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ABSTRACT 

 

Purpose: The aim of this study was to compare the suitability of models for practical 

applications in training planning.  

 

Methods: We tested 6 impulse-response models including Banister’s model (Model Ba), a 

variable-dose response model (Model Bu) and indirect-response models differing in the way 

they account or not for the impact of prior training on the ability to respond effectively to a 

given session. Data from 11 swimmers were collected during 61 weeks across two 

competitive seasons. Daily training load was calculated from the number of pool-kilometers 

and dry land workout equivalents, weighted according to intensity. Performance was 

determined from 50-m trials done during training sessions twice a week. Models were ranked 

on the base of Aikaike’s information criterion along with measures of goodness-of-fit.  

 

Results: Models Ba and Bu gave the greatest Akaike weights, 0.339 ± 0.254 and 0.360 ± 

0.296 respectively. Their estimates were used to determine the evolution of performance over 

time after a training session and the optimal characteristics of taper. The data of the first 20 

weeks were used to train these two models and predict performance for the following 8 weeks 

(validation dataset 1) and for the following season (validation dataset 2). The mean absolute 

percentage error between real and predicted performance using Model Ba was 2.02 ± 0.65 and 

2.69 ± 1.23 % for validation dataset 1 and 2 respectively and 2.17 ± 0.65 and 2.56 ± 0.79 % 

with Model Bu.  
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Conclusions: The findings showed that, although the two top-ranked models gave relevant 

approximations of the relationship between training and performance, their ability to predict 

future performance from past data was not satisfactory for individual training planning. 

 

Key Words: MODEL SELECTION, FATIGUE, TRAINING ADAPTATION, TAPERING  
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INTRODUCTION 

 

 There is renewed interest in mathematical models of training effects on performance to 

guide training planning (1-5). The most widely used models are impulse-response models which 

were especially suited to acquiring knowledge on taper for performance peaking (6). However, 

progress towards implementing models in new applications for designing or monitoring 

individual athlete’s training requires further exploration of model accuracy in predicting 

performance. 

 

 The use of impulse-response models in athletics was initiated by Banister and co-workers 

in order to characterize the temporal effects of training on performance (7, 8). Based on the 

mathematical formulation of the so-called impulse response, this model characterizes temporal 

variations in performance following a single training bout. For a given training intervention, the 

change in performance at a given day is obtained by summing over time the response to each 

single bout done the days before. Calculating performance for a period of intervention requires 

estimating model parameters by fitting the model to data on real performances. The data sets 

used to solve the model must include, on one hand, daily quantification of the amount of 

training, generally referred to as training loads (TL). These loads are expressed in an arbitrary 

unit (training unit in this study) depending on the metrics used to aggregate the different forms of 

exercise making up the training sessions. On the other hand, the data must also provide results of 

performance tests done regularly during the intervention so that the model can be parametrized 

and we can test its ability to describe the relationship between training and performance. It has 

been shown that measurement reliability and testing frequency (9) and methods for parameter 
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estimation (10, 11) can affect model accuracy. The number of athletes providing the data and the 

duration of data collection are also key to producing a powerful analysis.  

 

 Various impulse-response models have attempted to capture the main features of the 

relationship between variations of training effort and temporal variations of performance (7, 8, 

12-14). In the original model of Banister et al (7), Model Ba in this study, the impulse-response 

of performance is the result of body adaptation (also referred to as fitness) and fatigue which act 

positively and negatively on performance respectively. Both positive and negative effects are 

modelled in an identical fashion using first-order kinetics (Fig. 1 panels A and B). It results that 

performance decreases following training, requiring time, referred to as tn to recover to its initial 

level before a peak pg is attained at the time tg after which performance enhancement dissipates. 

 

 The model referred to as Model Bu in this study is an extension of Model Ba. It considers 

that the capacity to benefit from training is impaired by training overload and can be restored by 

reducing training (12). Contrary to Model Ba, Model Bu is based on the idea that the effects of a 

given training bout are dependent on prior training efforts. More precisely, the negative effect of 

a single session, i.e. an isolated bout, is lower than the effect of repeated similar bouts, i.e. a last 

bout effect. This brings on changes in tn and tg according to prior training (Fig. 1 panels C and 

D). Model Bu outperformed Model Ba using data sets from volunteers in a training program 

designed for this purpose (12). However, when using data from elite athletes, the indicators of 

goodness-of-fit were in favor of Model Ba (15, 16). 

 

 In Model Ba and Model Bu, the gain in adaptation is entirely produced immediately after 
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the training session and dissipates with a first-order rate constant. It is recognized, however, that 

adaptation results from physiological processes intervening during post-exercise recovery. A 

better description of the delay in adaptation following training sessions is obtained by using 

double exponential to obtain a positive effect (8, 14, 15) or indirect response model (13). The 

later was inspired by pharmacodynamics, considering the positive effect to be the result of the 

transformation of a signal secondary to the primary training stimulus (Fig. 1 panel E). With 

indirect response models, negative effects of training were better described by an inhibition of 

production of positive effects due to prior training sessions (Model TI, Fig. 1 panel F) rather than 

fatigue with a first-order kinetics with or without inhibition process, Model TIF and Model TF 

respectively). Nevertheless, it is likely that the absence of a fatigue component in the model 

makes it unsuitable for athletes whose performance capacity diminishes when their training is 

intensified. Furthermore, the inclusion of a fatigue factor, which changes kinetics according to 

prior training (Model TF2) was not tested in combination with an inhibition of the adaptation 

process.  

 

 Selecting a model as the best approximation among a set of models is a basis for 

statistical inference because it tells us what effects represented by which parameters are best 

supported by the data (17). Models differ in complexity i.e. in the number of parameters to be 

identified by fitting the model to data. An under-fitted model may not adequately capture the 

relationship between temporal variations in training and performance. Conversely, an over-fitted 

model will tend to reproduce irrelevant variance in the training data, increasing the variability of 

estimates. The best model is ideally a parsimonious model able to capture the true relationship 

between the variables of interest while not over-fitting the data. Often R
2 

adjusted and F-ratio 
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tests are used to verify if an increase in model complexity is statistically relevant and would not 

lead to overfitting (12, 15, 16, 18). However Akaike’s information criterion (AIC) is recognized 

as being a more powerful way to identify the best model because it ranks the models from best to 

worst by weighting the evidence that each model is likely the best (17, 19). 

 

 Another way to test models is to measure their ability to predict future performance from 

past data used to parametrize or “train” the model. Both Model Ba and Model Bu were found to 

produce good predictions of performance in swimmers (20). This study used the data from a 15-

wk training cycle for train the model (training data set) and those of the following 15-wk training 

cycle for testing the prediction (validation data set). The proximity in time between the 2 training 

cycles does question, however to what point conclusions drawn for these observations can be 

generalized.  

 

 Our first aim was to generate large data sets from a group of swimmers with reliable and 

frequent performance measurements during an extended period to have substantial statistical 

power for estimating model parameters and testing the ability of the models to predict 

performance. Secondly, we aimed to rank a set of impulse-response models using AIC and their 

extensions along with indicators of goodness-of fit. The estimates of the selected models were 

then used to explore the temporal variation of performance following a training session and the 

characteristics of the optimal taper period for comparison with data in the literature. Finally, the 

data from each athlete were split into training and validation data sets to determine the ability of 

the models to predict future performance.  
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METHODS 

Data collection and processing 

 Data came from 11 swimmers including 6 females specialized in 50-m or 50 and 100-m 

events (8 in freestyle and 3 in other strokes). They were aged 17.3 ± 2.9 years with competitive 

experience of 7.1± 2.9 years at the beginning of this study. Best performances achieved during 

50-m trials in 25-m pool were 75.9 ± 4.3 % of world-record speeds. All swimmers provided 

informed, written consent prior to data use in accordance with procedures approved by 

Institutional Review Board of University Hospital of Saint-Etienne (reference number 

IRBM1262021/CHUSTE). 

 

 A single coach prescribed the training program for the entire group of swimmers and 

collected the data related to training efforts and performance testing from January to July 2019 

(Season 1) and, then, for 8 of them until March 2020 when training ceased due to Covid 19 

lockdown (Season 2). Season 1 covered the summer season comprising 3 training cycles ranging 

from weeks 1 to 28 before training was suspended for summer break. Season 2 covered the 

following winter season from weeks 34 to 48 (training cycle 4), then a break at Christmas before 

the beginning of the summer season from weeks 52 to 61(training cycle 5).  

 

 Swimming speed during a 1500-m time trial (S15) was used to establish individual 

timetables of time per distance according to intensity levels : level 1 for active recovery (<90% 

of S15), level 2 for basic endurance training (90-94% of S15), level 3 for aerobic training (95-99% 

of S15), level 4 for lactate threshold (100-104% of S15), level 5 for maximal oxygen uptake (105-

109% of S15), level 6 for anaerobic capacity (110-120% of S15) and level 7 for sprints at maximal 
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speed. Conditioning training comprised dry land exercises. Stroke rate and resistance settings 

were determined by the coach in correspondence with swimming speed, allowing him to design 

the training sessions according to intensity level. Training workouts were converted into 

equivalent swim distance at each intensity level. 

