.

2.2. STABILITY AND BIFURCATION DIAGRAMS

This consists in establishing the equation of the stability boundary curve in the plane (ε, η) of

the pendulum. Particular attention is paid to the primary bifurcation where the pendulum has

a period-doubling motion.

For θo = 0 equilibrium position, Equations (2) reduce to

w′′
0 + Kw′

0 + q2w0 = εη2 cos ητ, (4)

whose semi-trivial solution is:

w0(τ ) = ε(A cos ητ + B sin ητ),

θ0(τ ) = 0. (5)

Substituting Equation (5) into (4) yields

A =
η2(q2 − η2)

(q2 − η2)2 + (Kη)2
, B =

Kη3

(q2 − η2)2 + (Kη)2
. (6)

The stability of the semi-trivial solution is investigated by introducing small perturbation

u and ϕ, as

w = w0 + u, θ = θ0 + ϕ. (7)
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Retaining only the linear terms, Equation (2) yields

u′′ + Ku′ + q2u = 0, (8)

ϕ′′ + K1ϕ
′ + ϕ − εη2[(1 + A) cos ητ + B sin ητ ] = 0. (9)

2.2.1. Harmonic Approximation

Equation (8) has an exponentially decaying solution while the stability of the Mathieu Equa-

tion (9) depends on the parameters ε and η. As a first-order approximation, its solution may

be assumed as

ϕ = C cos
1

2
ητ + D sin

1

2
ητ. (10)

Substituting Equation (10) into (9) and equating the sine and cosine terms leads to a set of

two algebraic equations. Seeking a nontrivial solution, the determinant is set to zero to find

the stability boundary (or bifurcation curve) of the pendulum as a function of η:

ε =
2

η2

√

(

1 − 1
4
η2
)2

+ 1
4
K2

1η2

(1 + A)2 + B2
. (11)

It should be noted that in the classical case, where the hinge point O has a harmonic

displacement, Equation (11) reduces to

ε =
2

η2

√

(

1 −
1

4
η2

)2

+
1

4
K2

1 η2. (12)

2.2.2. Symbolic Computation of the Floquet Transition Matrix

Equation (9) can be rewritten in the state-space form as

{

φ′
1

φ′
2

}

=

[

0 1

1 + εη2[(1 + A)] cos ητ + sin ητ −K1

]{

φ1

φ2

}

, (13)

where φ1 = φ and φ2 = φ′.

The Floquet transition matrix associated with Equation (13) can be computed symbolically

following the approach suggested by Sinha and Butcher [9]. Then the local stability and bi-

furcation conditions can be obtained in terms of system parameters as shown in [12]. Consider

a general linear system

ẋ = A(t, α), x(0) = x0, (14)

where α is the set of system parameters and A(t, α) is a periodic matrix with period t = KT ;

K = 1, 2, . . .. Equation (14) can be expressed in the integral form

x(t) = x0 +

t
∫

0

A(τ, α)x(τ ) dτ, (15)

4



Acc
ep

te
d 

M
an

us
cr

ip
t

and by employing Picard iteration to find the (K + 1)th approximation

x(k+1)(t) = x0 +

t
∫

0

A(τk, α)x(k)(τk) dτk

=



I +

t
∫

0

A(τk, α) dτk +

t
∫

0

A(τk, α)

τk
∫

0

A(τk−1, α) dτk−1 dτk

+ · · · +

t
∫

0

A(τk, α) . . .

τ1
∫

0

A(τ0, α) dτ0 . . . dτk



 x0, (16)

where τ0, τ1, . . . , τk, are all dummy variables and I the identity matrix. The expression in

brackets is an approximation to the fundamental solution matrix since it is truncated after a

finite number of terms (iterations). After the period is normalized to 1 via the transformation

t = KT τ , the normalized 1-periodic system matrix Ā(τ, α) = Ā(τ + 1, α) is expanded in

m-shifted Chebyshev polynomials of the first kind valid in the interval [0, 1] as

Ā(τ, α) = T̂T (τ )D(α), (17)

where T̂T (τ ) is the N × Nm Chebyshev polynomial matrix and D(α) is the Nm × N Cheby-

shev coefficient matrix. When this is inserted into Equation (16), the integration and product

operational matrices associated with the Chebyshev polynomials may be employed to achieve

an expression for the expansion of 8(τ, α) in shifted Chebyshev polynomials as

8
(p,m)(τ, α) = T̂T (τ ) +

[

Î +

(

p
∑

k=1

[L(α)]k−1

)

