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INTRODUCTION

The mechanical properties of olivine have been of long-stand-
ing interest as this mineral dominates the Earth s upper mantle. 
This layer extends down to the transition zone (starting at ca. 
410 km depth) where olivine transforms into its high-pressure 
polymorphs. The upper mantle is an important boundary layer, 
not only because it represents about 20% of the volume of the 
Earth, but also because fl ow in the asthenospheric mantle is 
largely responsible for driving plate tectonics. 

Refl ecting this strong interest, a large body of experimental 
deformation data [mostly at room or low (300 MPa) pressure, 
see below] are available that address the mechanical properties 
of olivine. Except shock experiments, which represent a special 
case, most experiments have focused on the high-temperature 
(i.e., above ca. 1000 °C) mechanical properties, emphasizing 
the complex infl uence of point defect chemistry (including 
water-related defects) on olivine plastic behavior. The recent 
development of high-pressure deformation experiments raises 
the question of the infl uence of pressure on plastic deformation of 
minerals and challenges our understanding of their deformation 
mechanisms. On the theoretical side, however, not many studies 
have been devoted to the fundamentals of plastic deformation of 
olivine. The recent rapid developments of large-scale computing 
capabilities now allow us to address mechanical properties from 
a fundamental perspective. In materials with simple structures, 
like metals, it is now possible to model dislocation cores, and 
also fundamental processes like cross-slip, using atomic-scale 
simulations relying on empirical potentials (Rasmussen et al. 
1997). In mineral physics, this approach is not yet very devel-
oped. One of the advantages of ab initio calculations is that the 
chemical complexity (for which an empirical potential descrip-

tion is either not available or not reliable) does not have to be 
taken into account explicitly, the interaction between the atoms 
being fully described by a universal functional of the electronic 
density (see below). This allows us to address complex systems 
such as minerals with relatively low symmetries and large unit 
cells containing several kinds of atoms. Indeed, it is likely that 
such complex crystal chemistry has profound implications on 
plastic properties. From a fundamental point of view, plastic shear 
has to localize on specifi c planes which, in silicate minerals, are 
often located on cationic layers between the SiO4 tetrahedra. 
Not all potential glide planes are equivalent and they are likely 
to exhibit contrasting intrinsic resistance to plastic shear. Us-
ing ab initio methods, it is possible to calculate the ideal shear 
strength and to emphasize the anisotropic character induced by 
the complex chemistry. This approach is applied here to forsterite 
for the fi rst time.

SLIP SYSTEMS IN OLIVINE

Geologically relevant olivines belong to a solid-solution 
between two end-member phases: forsterite (Fo) Mg2SiO4 and 
fayalite (Fa) Fe2SiO4. Olivines from the upper mantle have a 
Mg-rich composition (ca. Fo90). The present study will focus on 
forsterite alone. The structure of olivine is based on a distorted 
hexagonal close-packed oxygen sublattice. The Bravais lattice 
is orthorhombic (space group Pbnm) with b being almost twice 
as long as a and c (see Table 1). The unit cell contains four 
formula units. 

Numerous deformation experiments have been performed 
on olivine and forsterite single crystals (Kohlstedt and Goetze 
1974; Durham 1975; Durham and Goetze 1977; Durham et al. 
1977, 1979; Darot and Gueguen 1981; Gueguen and Darot 
1982) with a view to characterizing the slip systems. In most 
cases, experiments have been performed along the pseudo-cubic 
orientations [101]c, [110]c, and [011]c which allow activation of * E-mail: patrick.cordier@univ-lille1.fr
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ABSTRACT