 

 Training load (TL) was quantified each day from the weighted sum of the number of 

pool-kilometers swum and the dry land workout equivalent at each intensity level. Distances 

swum at zone 1 intensity were not included in the computation. The weighting factors for the 

remaining intensity zones were those proposed by Mujika et al (21) as follows: 

 

 

 TL = Z2 + 2 . Z3 + 3 . Z4 + 5 . Z5 + 8. (Z6 + Z7)     (1) 

 

 

where Z2, Z3, Z4, Z5, Z6 and Z7 are the number of kilometers swum at intensity levels 2, 3, 4, 5, 6 

and 7 respectively. TL was set to 0 during periods of Christmas and summer breaks. 

 

 Swimmers trained every day from Monday to Friday and rested the week-end except for 

participating in competitions participation. Training sessions of each Monday and Friday 

included a 50-m time trial in swimmer’s stroke specialty in a 25-m pool. Each trial was 

supervised by a coach who blew a first whistle to position the swimmer on the starting block, a 

second whistle to give the start signal, and then manually timed the 50-m trial with a stopwatch 

(Seiko, Japan). Performance was assessed from the average speed during the trial expressed as a 
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percentage of the first value of Season 1. The reliability of this test assessed from the individual 

coefficient of variation from the first four trials of this study was 0.40 ± 0.23 %. 

  

Model computations 

 Six models were solved for each swimmer from daily TL and performance measured 

twice a week (see Supplemental Figure, Supplemental Digital Content 1, which gives a 

schematic representation of each model, http://links.lww.com/MSS/C802). 

 

 TL is considered as a discrete function, i.e., a series of impulses each day, w
i
 on day i, 

and the model performance on day i was estimated by mathematical recursion from the series of 

w before day i. The equations of each tested model were written as recursive sequences in which 

each term on a given day was defined as a function of the terms on either the same or the 

preceding day. 

 

 The models other than Model TI assume that performance is the result of change from 

baseline (pbase) because of cumulated adaptation to training (positive effect : pe) and cumulated 

fatigue (negative effect : ne). 

 

 �̂�𝑛 = 𝑝𝑏𝑎𝑠𝑒 + 𝑝𝑒𝑛 − 𝑛𝑒𝑛        (2) 

 

where  pe
n
, ne

n
 and �̂�𝑛 are the estimations of pe, ne and performance on day n respectively with 

pe
0
, ne

0
 initialized to 0. 
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 Model Ba initiated by Banister et al is based on the idea that each training bout 

contributes to an increase in positive and negative effects proportional to corresponding w with 

multiplying factors (𝑘𝑖𝑛𝑝𝑒 and 𝑘𝑖𝑛𝑛𝑒 respectively pe and ne) which decay away in the following 

days in an exponential fashion at separate rate constants (𝑘𝑜𝑢𝑡𝑝𝑒 and 𝑘𝑜𝑢𝑡𝑛𝑒respectively. Model 

Ba is thus defined by the following equations 

 

 𝑝𝑒𝑛 = ∑ (𝑘𝑖𝑛𝑝𝑒 . 𝑤𝑖 + 𝑝𝑒𝑖−1. 𝑒−𝑘𝑜𝑢𝑡𝑝𝑒)𝑛−1
𝑖=1       (3) 

 𝑛𝑒𝑛 = ∑ (𝑘𝑖𝑛𝑛𝑒 . 𝑤𝑖 + 𝑛𝑒𝑖−1. 𝑒−𝑘𝑜𝑢𝑡𝑛𝑒)𝑛−1
𝑖=1       (4) 

 

 Model Bu assumes that the multiplying factor for fatigue 𝑘𝑖𝑛𝑛𝑒 is itself considered to 

increase by a quantity proportional to each w and decay exponentially away.  The value of 𝑘𝑖𝑛𝑛𝑒 

at day i is estimated by mathematical recursion using a first-order filter with a gain terms 

𝑘𝑖𝑛𝑖𝑛_𝑛𝑒 and a rate constant 𝑘𝑜𝑢𝑡𝑖𝑛−𝑝𝑒 as follows 

 

  𝑘𝑖𝑛𝑛𝑒
𝑖 = ∑ (𝑘𝑖𝑛𝑖𝑛_𝑛𝑒 . 𝑤𝑗 + 𝑘𝑖𝑛𝑛𝑒

𝑗−1. 𝑒−𝑘𝑜𝑢𝑡𝑖𝑛_𝑛𝑒)𝑖
𝑗=1     (5) 

 

with 𝑘𝑖𝑛𝑖𝑛_𝑛𝑒
0  initialized to 0. 

 Cumulated negative effect at day n is computed with Model Bu as follows: 

 

 𝑛𝑒𝑛 = ∑ (𝑘𝑖𝑛𝑛𝑒
𝑖. 𝑤𝑖 + 𝑛𝑒𝑖−1. 𝑒−𝑘𝑜𝑢𝑡𝑛𝑒)𝑛−1

𝑖=1       (6) 

 

 Exponential decay of training effect is characterized by rate constant rather than time 

constant designated by  which is its reciprocal. 
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 The other models tested in this study are based on an indirect response because pe result 

from a secondary signal produced by primary training stimulus. The secondary signal s 

accumulates with training and fades away exponentially as follows: 

 

 𝑠𝑛 = ∑ (𝑘𝑖𝑛𝑠. 𝑤𝑖 + 𝑠𝑖−1. 𝑒−𝑘𝑜𝑢𝑡𝑠)𝑛
𝑖=1       (7) 

 

where 𝑘𝑖𝑛𝑠 is the multiplying factor for the secondary signal and 𝑘𝑜𝑢𝑡𝑠 is the rate constant with 

s
0
 initialized to 0. 

 In Model TF and Model TF2, pe at a given day is assumed to increase by a quantity 

proportional to s the day before and decay with a first-order dynamic as follows: 

 

 𝑝𝑒𝑛 = 𝑠𝑛−1 +  𝑝𝑒𝑛−1. 𝑒−𝑘𝑜𝑢𝑡𝑝𝑒         (8) 

 

 In Model TI and Model TIF, training acts negatively by inhibiting the secondary signal 

that drives the positive effect.  The variable Inhib was added to describe this inhibition so that its 

value at day n is proportional to w
n
 as follows: 

 

 𝐼𝑛ℎ𝑖𝑏𝑛 = 𝑘𝑖𝑛ℎ𝑖𝑏 . 𝑤𝑛         (9) 

 

where 𝑘𝑖𝑛ℎ𝑖𝑏 is the multiplying factor for inhibition process. 

 The production of pe varies in function of Inhib resulting in the modification of Eq.8 as 

follows: 
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 𝑝𝑒𝑛 = 𝑠𝑛−1. (1 − 𝐼𝑛ℎ𝑖𝑏𝑛−1) +  𝑝𝑒𝑛−1. 𝑒−𝑘𝑜𝑢𝑡𝑝𝑒     (10) 

 

 Performance with Model TI is pbase added to pe estimated by Eq. 9 i.e. without fatigue. In 

Model TF and Model TF2, pe is estimated from Eq. 7, i.e. without an inhibition process, but 

counterbalanced by fatigue estimated from ne given by Eq. 4 as in Model Ba (Model TF) or by 

Eq. 5 and 6 as in Model Bu (Model TF2). Finally, performance with Model TIF is estimated 

from the balance between pe with inhibition process given by Eq. 7 to 10) and ne given by Eq. 4. 

 

Model fitting 

 The model parameters were determined by minimizing the residual sum of square (RSS) 

between estimated and measured performance as follows: 

 

 𝑅𝑆𝑆 = ∑ (𝑝𝑖 − �̂�𝑖)
2𝑛

𝑖=1         (11) 

 

with n the number of performance tests used to fit the model. RSS was minimized by using a 

hybrid method with combines standard linear regression with an L-BFGS-B algorithm which is a 

quasi-Newton method allowing us to set lower and upper bounds on the estimates. The latter was 

implemented using constrOptim function in R package (22) for fitting the rate constants (𝑘𝑜𝑢𝑡𝑝𝑒, 

𝑘𝑜𝑢𝑡𝑛𝑒, 𝑘𝑜𝑢𝑡𝑖𝑛_𝑛𝑒 and 𝑘𝑜𝑢𝑡𝑠 according to the model) and 𝑘𝑖𝑛ℎ𝑖𝑏 for Model TI and TIF. At each 

step of the optimization, the other parameters (i.e. the multiplying factor 𝑘𝑖𝑛𝑝𝑒, 𝑘𝑖𝑛𝑛𝑒 and 

𝑘𝑖𝑛𝑖𝑛_𝑛𝑒 according to the model) were obtained by linear regression directly. This hybrid method 

allowed us to define the optimization starting point of and the search region for only a part of the 

entire set of model parameters. We verified that the solution given by this optimization method 
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were not sensitive to the starting point of the computation. The details of the minimization 

procedure can be found in the supplementary information (see document, Supplemental Digital 

Content 2, which gives R script of the models, http://links.lww.com/MSS/C803). 