P(α)

]

= TT (τ )B(α), (18)

where the Nm × N Chebyshev coefficient matrix B(α) is expressed in terms of I, L(α) =

ĜT Q̂D(α) and P(α) = ĜT D(α). Additional details on this algorithm, including the opera-

tional matrices Î, Ĝ and Q̂D and the ‘alternate formulation’, are given in [9]. By selecting

the number p of Picard iterations and the number m of polynomials, this truncated expression

yields an approximate expression for 8(kT , α) to any desired accuracy. Conditions for various

codimension 1 bifurcations are stated in [12]. In this particular case, the system undergoes a

flip bifurcation which implies that one of the Floquet multipliers is −1 and

det(I + H(α)) = 0, H(α) = 8(2kT , α). (19)

2.2.3. Simulation of Nonlinear Equations

Nonlinear equations (1) are written in the state-space form. For a given set of four initial

conditions, the time integration is performed using the Runge–Kutta scheme with a 0.001 s

time step. The time history is plotted in the phase-plane and/or as Poincaré portraits. The

Simulink Toolbox (a part of MATLAB software) is used for convenience in computing these

solutions.
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Figure 2. Experimental set-up.

3. Experimental Investigation

3.1. EXPERIMENTAL SET-UP

The experimental set-up is shown in Figure 2. The mass M is guided vertically by two slide

bearings having a small friction coefficient. The mass is connected to the head of an electro-

dynamic shaker with a linear spring of modulus k. The 4670 N Gearing & Watson shaker is

used to provide the sinusoidal input and is designed to have a 51 mm peak-to-peak maximum

displacement. The compound pendulum, which consists of a circular cross-section rod, is

hinged to the axis of the opto-electronic sensor, which is used to measure the angular dis-

placement. Measurements of the vertical excitation amplitude are obtained using an integrated

circuit piezoelectric accelerometer screwed on the shaker head (the base), while the vertical

motion of the mass is measured with an identical accelerometer stuck onto the sliding mass

(see the schematic presented in Figure 1).

The incremental digital sensor (which has no angular limitation) produces 3600 pulses per

revolution. It is able to detect a change in direction of rotation through a counter card plugged

into a PC. A specific computer program in Pascal language is developed in order to obtain

and store the time history of the angular position of the pendulum, from which instantaneous
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 Table 1. Values of the device parameters.

Parameters Values

M 2.400 kg

m 0.030 kg

l 0.033 m

ρ 0.046 m

k 2700 N/m

ω0 33.3 rad/s

ω1 12.3 rad/s

α0 1.8 × 10−4

α1 1.0 × 10−4

c 2.9 Ns/m

c1 1.6 × 10−5 Nms

q 2.72

K 0.10

K1 0.02

speed of rotation is deduced. Several time cycles have been tried and it appears that 8192 µs

is sufficient. The results are analyzed with computer programs in MATLAB language.

3.2. EXPERIMENTAL PROCEDURE

Modal parameters of the dynamic system are measured and recorded in Table 1, with pre-

liminary experimental investigations. The natural frequency ω0 and the viscous damping

factor α0 are determined from sine wave transmissibility response and free oscillations of

the mass-spring subsystem. The natural frequency ω1 and the viscous damping factor α1 of

the pendulum are, in turn, measured with small free oscillations. The l dimension is measured

and inertia I0 deduced from ω1. The damping coefficients c and c0 of the two subsystems are

calculated according to the relationships:

c = 2α0

√

k(M + m), c1 = 2α1

√

I0mgl. (20)

The instability threshold of the pendulum is investigated by changing the amplitude a

and keeping the forcing frequency ω constant. When the mass-spring subsystem achieves a

steady-state oscillating motion, spectral analysis is performed on the accelerometer signals.

Thus, the rms acceleration levels of the mass and of the base are recorded and converted into a

displacement level. Then a small angular deviation (around 6◦) is applied to the pendulum. The

asymptotic stability is registered when the pendulum returns to its static equilibrium position.