We present ab initio calculations of ideal shear strengths (ISS) in forsterite at zero temperature using 
pseudopotential density functional theory within the generalized gradient approximation. A localized 
rigid-body shear is imposed on a given plane of an infi nite defect-free crystal. The energy increase 
associated with this shear (called the generalized stacking fault energy) gives access to the ISS. The 
goal of this study is to assess the infl uence of crystal chemistry on the intrinsic resistance of plastic 
shear of a mineral like forsterite. ISS have been calculated for plastic shear along [100], [010], and 
[001] in various potential glide planes of forsterite. We show that the [001] slip, which corresponds 
experimentally to an easy glide at low temperature, exhibits the lowest energy barrier. The [010] glide 
is precluded because it involves very unfavorable atom impingements. 
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single or duplex slips. The most common dislocations observed 
have Burgers vectors b that correspond to the shortest lattice 
repeats: [100] and [001]. [010] dislocations, scarcely observed, 
do not seem to participate in plastic deformation of olivine. Since 
the lattice parameter b is large in this structure, the absence of 
[010] dislocations is usually interpreted on energetic grounds 
(the elastic energy of [010] dislocations would be three to four 
times as large as for dislocations with [100] or [001] Burgers 
vectors). However, it is known that dislocations with Burgers vec-
tors of the same order of magnitude exist in wadsleyite, which is a 
high-pressure polymorph of olivine (Thurel et al. 2003), but they 
are dissociated. The easiest slip systems at high temperature (i.e., 
above ca. 1000 °C) involve [100] slip on several planes: (010), 
{031}, {021}, {011}, and (001). Cross slip between these different 
planes is frequent. At low temperature and/or high strain-rate, slip 
occurs along [001] in (100), {110}, and (010).

COMPUTATIONAL METHODS

The calculations were performed using the ab initio total-energy calculation 
package VASP (Vienna Ab initio Simulation Program) developed at the Institut 
für Materialphysik of the Universität Wien (Kresse and Hafner 1993; Kresse and 
Furthmüller 1996a,b). This code is based on the fi rst-principles density functional 
theory and solves the effective one-electron Hamiltonian involving a functional of 
the electron density to describe the exchange-correlation potential. It gives access to 
the total energy of a periodic system with no experimental input except the atomic 
number of the atoms. Computational effi ciency is achieved using a plane-wave 
basis set for the expansion of the single electron wave functions and fast numerical 
algorithms to perform self-consistent calculations. All the calculations presented 
here were made with the Generalized Gradient Approximation (GGA) derived by 
Perdew and Wang (1992). Ultrasoft pseudopotentials (Vanderbilt 1990; Kresse and 
Hafner 1994a, 1994b) were used for Mg, Si, and O with an outmost core radius of 
1.058, 0.953, and 0.820 Å, respectively. 2p6 and 3s2 were considered as valence 
electrons for Mg, whereas for Si and O the valence electrons were 3s2 3p2 and 3s2

3p4, respectively. Convergence tests for the lattice parameters and the total energy of 
the olivine showed that energy values converging to better than 0.5 meV/atom were 
obtained for a plane-wave cut-off of 600 eV, a value thus used throughout this work. 
The values of the calculated lattice parameters are reported Table 1. 

The fi rst Brillouin zone was sampled using a Monkhorst-Pack grid (Monkhorst 
and Pack 1976). For the forsterite orthorhombic unit-cell, using a 3 × 2 × 3 mesh 
leads to convergence of the energy within the range defi ned above. When using other 
types of supercells, the k-points grid was chosen to keep as constant as possible the 
k-points density in reciprocal space. Using similar parameters in the local density 
approximation, Kiefer et al. (2001) obtained a good description of wadsleyite, a 
high-pressure polymorph of the silicate studied here.

To calculate the nine elastic constants of the orthorhombic forsterite, we strained 
the equilibrium cell using adapted deformations. In the strained confi guration, the 
atoms were allowed to relax, the relaxation being completed when the magnitude 
of the forces on the atoms was lower than 0.02 eV/Å. The magnitude of the applied 
strain was lower than 2% and negative and positive values were used. The elastic 
constants presented in Table 2 were obtained from the fi t of the total energy vs. 

strain by second-order polynomials. The standard deviation of the second-order 
coeffi cient allows the error on the calculated elastic parameters to be estimated to 
be less than 2% (except for C44, for which the error is less than 3.5%).