 

 To rank the models according to goodness-of-fit and AIC results, they were fitted to all 

the data collected for each swimmer giving n=56 for 3 swimmers (Season 1 only) and n=104 for 

8 swimmers (Seasons 1 and 2). For testing their ability to predict performance from past data, 

models were fitted to the data of training cycles # 1 and 2 (training data sets with n=40 for each 

swimmer). The estimates for Model Ba and Model Bu were used to predict performance during 

cycle # 3 for 11 swimmers and during cycles # 4 and 5 for 8 swimmers.   

 

Model estimates 

 In addition to model parameters, variables were calculated to characterize the time 

response of performance to a single training bout. tn, the time to recover performance and tg, the 

time to peak performance after training completion were computed from parameters of Model Ba 

as follows: 

 

 𝑡𝑛 =
ln(kin𝑛𝑒 kin𝑝𝑒⁄ )

kout𝑛𝑒−kout𝑝𝑒
         (12) 

and 

 𝑡𝑔 =
ln(kin𝑛𝑒.kout𝑛𝑒 kin𝑝𝑒.kout𝑝𝑒⁄ )

kout𝑛𝑒−kout𝑝𝑒
       (13) 

 

pg the maximal gain in performance after a training session at a given TL is given by: 
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  𝑝𝑔 = kin𝑝𝑒 . 𝑇𝐿. 𝑒−𝑘𝑜𝑢𝑡𝑝𝑒.𝑡𝑔 − kin𝑛𝑒 . 𝑇𝐿. 𝑒−𝑘𝑜𝑢𝑡𝑛𝑒.𝑡𝑔    (14) 

 

 Calculation of these variables for Model Bu must account for variations in kinne according 

to cumulated training. Its lowest value is that for a single training bout dependent on 

corresponding TL (single session). If the same training session is repeated every day, kinne will 

tend towards a limit value dependent on both TL and 𝑘𝑜𝑢𝑡𝑖𝑛_𝑒 (asymptote).  Both estimates were 

estimated as follows: 

 

 kin𝑛𝑒(𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛) =  kin𝑛𝑒 . 𝑇𝐿      (15) 

 

and 

 

 kin𝑛𝑒(𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒) =  
kin𝑛𝑒.𝑇𝐿

1−𝑒−𝑘𝑜𝑢𝑡𝑖𝑛_𝑛𝑒
       (16) 

 

Statistics 

 Let p be the number of parameters of each model: 5 for Model Ba and TI, 6 for Model Bu 

and TF, 7 for Model TF2 and TIF. We calculated the following measures of goodness-of-fit(19): 

- the coefficient of determination (R
2
): 

-  

  𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
         (17) 

 

with TSS the total sum of squares. The mean square error (SE) was computed as the square root 

of RSS/(n-p). F-ratio was computed to assess the statistical significance of one model fit with 
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degrees of freedom (DF) set to p-1 for the model and n-p-1 for the residuals. 

 

- the mean absolute percentage error (MAPE) 

-  

 𝑀𝐴𝑃𝐸 = ∑
|𝑝𝑖−𝑝𝑖|

𝑝𝑖 . 100𝑛
𝑖=1  

 

- the adjusted coefficient of determination (Adj.R
2
): 

-  

 𝐴𝑑𝑗. 𝑅2 = 1 −
𝑛−1

𝑛−𝑝
. (1 − 𝑅2)       (18) 

 

- the bias-corrected Akaike Information Criterion (AICc): 

-  

 𝐴𝐼𝐶𝑐 = 2. 𝑝 − 2. ln(𝐿) +
2𝑝(𝑝+1)

𝑛−𝑝−1
       (19) 

 

with ln(L) the log-likelihood of the estimated model computed as follows: 

 

 ln(𝐿) = −0.5. 𝑛. [ln(2𝜋) + 1 − ln(𝑛) + ln (∑ (𝑝𝑖 − �̂�𝑖)
2𝑛

𝑖=1 )]   (20) 

 

- the Akaike weights, wi(AICc) provide weight-of-evidence measurements for each of the six 

models tested in this study:     

-  

 𝑤𝑖(𝐴𝐼𝐶𝑐) =
exp (−0.5.∆𝑖(𝐴𝐼𝐶𝑐)

∑ exp (−0.5.∆𝑘(𝐴𝐼𝐶𝑐)6
𝑘=1

       (21) 
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where i is the model number and (AICc)Δi  the difference between AICc of model i and the 

lowest AICc.  

 

 One-way repeated measures analysis of variance (ANOVA) was conducted to compare 

between models of measures of goodness-of-fit and characteristics of impulse response. The 

reliability of the prediction of performances for the testing data sets was assessed from the 

calculation of systematic error, typical error and MAPE between predicted and measured 

performances. Two-way mixed-effect ANOVA was done to compare between models and data 

sets. All analyses included Greenhouse–Geisser correction to ensure sphericity assumption. 

When significant differences were found, Tukey’s post-hoc test was used for pairwise 

comparisons. Paired t test was conducted for other comparisons when appropriate. The 

significance level was set at P<0.05.  

 

RESULTS 

Data sets 

 Figure 2 panels A and B give weekly TL for Season 1 and Season 2 respectively. Weekly 

TL were higher during the first part of each training cycle with a reduction during the 2 or 3 last 

weeks. The performance was maintained or decreased during the first part of each training cycle 

and then increased when TL was reduced until a peak before the beginning of the following 

cycle (Fig. 2 panels C and D for Season 1 and 2 respectively).  
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Model fits 

 Table 1 summarizes the indicators of goodness-of-fit of each model fitted to the data of 

the 2 seasons of training in each swimmer. R
2
, adj-R

2
 and SE from Model TI was significantly 

lower than from other tested models (P<0.05). F-ratio showed that Model TI only significantly 

fitted the performance of 7 swimmers (P<0.05 in 2 and P<0.001 in 5) whereas other models 

significantly fitted all of swimmers individually (P<0.001 for all data sets with the exception of 1 

with Model TF and Model TIF which was at P<0.05). 

 

 No difference in R
2
, adj-R

2
 and SE was observed between the models other than for TI. 

We used w(AIC) which includes model complexity (i.e. the number of model parameters) to 

rank the models. Individual w(AIC) scores were best in 5 swimmers with Model Ba and in 6 

swimmers with Model Bu. No difference was observed at the group level in w(AIC) between 

Model Ba and Bu (Table 1). Based on these results, Model Ba and Model Bu rank equally as the 

best models among those tested in this study. 

 

 Figure 3 panel A shows the performance fit with Model Ba from the entire data set of one 

representative swimmer. It shows substantial overestimation of the lowest values and 

underestimation of peak values at the end of each training cycle. This tendency is observable for 

every swimmer using both Model Ba and Model Bu. At the group level, the difference between 

Model Ba and real performance was different from zero (P<0.001) at the end of each training 

cycle: -1.5 ± 0.9, -3.3 ± 1.2, -3.8 ± 1.2, -3.9 ± 1.2 and -4.1 ± 1.3 % at the end of cycle #1 to 5 

respectively. Estimates for Model Bu also significantly underestimated peak performance 

(P<0.001): -1.9 ± 1.2, -3.2 ± 1.4, -4.0 ± 1.3, -3.8 ± 1.2 and -4.0 ± 1.2 % at the end of cycle #1 to 
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5 respectively. Residuals and real performance were highly correlated in each swimmer: 0.84 ± 

0.06 and 0.84 ± 0.04 for Model Ba and Model Bu respectively. 

 

 Characteristics of performance over time after a training session (Figure 4) were assessed 

from the parameters of Model Ba and Model Bu (see Supplemental Table, Supplemental Digital 

Content 3, which gives the estimates, http://links.lww.com/MSS/C804). Additionally, computer 

simulations were done to determine the duration and rate of training reduction during taper 

which would give the highest performance according to the form of the taper, i.e. with step, 

linear or exponential training reduction, following previous reports (23-25). We computed 

optimal characteristics for a taper after regular training consisting in daily training equal to 

median TL (24.5 ± 2.5 training units) assumed to be long enough to stabilize performance and 

followed or not by a 20% step increase in training for 28 days. The characteristics of the optimal 

taper according to the form of training reduction are given in Table 2.  

 

Validation datasets 

 Figure 3 panel B shows prediction performance for Model Ba for one representative 

swimmer. The range of predicted values was narrower than that of real values with substantial 

underestimation and overestimation of the highest and the lowest performances respectively. 

Table 3 gives the systematic and typical errors for the group of swimmers. For the first validation 

data sets, typical error was greater than with the training data set, and without significant 

systematic error. For the second testing data sets, each model led to significant systematic error 

and a typical error greater than with training data sets. MAPE between predicted and real 

performance for the first data set was 2.02 ± 0.65 % and 2.17 ± 0.65 % for Model Ba and Model 
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Bu respectively. Greater MAPE was observed for the second testing data set, 2.69 ± 1.23 % and 

2.56 ± 0.79 % for Model Ba and Model Bu respectively.  