The forcing frequency ω is increased from 3.0 to 6.3 Hz in 0.1 Hz increments. A bifurcation

diagram is plotted at the 3.5 Hz fixed forcing frequency, which is close to the middle of the

interval [ω1, ω0]. Manual sweeps (up and down) are performed on the displacement amplitude

of the base from 0.3 to 5.7 mm. At the same time, the motion of the pendulum is analyzed

with phase-plane portraits and Poincaré maps sampled at the time period of the excitation.
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Figure 3. Stability boundary of the pendulum in the ε–η plane.

Figure 4. Stability boundary of the pendulum in the ε–η−2 plane.

4. Comparison of Numerical and Experimental Results

4.1. STABILITY BOUNDARY

In Figure 3, the theoretical stability boundary, which corresponds to the primary bifurcation

curve, is plotted as a function of the displacement amplitude of the base, see Equation (11).

The mass reaches a 25.8 mm maximum displacement at 3 Hz. The pendulum is unstable in

the zone above stability boundary line. The predicted boundary is satisfactory in compar-

ison to the experimental instability threshold. The first minimum of the curve corresponds to

classical critical condition ω ∼= 2ω1 and the second one to ω ∼= ω0. The slight discrepancy

observed between these two minima is due to a bad knowledge of experimental initial angular

position and to a nonpure sine motion of the mass (Figure 3). In Figure 4 the theoretical

and experimental stability limits are plotted as 1/η2 versus the displacement amplitude of the
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Figure 5. Bifurcation diagram.

mass M, see Equation (12). Thus the classical Strutt diagram is obtained for the first-order

approximation, [13]. Here the only one minimum of the unstable region is for ω = 2ω1.

4.2. BIFURCATION DIAGRAM

Figure 5 presents the bifurcation diagram at 3.5 Hz (thus η = 1.79, ε = 0.072, and a =

4.62 mm, see the arrow in Figure 3). The angular position limits are plotted versus the dis-

placement of the base representing the amplitude of the periodic term. It is seen from the

diagram that the null position of the pendulum becomes unstable at about 4.7 mm due to a

period-doubling bifurcation. At this point the period 2 motion is stable and remains so until the

base amplitude is decreased to a very small value where it becomes unstable and the zero equi-

librium is recovered. It should be noted that the damping of the pendulum has been evaluated

for small oscillations only and therefore, can affect the results. The symbolic version of the

Floquet transition matrix for Equation (13) permits us to predict that the primary bifurcation

takes place at 4.7 mm, which matches the numerical and measured results, see Figure 5. The

motion of the pendulum is analyzed in detail at points A, B, C and D (located on Figure 5); the

corresponding base displacements are 1.74, 3.37, 5.53 and 5.73 mm, respectively. Figures 6

and 7 represent motion at points A, B and C and show the predicted and measured phase-plane

and Poincaré portraits. At point C it is clear that the motion is quasiperiodic. The secondary

bifurcation can also be studied in symbolic form following the work of Butcher and Sinha

[14]. However, it is not reported here. The disorder in the motion increases with the base

displacement amplitude. The motion of the pendulum becomes chaotic above the 5.7 mm

displacement amplitude and there is a sequence of successive events: revolutions clockwise

or counter clockwise, stops, oscillations, etc. The computed and the measured motions of the

pendulum present a similar phenomenon (see Figure 8). Beginning with oscillations around

its static equilibrium position, the pendulum suddenly jumps with several entire revolutions to

another equilibrium position, and so on.
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Figure 6. Predicted and measured phase-plane portraits at points A, B and C.
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Figure 7. Predicted and measured Poincaré portraits at points A, B and C.
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Figure 8. Computed chaotic motion of the pendulum.

5. Conclusions

In the present study, the dynamic behavior of a discrete nonlinear autoparametric system

was investigated both experimentally and theoretically. The experimental set-up has permitted

validation of the basic phenomena exhibited by the parametrically excited subsystem. This has

been achieved using an efficient opto-electronic sensor. It has been shown that the comparison

of predicted and measured results is satisfactory for the stability and bifurcation diagrams

and that the motion of the pendulum becomes chaotic for relatively large base displacement

amplitudes. At this state, the computed and the measured motions of the pendulum present

a similar phenomenon but are not strictly identical due to the difficulty to control accurately

the four experimental initial conditions of the pendulum and of mass-spring system. Further

investigations will be reported on secondary bifurcations and systems with multiple degrees

of freedom.
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