The calculation of the generalized stacking-fault (GSF) excess energies was 
done in the following way. First, a stacking plane was chosen; here we present 
results concerning the (100), (010), (001), (110), and (021) planes. For a given 
stacking plane, two lattice translations in the plane, perpendicular to each other, 
were chosen as principal directions for the supercell used to model the GSF; their 
magnitudes as and bs are reported in Table 3. The third supercell direction [001]s

was chosen perpendicular to the GSF plane. Since forsterite does not have cubic 
symmetry, [001]s is not in general a lattice translation, which implies that when 
periodic lattice conditions are applied, the upper and lower part of the supercell 
do not necessarily fi t together. To avoid this diffi culty and to calculate GSF excess 
energies for any fault vector u (see below), a vacuum buffer 6 Å thick was added 
to the stacking of atomic planes along [001]s. We verifi ed that neither increasing 
the thickness of the vacuum buffer nor the addition of substance parallel to the 
stacking-fault plane signifi cantly modifi es the GSF excess energies. Therefore, in 
spite of long-range interactions, the slabs of material used in this work are thick 
enough to satisfactory reproduce energy differences between faulted and non-
faulted confi gurations. Other supercell symmetries can be used but the choice of an 
orthorhombic one with [001]s direction perpendicular to the fault plane facilitates 
atomic relaxations that will be performed in a subsequent work.

The number and the types of atoms included in each supercell are reported in 
Table 3, while a schematic of a typical supercell used to calculate (021) GSF is 
given in Figure 1. Once the supercell was built, the upper part of the supercell was 
moved with respect to the lower one by u, the fault vector contained in the fault 
plane and the magnitude of which can be adjusted. In most cases, the fault plane 
was chosen to preserve the SiO4 structural tetrahedron as shown in Figure 1. Once 
the translation was made, the atoms were not allowed to relax. As a consequence, 
the GSF values presented here are an upper bound for the relaxed values. 

RESULTS AND DISCUSSION

Energy barriers associated with plastic shear

Our calculations provide us with the energy barrier associ-
ated with a rigid shear along the most common slip systems in 
forsterite. In minerals, plastic shear usually occurs along cationic 
layers (i.e., corrugated surfaces) between the SiO4 tetrahedra. For 
olivine, which has a  compact structure and exhibits an almost 
close-packed oxygen sublattice, such a glide may imply a consid-
erable impingement for some of the atoms. If the impingements 
and the proportion of involved atoms are large, a high energy 
barrier, and hence a considerable lattice friction (leading to a very 
large fl ow stress) will result. Figure 2 shows that the easiness of 
shear along [100] seems to be very comparable with (010) and 
(001) and easier along (021). In any case, the energy barriers 
are symmetrical and exhibit almost the same maxima, only the 
shapes are slightly different. It is usually considered that SiO4

tetrahedra are strong units in silicates. We have thus taken care 
in the above calculations to choose the cutting level between the 

TABLE 1. Crystallographic data for forsterite at room P and T compared with calculated data
 a (Å) b (Å) c (Å) V(Å3) Density (Mg/m3)

Experimental (Fujino et al. 1981) 4.7534 10.1902 5.9783 289.58 3.227
Calculated LDA 
(Wentzcovitch and Stixrude 1997) 4.682 9.953 5.837 272 3.436
Calculated LDA (Brodholt et al. 1996) 4.643 9.988 6.074 281.67 3.318
Calculated GGA (Brodholt 1997) 4.71 10.15 5.96 284.92 3.280
Calculated GGA (this study) 4.793 10.281 6.041 297.68 3.139

TABLE 2. Elastic constants for forsterite at room P and T compared with calculated data
 C11  (GPa) C22 (GPa) C33 (GPa) C44 (GPa) C55 (GPa) C66 (GPa) C12 (GPa) C13 (GPa) C23 (GPa)

Experimental (Graham and Barsch 1969) 329.1 200.5 236.3 67.2 81.4 81.4 66.3 68.4 72.8
Experimental (Kumazawa and Anderson 1969) 328.4 199.8 235.3 65.9 81.2 80.9 63.9 68.8 73.8
Experimental (Hearmon 1979) 328 200 235 66.7 81.3 80.9 69 69 73
Calculated LDA (da Silva et al. 1997) 367 220 233 78.4 88.7 90.8 77.8 79.3 80.6
Calculated (this study) 300.7 195.7 224.1 65.8 78.3 77.3 61.1 62.2 64.7
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SiO4 layers (see Fig. 1). This condition can be fulfi lled in most 
cases in olivine, which is composed of isolated SiO4 tetrahedra. 
To evaluate the cohesive character of the SiO4 tetrahedra, we 
performed one calculation on the [100](010) slip system with a 
cut through the Si-O bonds (Fig. 3a). Figure 3b shows that the 
energy barrier associated with this cut is much greater than the one 
previously calculated. This confi rms the hypothesis that shear in 
silicates tends to be localized in planes which do not cut the strong 
Si-O bonds. (100), {110}, and (010) are such planes for [001] slip. 
Figure 4 shows that the energy barrier associated with [001] slip 
in (010) is the lowest, making this slip system the easiest intrinsi-
cally. This is in agreement with the fact that [001] shear is easier 