 

DISCUSSION 

 The present findings are that Model Ba and Model Bu were relevant for modelling the 

change in performance with training in athletes, and showed a somewhat lesser ability to predict 

individual future performance from past data in a given swimmer. Impulse-response models 

suffer, however, from some limitations indicated in a series of recent studies (3, 9-11). 

 

Model parameter estimation requires a great number of data points from valid, reliable and 

frequent tests of performance. We paid great attention to meeting these key requirements, 

leading us to use a test mimicking competitive racing conditions twice a week over an extended 

period. The results of the four trials done the first two week of this study showed a high 

reliability of this test.  The coefficient of variation of 0.40 ± 0.23 % was close to the value 

around 0.9% observed for field tests of sprint running (26). One limitation is the existence of 

local minima resulting in convergence to a solution sensitive to the initial parameters chosen for 

the starting point of the algorithm (10, 11). In our opinion, this troublesome problem is 

particularly relevant when all the parameters are estimated together using a typical fitting 

process. Finding initial estimates for the multiplying factors, i.e. 𝑘𝑖𝑛𝑝𝑒, 𝑘𝑖𝑛𝑛𝑒 or 𝑘𝑖𝑛𝑖𝑛_𝑛𝑒 

depending on the model, is an awkward task because their estimates are dependent on the metrics 

used to quantify training and performance. This is the reason why we chose a hybrid approach to 

searching for parameter estimates, after checking that the solution identified was not sensitive to 

the starting point of the search for any of the models tested with our data. This hybrid approach 

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



used a quasi-Newton algorithm, but only for a part of the parameters whereas the other 

parameters, i.e. 𝑘𝑖𝑛𝑝𝑒, 𝑘𝑖𝑛𝑛𝑒 or 𝑘𝑖𝑛𝑖𝑛_𝑛𝑒, were estimated from simple regression at each step of 

the searching process. 

 

 Another important limitation is that it is possible to find different solutions which give 

close goodness-of-fit scores. This could preclude the use of model parameters as characteristics 

of one individual’s response to training. We speculate that this might be due to compensation 

between model parameters which when combined together could give similar performance 

impulse responses. To support this assertion, we searched for other solutions than those used in 

the main study. We have repeated all the analyses with more restrictive constraints for 𝑘𝑜𝑢𝑡𝑝𝑒 in 

order to find an alternative solution with much lower estimates for 𝑘𝑜𝑢𝑡𝑝𝑒. This resulted in large 

variations of the estimates of other parameters for each model (see document, Supplemental 

Digital Content 3, which gives details on these alternative solutions and their influence on model 

estimates, http://links.lww.com/MSS/C804). This alternative solution gave an optimized RSS 

close to that of the main studies. For Model Ba and Model Bu, the alternative sets of parameters 

gave small difference for the characteristics of the impulse response, although statistically 

significant differences were observed. As a consequence, results on optimal taper and prediction 

accuracy of performance are not significantly affected by this alternative solution. Because of the 

uncertainties of each model parameter, taken individually, it would be preferable to consider the 

impulse response obtained for an entire set of parameters when characterizing the response of 

one individual to training. In any case, this drawback regarding the estimation of model 

parameters did not appeared to significantly affect the findings of the present study. 
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 The impulse-response models tested in this study differ in (1) the description of positive 

and negative effects of a single training bout and (2) their consideration, or not, of change in 

impulse-response due to repetition of training bouts. One interest of indirect-response models 

lies in the differentiation of cumulated fatigue acting directly on performance and altering the 

athlete’s capacity to adapt to the training. This can be particularly relevant when analyzing 

athlete behavior during overtraining (27). Indirect-response models have only been tested in 

participants in a controlled experiment who were not experienced athletes (13). In this his earlier 

study, Model TI outperformed other models. In the present data from swimmers, the TI model 

failed to effectively describe their variations in performance, and should be thus discarded for 

data analysis in athletes. When negative effect of training (i.e. fatigue) are considered, indirect 

response models fitted the data better than Model TI but did not better than Model Ba or Model 

Bu. AIC showed low weight of evidence in favor of Model TF, TF2 and TIF. Because of 

overfitting resulting in uncertainty in their estimates, these indirect-response models with fatigue 

components should be also discarded. 

 

 The absence of a clear difference in performance between Model Ba and Model Bu is in 

accordance with previous findings in athletes. On one hand, Model Bu was found to significantly 

improve performance fit compared to Model Ba in 7 out of 10 swimmers during a training period 

of 15 weeks (20). On the other hand, a study in 3 elite swimmers found higher R
2
 and lower AIC 

for Model Ba, compared to Model Bu (16). The authors pointed out that the frequency of 

performance tests could explain these discrepancies. They dispose of a limited number of 

performances in their data sets because they used results from competitions during a period of 

400 days. The results of the present study also support this hypothesis when using only the first 
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20 weeks i.e. using only 40 values for performance. In this case, Adj.R
2
 was significantly greater 

for Model Ba than Model Bu, 0.36 ± 0.09 vs 0.30 ± 0.09 respectively. In our previous report (20) 

and in the present study, we used performance tests done routinely during training sessions once 

and twice a week respectively. Results of competitions is the gold standard to determine athlete 

performance but the low number of competitions limits the statistical power when comparing 

modeling methods. This is why, despite possible bias, trials frequently repeated during the 

training sessions are an alternative which enables collection of large data sets on which to train 

and test models. Since the number of performance measurements was a major limit, it would be 

preferable to use Model Ba for data sets smaller than that of the present study, because it is the 

most parsimonious model. 

 

 Frequency of performance trials higher than in previous reports provided a larger amount 

of information which could be fruitful for exploring models more complex than Model Ba. In 

return, greater numbers of data points could affect fit quality. While R
2
 values reported in the 

literature (28) ranged from 0.29 to 0.97, R
2
 values for Model Ba and Model Bu obtained with the 

present data set were in the lower part of this range. The difference between model values and 

real performances showed that fit error was not randomly distributed. It is likely that the lower fit 

quality with a greater number of points was more due to greater loss of information than to 

greater noise. This suggests that Model Ba and Model Bu are not optimal models. Further work 

is necessary to find models that can better approximate the present large data sets, in the sense 

that models that loose less may serve to gain new insights into performance over time in 

adaptation to training.  
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 Models could be used to probe the responses to solicitations and compare the impact of 

different training strategies (29, 30). Estimates of tn and tg have been considered to be key values 

for optimizing tapering period before a competition (31). According to Model Ba, taper duration 

should be ranged between tn and tg because negative effect (fatigue) dissipates more quickly than 

positive effect (adaptation or fitness) (31), i.e. between 11.0 ± 1.9 and 21.2 ± 2.7 days 

respectively in the present study. The major flaw in this reasoning is that the best performance 

would be indeed achieved without training during at least tn days. It is recognized that several 

weeks without training would be prejudicial for performance because of detraining. Furthermore, 

the large estimates of tn, which is in theory the time needed to recover performance after any 

training session, are not supported by the temporal variation of several physiological parameters 

altered by exercise (32). Contrary to Model Ba, Model Bu attempts to account for change in the 

response to a given workout among cumulated training sessions. A designated session could be 

more difficult to cope with when training is intensified. Conversely, the tolerance to training is 

recovered when training is reduced. This is illustrated by Fig. 4 which shows single bout and last 

bout effects at the asymptote calculated from the estimates of Model Bu. Mean recovery time for 

median TL would be ranged between 1 and 6 days depending on prior training. Compared to 

Model Ba, these estimates from Model Bu are in better agreement with within-subject variability 

in the time required to restore physiological alterations after working out (32). Additionally, 

computer simulations using estimates of Model Bu were done to explore the duration, the form 

and extent of training reduction to maximize performance during the taper period (23-25, 33, 

34). Individual responses to training were simulated for accustomed training, evaluated as the 

median of TL, and for unaccustomed training as a 20% step increase in TL for 28 days. Contrary 

to Model Ba, estimates of Model Bu gave an optimal taper for around one week with a training 
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reduction of 80-90 % for a step taper and 60-70% for a progressive taper. This matches with an 

earlier review of the literature, which suggests a training reduction of 50 – 90% over 4 – 35 days 

regardless the form of the training reduction (35). It agrees less with a meta-analysis study which 

showed that the most efficient taper for maximizing performance in swimmers was 1 or 2 weeks 

with a progressive reduction of training volume by 40-60%, without any modification of 

intensity (36). Contrary to our previous report in elite swimmers (23), greater solicitations before 

the taper require only a small increase in taper duration which remains around 1 week and 

progressive reduction of training did not give better results than step reduction. These differences 

could be explained by the lower level of performance of the participants in the present study. 

Whereas our previous report  in best nationally ranked swimmers (23) concluded that optimal 

taper would be a training reduction of 40 to 70 % during 2 to 3 weeks, depending on prior 

training, the present findings suggest for sub-elite swimmers shorter taper lasting around 1 week 

with greater training reduction, around 60 to 90 %. 

 

 In our analysis, we examined how well models predicted the future from past data and 

compared model performance over different time spans. The theoretical studies on taper 

characteristics based on model predictions (23-25, 33, 34) has to be distinguished from using one 

model to monitor training of a given individual because this kind of application would require a 

more precise assessment of the statistical confidence of the model prediction (37). Prediction 

accuracy was lower than in our previous report in swimmers (20). It could be explained by the 

closeness of the training cycles used to train the models and to test their prediction. It is the 

reason why we shared the data to generate two validation data sets per swimmer: first one for 

testing the prediction during training cycle immediately following the training period used to 
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parametrize the models and a second one for testing the prediction for the subsequent season 

after the summer off-season. This design showed that the agreement in performance prediction 

dropped for the last cycle of Season 1 to the two cycles of Season 2 due to a large bias for 

Season 2. Typical errors indicated Model Ba performed better for Season 1, while Model Bu was 

better for Season 2 but the differences in the performance of the two models were too small to be 

considered to be significant. Altogether relative accuracy for predicting performance was around 

2-3 % for both models, whereas the fluctuations of actual performance throughout the two 

seasons were between 3% below and 7% above the first value of Season 1 (Figure 2). This 

accuracy level does not effectively meet the need of athletes if models were to be implemented in 

practical application to assist coaches when planning training of a given individual. More 

accurate prediction is required before considering these models for such applications. 

 

 The literature provides other model structure solutions which should also be tested for 

their ability to fit the observed performances and ultimately to predict future performance. One 

important feature not included in Model Ba nor in Model Bu is that positive effects are linearly 

dependent on TL. This is a critical issue when attempting to better represent maladaptation 

because of overtraining. It is the reason why the analysis of optimal taper focused only on how 

reduce training for peak performance. The computations were done for regular training and for a 

step 20% increase for 28 days before taper in order to remain within the range of the training 

effort actually produced by swimmers. Optimal training before taper cannot be searched because 

the gain in performance after optimal taper is linearly related to the training done before the 

reduction of training, despite limitations in training adaptations. In the models tested in the 

present study, only Model TI and Model TIF included inhibitory processes in an attempt to 
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introduce limitations in the positive effect of training, and neither of them provided any 

improvement compared to Model Ba or Model Bu. Other modifications of Model Ba (38, 39) 

have been proposed to take into consideration that positive effect is not simply proportional to 

TL. It was showed that modification of Model Ba with Hill saturation function resulted in better 

fit in elite swimmers analyzed over a period of 4 ± 2 years (38). In line with the indirect-response 

models tested in this study, there are other formulations using delayed positive effect after 

training session (8, 14, 15, 40). Using two exponentials for positive effect was found to 

outperform Model Bu with data sets from short-track sprint skaters (15). Extensions of Model Ba 

or Model Bu have been also formulated to account for prior training history (41) or temporal 

variation in model parameters (42, 43). Methodologies other than impulse-response models also 

deserve attention: Per-Pot model (44), neural networks (45, 46), exponentially weighed and 

rolling average models (16) and machine-learning models (4, 5). One way to assess the relative 

strengths and limitations of these different models is to compare their performance using a 

common data set. This is why we believe that the database generated for the present study has 

considerable potential for reuse. It is rich enough to support testing of a wide range of models 

that predict performance from cumulated training. Nevertheless, the strongest limitation of these 

models is probably the use of one single metric for quantifying TL as model input (37). It does 

not allow us to take into consideration the specificities of the different types of exercises 

included in the training program. For example, variations in volume or intensity could give 

identical TL despite difference in their effects. Regardless of the variation in TL for peaking 

performance, how the content of sessions is determined, and how they are articulated over time, 

is a great part of the coach’s work when planning training. More complex models or combination 

of different approaches are most likely needed to account for all the key factors in training 
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planning. 

 

CONCLUSIONS 

In conclusion, this study showed that Model Ba and Model Bu were equally relevant for 

modelling the change in performance with training in athletes. Because of the lower number of 

adjustable parameters, Model Ba should be preferred to Model Bu to provide information about 

response to training. The interest in using Model Bu could arise from the inferences made from 

its application to dedicated large data sets, rather than precise prediction for a given individual. 

The observed accuracy of 2 to 3% for the prediction of one individual’s performance in response 

to training was not satisfactory. The challenge to progress towards practical applications to assist 

coaches and athletes for planning training requires exploration of other approaches to modeling 

the responses to training. 
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FIGURE LEGENDS 

 

Figure 1: Schematic representation of impulse responses of models. A: positive and negative 

effects of a single session, both being described by a single exponential with Model Ba. B : 

performance over time based on the difference between positive and negative effects with Model 

training session, tn : time needed to recover to the 

initial performance level pg : maximal gain in performance and tg : time needed to reach pg. C : 

change in negative effect between response to an isolated training bout (single session) and to 

last bout after several repetitions (Model Bu). D : change in performance over time between 

single session and repetition (Model Bu). E : positive effect described by a single exponential ( 

Models Ba and Bu) vs secondary signal model ( Model TI, TF, TF2 and TIF). F : positive effect 

by secondary signal model with inhibition due to previous sessions ( Model TI and TIF). 

 

Figure 2: Distribution of training loads and change in performance. A and B : Mean ± SD of 

weekly training loads (TL) during season 1 and 2 respectively. C and D : Mean ± SD of 

performance relative to first value during season 1 and 2 respectively.  

 

Figure 3: Modeling and prediction of performance for one representative swimmer with Model 

Ba. A : model fit to all the data of Season 1 and Season 2. B : model fit to the data of cycles # 1 

and 2 (training data set) and prediction tested using data of cycles # 3, 4 and 5 (testing data sets). 

Solid circle : observed performance. Continuous line : modelled performance. 
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Figure 4: Mean ± SD of characteristics of impulse response to median TL from estimates of 

Model Ba and Bu. A : change in performance after one session. B 

performance. C : pg, maximal gain in performance. D : tn, time needed to recover to initial 

performance level. E : tg : time needed to reach pg. For model Bu, results show the response to an 

isolated training bout (single session) and to the last bout at steady state after daily repetitions 

(Asymptote). * : significantly different from Model Ba and †: significantly different from Model 

Bu for single session (P<0.05).  

 

 

SUPPLEMENTAL DIGITAL CONTENT 

 

SDC 1: Supplemental Digital Content 1. pdf  

SDC 2: Supplemental Digital Content 2. pdf 

SDC 3: Supplemental Digital Content 3. pdf 

  

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Figure 1 

 

  

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Figure 2 

 

 

  

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Figure 3 
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Figure 4 
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Table 1. Summary of goodness-of-fit and AIC results for models with all data of Seasons 

1 and 2. 

 

Model  R
2
 adj-R

2
 SE MAPE (%) AICc w(AIC) 

Ba 

(p=5) 

0.286 

± 0.100 

0.250 

± 0.097 

2.28 

± 0.53 

1.82 

± 0.45 

409 

± 112 

0.339 

± 0.254 

Bu  

(p=6) 

0.297 

± 0.073 

0.252 

± 0.071 

2.28 

± 0.52 

1.80 

± 0.42 

409 

± 109 

0.360 

± 0.296 

TI  

(p=5) 

0.135  * † 

± 0.053  

0.091  * † 

± 0.062 

2.52  * † 

± 0.56 

2.00  * † 

± 0.44 

425  * † 

± 108 

0.001  * † 

± 0.002 

TF  

(p=6) 

0.288  ‡ 

± 0.098 

0.243  * ‡ 

± 0.094 

2.29  * ‡ 

± 0.53 

1.81  ‡ 

± 0.45 

411  * ‡ 

± 112  

0.115  * ‡ 

± 0.082 

TF2  

(p=7) 

0.304  ‡ 

± 0.081 

0.251  ‡ 

± 0.077 

2.29  ‡ 

± 0.53 

1.79  ‡ 

± 0.43 

411  † ‡ 

± 110 

0.123  ‡ 

± 0.088 

TIF  

(p=7) 

0.299 * ‡ 

# 

± 0.097 

0.246  ‡ 

± 0.091 

2.29  ‡ 

± 0.53 

1.80  * ‡ # 

± 0.45 

412  ‡ 

± 112 

0.061  * ‡ 

± 0.036 

 

Values are mean ± SD. p: number of model parameters. Number of performance points is 56 for 

3 swimmers (Season 1) and 104 for 8 swimmers (Season 1 and 2). Significant difference 

(P<0.05) indicated by *: from Model Ba, †: from Model Bu, ‡ : from Model TI, # : from Model 

TF. 
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Table 2 : Mean ± SD of estimated characteristics of the optimal simulated taper according to the 

form of the training reduction after regular training at the median TL and overload training with 

a step increase of 20% for 28 days. 