at low temperature. The case of the [001](100) and [001]{110} 
barriers (with their “camel-hump” shapes) is interesting because 
they exhibit an intermediate minimum suggesting the possibility of 
a stable stacking fault in the (100) and {110} planes along [001]. 
Finally, we tested the possibility of achieving plastic shear along 
the [010] direction in (100) and (001). Figure 5 shows that shear 
along [010] in (001) is associated with an energy barrier which 
is higher than the one corresponding to plastic shear along [100] 
across the Si-O bonds. The possible existence of a stable stacking 
fault is suggested however in this system. The situation is more 
unfavorable in the case of shear along [010] in (100) (Fig. 5), which 
brings SiO4 tetrahedra very close to the oxygen atoms. 

Normal to (021) plane

[0-12][100]

Normal to (021) plane

[100][0-12]

FIGURE 1. Unsheared supercell used to calculate (021) stacking fault. 
The upper part of the supercell (where O and Mg ions are represented as 
dark balls and Si ions, in the center of the tetrahedron, are represented as 
small light balls) is moved with respect to the lower one (where O and 
Mg ions are represented as light balls and Si ions, in the center of the 
tetrahedron, are represented as small dark balls). In this case, the fault 
vector u is along [100] and the fault plane does not break Si-O bonds
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FIGURE 2. Generalized stacking fault energy as a function of 
displacement along [100] on (010), (001), and (021).

FIGURE 3. (a) Unsheared supercells (two are represented along 
the [100] direction) used to calculate the generalized stacking fault 
on (010) with the fault vector u along [100]. For the left one, the fault 
plane (represented by the dotted line) cuts the Si-O bonds, whereas the 
right one does not. (b) Generalized stacking fault energy as a function 
of displacement along [100] on (010) corresponding to the two cutting 
levels represented in Figure 3a.

TABLE 3. Characteristics of the supercells used for calculating the GSF; as, bs, and cs represent the lattice parameters of the supercells
Direction of the fault or slip vector u Stacking fault plane as (Å) bs (Å) cs (Å) k-points grid Atoms in the supercell

[100] (001) 4.793 10.281 12.04 3 × 2 × 1 8Mg, 4Si, 16O
 (010) 4.793 6.041 16.281 3 × 3 × 1 8Mg, 4Si, 16O
 (021) 4.793 15.864 13.3 3 × 1 × 1 16Mg, 8Si, 32O
[001] (100) 6.041 10.281 10.793 3 × 2 × 2 8Mg, 4Si, 16O
 (010) 4.793 6.041 16.281 3 × 3 × 1 8Mg, 4Si, 16O
 (110) 6.041 11.343 14.6 3 × 2 × 1 16Mg, 8Si, 320
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Ideal shear strength

From the energy profi les depicted in Figures 2 to 4, an upper 
bound on the yield strength can be established by considering the 
ideal (theoretical) shear strength of the perfect crystal. Although 
these values are rarely reached in practice, the concept of ISS has 
proved to be of major interest in the theory of plastic deformation. 
The calculation of the ideal shear strength is new in the context of 
mineral physics. However, it has received increasing attention in 
recent years, mostly with respect to metals: Al (Paxton et al. 1991; 
Sun and Kaxiras 1997; Hartford et al. 1998; Ogata et al. 2002), 
Cu (Paxton et al. 1991; Ogata et al. 2002), Mo (Xu and Moriarty 
1996), Pd (Hartford et al. 1998), Ta (Söderlind and Moriarty 
1998), NiAl and FeAl (Medvedeva et al. 1996). Other materials 
(oxides, ceramics, semiconductors) have only rarely been con-
sidered [see Kocer et al. (2003) for cubic silicon nitride]. Paxton 
et al. (1991) defi ne the theoretical or ideal shear strength as the 
“maximum resolved shear stress that an ideal, perfect crystal can 
suffer without plastically deforming”. The ideal shear strength 
can be calculated from the fi nite-strain elastic instability of a 