 

 Form of the training reduction during taper 

 Step Linear Exponential 

    

Mean reduction (%) 

Regular training 86.9 ± 16.0 73.5 ± 12.3 † 61.5 ± 12.6 † 

Regular training + 20% 86.3 ± 13.8 73.3 ± 8.8 † 66.4 ± 12.6 † 

    

Duration (days) 

Regular training 6.5 ± 1.2 9.0 ± 1.1 † 8.2 ± 0.6 † 

Regular training + 20% 7.6 ± 0.7 * 9.5 ± 1.7 * † 8.7 ± 1.0 * † 

    

Highest performance (% of pre-training) 

Regular training 103.24 ± 1.12 103.21 ± 1.13 † 103.21 ± 1.13 † 

Regular training + 20% 103.85 ± 1.30 * 103.82 ± 1.31 * † 103.83 ± 1.30 * † 

    

 

* : statistically different from regular training prior taper ( P<0.05). 

† : statistically different from step taper (P<0.05). 
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Table 3. Reliability of the performance predictions.  

 

Model Data set Systematic 

Error  (%) 

Typical 

Error (% ) 

MAPE 

 (%) 

Ba 

Training 0 1.68 ± 0.45 1.34 ± 0.37 

Validation 1 0.16 ± 0.40 2.40 ± 0.74 
a
 2.02 ± 0.65 

a
 

Validation 2 -1.74 ± 1.23 
a b

 2.43 ± 0.51
a
 2.69 ± 1.23 

a b
 

Bu 

Training 0 1.73 ± 0.47 1.39 ± 0.39 

Validation 1 0.21 ± 0.42 2.56 ± 0.80 
a
 * 2.17 ± 0.70 

a
 

Validation 2 -1.64 ± 1.15 
a b

 2.32 ± 0.49 
a 
* 2.56 ± 0.79 

a b
 

 

 

Values are mean ± SD. Systematic and typical error are expressed as a percentage of first 

performance of Season 1. Significant difference (P<0.05) indicated by 
a
 : from Training data set, 

b
 : from first validation data set, *: from Model Ba. 
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1 

Fit_Model<-function(datafile,model=c("Ba","Bu","TI","TF","TF2","TIF")) 

{ 

  # General purpose 

  #  

  # The function fits impulse-response models to data by minimizing residual squared errors using constrOptim function. 

  #  

  # 

  # Details  

  # 

  # The method for optimization (L-BFGS-B) is that of Byrd et al (1995) which is a modification of 

  # BFGS quasi-Newton method which allows box constraints. 

  # Lower and upper bounds and initial values satisfying the constraints are given for each parameter. 

  # 

  # 

  # Arguments 

  # 

  # "datafile" is the file containing the data 

  #   column 1 : day number incremented by one starting from one   

  #   column 2 : training load of the day, zero if no training 

  #   column 3 : measure of performance of the day, empty if no measurement 

  # 

  # "model" is the model which is fitted to the data 

  # 

  #   Ba : model with two exponentials (Banister et al, 1975) 

  #   Bu : model with mutiplying factor for fatigue dependent on training loads (Busso 2003) 

  #   TI : model with indirect secondary signal and inhibition of positive effect  (Busso 2017) 

  #   TF : model with indirect secondary signal and fatigue as in Ba  (Busso 2017) 

  #   TF2 : model with indirect secondary signal and fatigue as in Bu  (unpublished) 

  #   TIF : model with indirect secondary signal, inhibition and fatigue as in Ba (Busso 2017) 

  # 

  # 

  # Values 

  # 
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2 

  #   Measures of goodness-of-fit : 

  #  r2, coefficient of determination 

  #  r2adj, adjusted coefficient of determination 

  #  logL, maximum log-likehood 

  #  aic, Akaike Information Criterion 

  #  aicc, bias-corrected Akaike Information Criterion 

  #  se, mean square error 

  # 

  #   "converg" is an integer code : "0" indicates sucessful completion of optimization 

  #   (see descrition of Optim function for more details). 

  # 

  #   Estimates of model paramaters : 

  #  pbase  : baseline value of performance 

  #  kout_pe   : exponential decay rate of positive effect  (all models) 

  #  kin_pe  : multiplying factor of positive effect (Model Ba and Bu) 

  #  kout_ne   : exponential decay rate of negative effect (Model Ba, Bu, TF, TF2 and TIF) 

  #  kin_ne  : multiplying factor of negative effect (Model Ba, TF and TIF) 

  #  kout_in_ne  : exponential decay rate of kin_ne (Model Bu and TF2) 

  #  kin_in_ne   : multiplying factor of kin_ne (Model Bu and TF2) 

  #  kout_s  : exponential decay rate of secondary signal (Model TI, TF, TF2 and TIF) 

  #  kin_s  : multiplying factor secondary signal (Model TI, TF, TF2 and TIF) 

  #  kinhib   : multiplying factor for inhibition of positive effect (Model TI and TIF) 

  # Fixing model and its number of parameters, p 

  model<-match.arg(model) 

  if (model == "Ba") p<-5 

  if (model == "Bu") p<-6 

  if (model == "TI") p<-5 

  if (model == "TF") p<-6 

  if (model == "TF2") p<-7 

  if (model == "TIF") p<-7 

  # Fixing starting values and restrictions of model parameters for optimization process 
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  kout_pe<-NA;kout_ne<-NA;kout_s<-NA;kout_in_ne<-NA;kinhib<-NA 

  kin_pe<-NA;kin_ne<-NA;kin_in_ne<-NA;kin_s<-NA 

  kout_pe_init<-0.03;kout_s_init<-0.1;kinhib_init<-0.001;kout_ne_init<-0.1;kout_in_ne_init<-0.5 

  kout_pe_min<-0.01;kout_s_min<-0.05;kinhib_min<-0;kout_ne_min<-0.06;kout_in_ne_min<-0.1 

  kout_pe_max<-0.07;kout_s_max<-1;kinhib_max<-0.01;kout_ne_max<-1;kout_in_ne_max<-2 

  # Fixing data from datafile given in the argument 

  #   extract : days with performance measurement 

  #   pmes    : measured performance 

  #   w       : training load 

  #   n       : number of performance measurements 

  #   ntot    : total day number 

  extract<-datafile[,1][is.finite(datafile[,3])] 

  w<-datafile[,2] 

  pmes<-datafile[,3] 

  n<-length(extract) 

  ntot<-length(w) 

  # Computations of sumw and sumw2 used in the functions called for compute training effects 

  toep_w<-toeplitz(c(0,w[1:ntot-1])) 

  sumw<-lower.tri(toep_w,diag=TRUE)*toep_w 

  toep_w2<-toeplitz(c(0,w[1:ntot-1]^2)) 

  sumw2<-lower.tri(toep_w2,diag=TRUE)*toep_w2 

  # Functions called for computing training effects 

  # 

  # pe_1exp   : computation of positive effect with Model Ba and Bu 

  # pe_T      : computation of positive effect with Model TF and TF2 

  # pe_TI     : computation of positive effect with Model TI and TIF 

  # ne_1exp   : computation of negative effect with Model Ba, TF and TIF 

  # ne_2exp   : computation of negative effect with Model Bu and TF2 
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  pe_1exp<-function(kout_pe) sumw%*%c(exp(-(1:ntot)*kout_pe)) 

  ne_1exp<-function(kout_ne) sumw%*%c(exp(-(1:ntot)*kout_ne)) 

  ne_2exp<-function(kout_ne,kout_k2) { 

    kin2<-sumw%*%c(exp(-(0:(ntot-1))*kout_k2)) 

    toep_wk2<-toeplitz(c(0,w[1:(ntot-1)])*c(kin2)) 

    sumwk2<-lower.tri(toep_wk2,diag=TRUE)*toep_wk2 

    ne_2exp<-sumwk2%*%c(exp(-(1:ntot)*kout_ne)) 

  } 

  pe_T<-function(kout_pe,kout_s) { 

    sign<-sumw%*%c(exp(-(0:(ntot-1))*kout_s)) 

    toep_e<-toeplitz(c(sign)) 

    sum_prod<-lower.tri(toep_e,diag=TRUE)*toep_e 

    pe_T<-sum_prod%*%exp(-(0:(ntot-1))*kout_pe) 

  } 

  pe_TI<-function(kout_pe,kout_s,kin_i) { 

    TI<-1-kin_i*w 

    sign<-sumw%*%c(exp(-(0:(ntot-1))*kout_s)) 

    prod<-sign*TI 

    toep_e<-toeplitz(c(prod)) 

    sum_prod<-lower.tri(toep_e,diag=TRUE)*toep_e 

    pe_TI<-sum_prod%*%exp(-(0:(ntot-1))*kout_pe) 

  } 

  # Computations for Model Ba 

  if (model == "Ba"){ 

    # Fixing starting values and restrictions of model parameters for optimization 

    init<-c(kout_pe_init,kout_ne_init) 

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED
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    mconstr<-rbind(diag(1,2,2),c(-1,0),c(0,-1)) 

    vconstr<-c(c(kout_pe_min,kout_ne_min),c(-kout_pe_max),c(-kout_ne_max)) 

    # Parameters of Model Ba are optimized by a two-stage minimization of the sum of squared errors,rss 

    #   1. pbase, kin_pe and kin_ne are computed by linear regression according to values for kout_pe and kout_ne 

    #   2. kout_pe and kout_ne are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_ne<-param[2] 

      datareg<-list(pe=pe_1exp(kout_pe)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

      reg<-lm(p~pe+ne,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_1exp(kout_pe)+reg$coefficients[3]*ne_1exp(kout_ne) 

      neglogL<-0.5*n*(log(2*pi)+1-log(n)+log(sum((pmes-pmod[extract])^2))) 

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_ne<-fit$par[2] 

    datareg<-list(pe=pe_1exp(kout_pe)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

    reg<-lm(p~pe+ne,datareg) 

    pbase<-reg$coefficients[1] 

    kin_pe<-reg$coefficients[2] 

    kin_ne<--reg$coefficients[3] 

    pmod<-pbase+kin_pe*pe_1exp(kout_pe)-kin_ne*ne_1exp(kout_ne) 

  } 

  if (model == "Bu"){ 

    # Fixing starting values and restrictions of model parameters for optimization process 

    init<-c(kout_pe_init,kout_ne_init,kout_in_ne_init) 

    mconstr<-rbind(diag(1,3,3),c(-1,0,0),c(0,-1,0),c(0,0,-1)) 
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    vconstr<-c(c(kout_pe_min,kout_ne_min,kout_in_ne_min),c(-kout_pe_max),c(-kout_ne_max),c(-kout_in_ne_max)) 

    # Parameters of Model Bu are optimized by a two-stage minimization of the sum of squared errors,rss 

    #   1. pbase, kin_pe and kin_in_ne are computed by linear regression according to values for kout_pe, 

    #   kout_ne and kout_in_ne 

    #   2. kout_pe,kout_ne and kout_in_ne are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_ne<-param[2] 

      kout_in_ne<-param[3] 

      datareg<-list(pe=pe_1exp(kout_pe)[extract],ne=ne_2exp(kout_ne,kout_in_ne)[extract],p=pmes[extract]) 

      reg<-lm(p~pe+ne,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_1exp(kout_pe)+reg$coefficients[3]*ne_2exp(kout_ne,kout_in_ne) 

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_ne<-fit$par[2] 

    kout_in_ne<-fit$par[3] 

    datareg<-list(pe=pe_1exp(kout_pe)[extract],ne=ne_2exp(kout_ne,kout_in_ne)[extract],p=pmes[extract]) 

    reg<-lm(p~pe+ne,datareg) 

    pbase<-reg$coefficients[1] 

    kin_pe<-reg$coefficients[2] 

    kin_in_ne<--reg$coefficients[3] 

    pmod<-pbase+kin_pe*pe_1exp(kout_pe)-kin_in_ne*ne_2exp(kout_ne,kout_in_ne) 

  } 

  if (model == "TI"){ 

  # Fixing starting values and restrictions of model parameters for optimization process 
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    init<-c(kout_pe_init,kout_s_init,kinhib_init) 

    mconstr<-rbind(diag(1,3,3),c(-1,0,0),c(0,-1,0),c(0,0,-1)) 

    vconstr<-c(c(kout_pe_min,kout_s_min,0),c(-kout_pe_max),c(-kout_s_max),c(-kinhib_max)) 

    # Parameters of Model TI are optimized by a two-stage minimization of the sum of squared errors,rss 

 #   1. pbase and kin_pe are computed by linear regression according to values for kout_pe, kout_s and kinhib 

    #   2. kout_pe, kout_s and kinhib are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_s<-param[2] 

      kinhib<-param[3] 

      datareg<-list(pe=pe_TI(kout_pe,kout_s,kinhib)[extract],p=pmes[extract]) 

      reg<-lm(p~pe,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_TI(kout_pe,kout_s,kinhib) 

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_s<-fit$par[2] 

    kinhib<-fit$par[3] 

    datareg<-list(pe=pe_TI(kout_pe,kout_s,kinhib)[extract],p=pmes[extract]) 

    reg<-lm(p~pe,datareg) 

    pbase<-reg$coefficients[1] 

    kin_s<-reg$coefficients[2] 

    pmod<-pbase+kin_s*pe_TI(kout_pe,kout_s,kinhib) 

  } 

  if (model == "TF"){ 

    # Fixing starting values and restrictions of model parameters for optimization process 
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    init<-c(kout_pe_init,kout_s_init,kout_ne_init) 

    mconstr<-rbind(diag(1,3,3),c(-1,0,0),c(0,-1,0),c(0,0,-1)) 

    vconstr<-c(c(kout_pe_min,kout_s_min,kout_ne_min),c(-kout_pe_max),c(-kout_s_max),c(-kout_ne_max)) 

    # Parameters of Model TF are optimized by a two-stage minimization of the sum of squared errors,rss 

    #   1. pbase, kin_pe and kin_ne are computed by linear regression according to values for kout_pe, kout_s and kout_ne 

    #   2. kout_pe, kout_s and kout_ne are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_s<-param[2] 

      kout_ne<-param[3] 

      datareg<-list(pe=pe_T(kout_pe,kout_s)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

      reg<-lm(p~pe+ne,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_T(kout_pe,kout_s)+reg$coefficients[3]*ne_1exp(kout_ne) 

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_s<-fit$par[2] 

    kout_ne<-fit$par[3] 

    datareg<-list(pe=pe_T(kout_pe,kout_s)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

    reg<-lm(p~pe+ne,datareg) 

    pbase<-reg$coefficients[1] 

    kin_s<-reg$coefficients[2] 

    kin_ne<--reg$coefficients[3] 

    pmod<-pbase+kin_s*pe_T(kout_pe,kout_s)-kin_ne*ne_1exp(kout_ne) 

  } 

  if (model == "TF2"){ 
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    # Fixing starting values and restrictions of model parameters for optimization process 

    init<-c(kout_pe_init,kout_s_init,kout_ne_init,kout_in_ne_init) 

    mconstr<-rbind(diag(1,4,4),c(-1,0,0,0),c(0,-1,0,0),c(0,0,-1,0),c(0,0,0,-1)) 

    vconstr<-c(c(kout_pe_min,kout_s_min,kout_ne_min,kout_in_ne_min), 

      c(-kout_pe_max),c(-kout_s_max),c(-kout_ne_max),c(-kout_in_ne_max)) 

    # Parameters of Model TF2 are optimized by a two-stage minimization of the sum of squared errors,rss 

    #   1. pbase, kin_pe and kin_in_ne are computed by linear regression according to values for kout_pe, 

    #   kout_s, kout_ne and kout_in_ne 

    #   2. kout_pe, kout_s, kout_ne and kout_in_ne are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_s<-param[2] 

      kout_ne<-param[3] 

      kout_in_ne<-param[4] 

      datareg<-list(pe=pe_T(kout_pe,kout_s)[extract],ne=ne_2exp(kout_ne,kout_in_ne)[extract],p=pmes[extract]) 

      reg<-lm(p~pe+ne,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_T(kout_pe,kout_s) 

+reg$coefficients[3]*ne_2exp(kout_ne,kout_in_ne)

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_s<-fit$par[2] 

    kout_ne<-fit$par[3] 

    kout_in_ne<-fit$par[4] 

    datareg<-list(pe=pe_T(kout_pe,kout_s)[extract],ne=ne_2exp(kout_ne,kout_in_ne)[extract],p=pmes[extract]) 

    reg<-lm(p~pe+ne,datareg) 

    pbase<-reg$coefficients[1] 

    kin_pe<-reg$coefficients[2] 

    kin_in_ne<--reg$coefficients[3] 
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    pmod<-pbase+kin_pe*pe_T(kout_pe,kout_s)-kin_in_ne*ne_2exp(kout_ne,kout_in_ne) 

  } 

  if (model == "TIF"){ 

    # Fixing starting values and restrictions of model parameters for optimization process 

    init<-c(kout_pe_init,kout_s_init,kinhib_init,kout_ne_init) 

    mconstr<-rbind(diag(1,4,4),c(-1,0,0,0),c(0,-1,0,0),c(0,0,-1,0),c(0,0,0,-1)) 

    vconstr<-c(c(kout_pe_min,kout_s_min,0,kout_ne_min), 

      c(-kout_pe_max),c(-kout_s_max),c(-kinhib_max),c(-kout_ne_max)) 

    # Parameters of Model TIF are optimized by a two-stage minimization of the sum of squared errors,rss 

    #   1. pbase, kin_pe and kin_ne are computed by linear regression according to values for kout_pe, 

    #   kout_s, kout_ne and kinhib 

    #   2. kout_pe, kout_s, kout_ne and kinhib are optimized with constrOptim function 

    rss<-function(param){ 

      kout_pe<-param[1] 

      kout_s<-param[2] 

      kinhib<-param[3] 

      kout_ne<-param[4] 

      datareg<-list(pe=pe_TI(kout_pe,kout_s,kinhib)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

      reg<-lm(p~pe+ne,datareg) 

      pmod<-reg$coefficients[1]+reg$coefficients[2]*pe_TI(kout_pe,kout_s,kinhib) 