perfect lattice undergoing homogeneous deformation (Roundy et 
al. 1999; Yip et al. 2001; Kocer et al. 2003) or alternatively from 
the restoring force F– = –gradγ(u–) in the generalized stacking fault 
picture (Vítek 1974; Medvedeva et al. 1996; Sun and Kaxiras 
1997; Hartford et al. 1998). Note that both methods, being path-
dependent, do not necessarily give the same results. We have 
used the latter approach to calculate the maximum stress, τmax,
that gives a qualitative estimation of the shear resistance. Figure 
6 shows an example of such a calculation for the [100](010) slip 
system. The ideal shear strength is identifi ed with the maximum 
of the calculated stress τmax along the shear displacement. The 
results of the calculations are presented in Table 4. As expected 
from the energy barriers, [001](010) appears to be the intrinsi-
cally easiest slip system in olivine. The calculated τmax = 0.24μ
(μ is the shear modulus) is close to the Frenkel behavior which 
corresponds to a sine function for the energy barrier (Frenkel 
1926). The other slip systems exhibit higher values of τmax in the 
range 0.42–0.66μ. For comparison, most metals yield values in 
the range 0.09–0.17μ (Paxton et al. 1991; Söderlind et al. 1998; 
Roundy et al. 1999; Krenn et al. 2001). 

Implications on dislocations and plasticity of forsterite

Relying on the concept of ISS, our results provide the fi rst 
physical basis to account for plastic shear anisotropy in fors-
terite. We have shown that the [010] glide is inhibited not only 
by the high level of the elastic energy, but also by the diffi culty 
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of achieving plastic shear along this direction. It must be noted 
however that the energy barrier associated with plastic shear in 
the system [010](001) suggest the possibility of a stable stack-
ing fault and hence of dissociated dislocation within this plane. 
In contrast, the [100] glide is associated with a smooth energy 
barrier which is very close to a sinusoidal potential on (010) and 
(001). Our calculations suggest that the [100] glide would be 
intrinsically more easy on (021) which exhibits a lower τmax. It is 
thus expected that this slip system should have the lower critical 
resolved shear stress (among [100] glide systems), at least at low 
temperature. However, to the best of our knowledge there is no 
single-crystal data to check this point. Finally, our calculations 
shed new light on the [001] glide in olivine. We have shown that 
the glide system which exhibits the lowest intrinsic resistance to 
plastic shear in olivine is [001](010), in agreement with existing 
experimental data at low temperature. In this system, the energy 
barrier is smooth and exhibits no intermediate minimum. Two 
slip systems exhibit energy barriers with a marked camel-hump 
suggesting a possible stacking fault in the three planes (100), 
(110), and (11–0).

Further calculations incorporating ionic relaxations are neces-
sary to assess quantitatively the stacking fault energy and the pos-
sibility for dislocation dissociation. Moreover, such data should 
allow estimation of the Peierls-Nabarro stress τPN (Christian and 
Vitek 1970) which can be more easily linked to low-temperature 
experimental data. At the present time our calculations give a fi rst 
hint for understanding the marked anisotropy for [001] disloca-
tion mobility. [001] straight screw dislocations suggest strong 
lattice friction. In analogy with the bcc case, [001] dislocation 
cores might be non-planar with spreading in the three (100), 
(110), and (11–0) planes. 

First-principles calculations of ideal shear strengths provide 
a rational picture for the anisotropy of plastic shear of forsterite 
in connection with the crystal chemistry. From the present study, 
the various slip systems can be sorted as: easy = [001] glide, 
especially on (010); intermediate = [100] glide [with (021) ap-
pearing as the easiest plane]; diffi cult = [010] glide.

This is consistent with the low-temperature plasticity of 
forsterite. The present work clearly shows that the ideal shear 
strength concept is, in spite of its simplicity, extremely relevant 
to decipher the infl uence of the crystal chemistry on plastic shear. 
From this point of view, this fundamental approach improves 
the understanding of mechanical properties of minerals and 
must be seen as the groundwork for further more sophisticated 
calculations.
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