+reg$coefficients[3]*ne_1exp(kout_ne)

      rss<-sum((pmes[extract]-pmod[extract])^2) 

    } 

    fit<-constrOptim(theta=init,f=rss,grad=NULL,ui=mconstr,ci=vconstr,control=list(maxit=3000)) 

    kout_pe<-fit$par[1] 

    kout_s<-fit$par[2] 

    kinhib<-fit$par[3] 
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    kout_ne<-fit$par[4] 

    datareg<-list(pe=pe_TI(kout_pe,kout_s,kinhib)[extract],ne=ne_1exp(kout_ne)[extract],p=pmes[extract]) 

    reg<-lm(p~pe+ne,datareg) 

    pbase<-reg$coefficients[1] 

    kin_pe<-reg$coefficients[2] 

    kin_ne<--reg$coefficients[3] 

    pmod<-pbase+kin_pe*pe_TI(kout_pe,kout_s,kinhib)-kin_ne*ne_1exp(kout_ne) 

  } 

 # Computation of measures of the goodness-of-fit 

  sct<-sum((pmes[extract]-mean(pmes[extract]))^2) 

  scr<-sum((pmes[extract]-pmod[extract])^2) 

  r2<-(sct-scr)/sct 

  r2adj<-1-(n-1)/(n-p)*(1-r2) 

  se<-sqrt(scr/(n-p)) 

  logL<--0.5*n*(log(2*pi)+1-log(n)+log(sum((pmes[extract]-pmod[extract])^2))) 

  aic<-2*p-2*logL 

  aicc<-aic+2*p*(p+1)/(n-p-1) 

  Fit_Model<-list(r2=r2,r2adj=r2adj,se=se,logL=logL,aic=aic,aicc=aicc,converg=fit$convergence, 

  pbase=pbase,kout_pe=kout_pe,kout_ne=kout_ne,kout_in_ne=kout_in_ne,kout_s=kout_s, 

   kinhib=kinhib,kin_pe=kin_pe,kin_ne=kin_ne,kin_in_ne=kin_in_ne,kin_s=kin_s) 

  Fit_Model<-Fit_Model 

} 
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Supplemental document 3.  Alternative solution of the models and impact on model 

estimates 

Solution # 1 

It is the result obtained with the procedure used in the main study given in the 

supplemental document 2. Model parameters were fitted within the region defined by 

the following constraints: 

koutpe in [0.01; 0.07] and starting point = 0.03 for all models  
koutne in [0.06; 1] and starting point = 0.1 for models Ba, Bu, TF, TF2 and TIF 
koutin_ne in [0.1; 2] and starting point = 0.5 for models Bu and TF2 

kouts in [0.05; 1] and starting point = 0.1 for models TI, TF, TF2 and TIF

kin_i in [0; 0.01] and starting point = 0.001 for models TI and TIF 

Solution # 2  

Alternative procedure using upper bound for koutpe lower than in the main study: 

koutpe in [0.01; 0.03] and starting point = 0.02 for all models 

Table 1 gives RSS minimized using the two procedures. Small differences were 

observed for each model. 

Table 1 : Mean ± SD of residual sum of squares (RSS) for solution #1 and solution  #2. 

Model RSS #1 RSS #2 
Difference 

#1 - #2 

Ba 477 ± 272 479 ± 261 -2 ± 28

Bu 465 ± 250 462 ± 242 3 ± 25

 562 ± 288 568 ± 287 -6 ± 10

TF 475 ± 271 479 ± 261 -4 ± 29

TF2 463 ± 256 460 ± 242 3 ± 27

TIF 468 ± 272 481 ± 265 -12 ± 27

No significant difference between solutions #1 and #2. 
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Tables 2 and 3 give the estimates of parameters of Model Ba and Model Bu showing 

large differences between the 2 solutions. 

Table 2 : Mean ± SD of estimates for Model Ba. 

Solution #1 Solution #2 

Pbase (% of pre-

training) 
101.3 ± 0.7 101.1 ± 0.9 

koutpe (day-1) 0.0605 ± 0.0192 0.0209 ± 0.0104 * 

pe (day) 23.4 ± 25.6 63.6 ± 34.8 * 

kinpe (a.u.) 0.0283 ± 0.0153 0.0043 ± 0.0022 * 

koutne (day-1) 0.157 ± 0.031 0.237 ± 0.048 * 

ne (day) 6.57 ± 1.04 4.36 ± 0.77 * 

kinne (a.u.) 0.0666 ± 0.0260 0.0425 ± 0.0128 * 

a.u. : arbitrary unit.

* : significant difference between solutions #1 and #2.

Table 3 : Mean ± SD of estimates for Model Bu. 

Solution #1 Solution #2 

Pbase (%) 99.4 ± 0.7 99.9 ± 0.7 * 

koutpe (day-1) 0.0455 ± 0.0207 0.0227 ± 0.0101 * 

pe (day) 34.3 ± 32.7 57.6 ± 33.6 * 

kinpe (a.u.) 0.0114 ± 0.0074 0.0038 ± 0.0014 * 

koutne (day-1) 0.306 ± 0.067 0.351 ± 0.059 * 

ne (day) 3.39 ± 0.67 2.93 ± 0.48 * 

koutin_ne (day-1) 0.57 ± 0.56 1.20 ± 0.69 * 

in_ne (day) 3.75 ± 3.36 1.32 ± 1.09 * 

kinin_ne (a.u.) 0.000511 ± 0.000263 0.000650 ± 0.000216 

a.u. : arbitrary unit.

* : significant difference between solutions #1 and #2.
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Figure 1 shows the impulse response estimated using the two solutions for median TL for 

one swimmer. Tables 4 and 5 compare the characteristics of impulse responses for the 

entire group of swimmers. Despite the large difference in the estimates of parameters, the 

impulse responses for Model Ba, Model Bu for single bout and last bout effects at the 

asymptote were close when using the two set of parameters. Only pg showed large 

difference between the two solutions.  

Figure 1 : Impulse response to median TL with the estimates from Model Ba and 

Model Bu found for one swimmer. Panel A and B : estimates of model parameters 

and impulse responses for solution #1. Panel C and D : estimates of model 

parameters and impulse responses for solution #2. 
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Table 4 : Mean ± SD of characteristics of impulse response to median TL for Model 

Ba. 

Solution #1 Solution #2 

p0 (% of pre-training) 0.92 ± 0.25 0.92 ± 0.24 

tn (day) 10.5 ± 1.14 11.2 ± 1.34 * 

pg (% of pre-training) 0.096 ± 0.027 0.054 ± 0.014 * 

tg (day) 20.8 ± 2.7 23.0 ± 2.5 * 

* : significant difference between solutions #1 and #2. 

Table 5 : Mean ± SD of characteristics of impulse response to median TL for 

Model Bu given for the response to an isolated training bout (single session) and to 

the last bout at steady state after daily repetitions (Asymptote). 

Solution #1 Solution #2 

Single session 

p0 (% of pre-training) 0.03 ± 0.31 0.31 ± 0.18 * 

tn (day) 1.4 ± 2.2 4.3 ± 1.7 * 

pg (% of pre-training) 0.17 ± 0.12 0.09 ± 0.03 * 

tg (day) 7.6 ± 4.4 13.0 ± 2.8 * 

Asymptote 

p0 (% of pre-training) 0.62 ± 0.130 0.55 ± 0.12 

tn (day) 5.2 ± 0.9 6.1 ± 1.2 

pg (% of pre-training) 0.11 ± 0.05 0.06 ± 0.01 * 

tg (day) 12.9 ± 1.8 14.9 ± 2.7 * 

* : significant difference between procedure #1 and procedure #2. 
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Table 6 compares the characteristics of optimal taper computed using the two set of 

parameters for Model Bu. No statistical difference was observed between the two 

solutions with the exception of optimal duration with step reduction of training but the 

difference was lower than 1 day. 

Table 6 : Mean ± SD of estimated characteristics of the optimal simulated taper 

according to the form of the training reduction after regular training (median TL) 

and  a step increase of 20% from regular training for 28 days. 

Form of reduction of training during taper 

Step Linear Exponential 

Regular training 

Reduction (%) 

Solution #1 87 ± 16 67 ± 13 62 ± 13 

Solution #2 87 ± 7 73 ± 8 65 ± 9 

Duration (days) 

Solution #1 6.5 ± 1.2 9.0 ± 1.1 8.2 ± 0.6 

Solution #2 7.1 ± 1.2 * 8.8 ± 0.6 8.6 ± 1.0 

Highest perf. (%) 

Solution #1 103.2 ± 1.1 103.2 ± 1.1 103.2 ± 1.1 

Solution #2 103.6 ± 1.3 103.6 ± 1.3 103.6 ± 1.3 

Regular training +20% 

Reduction (%) 

Solution #1 86 ± 14 71 ± 11 66 ± 13 

Solution #2 88 ± 8 74 ± 6 66 ± 7 

Duration (days) 

Solution #1 7.6 ± 0.7 9.5 ± 1.7 8.7 ± 1.0 

Solution #2 8.1 ± 1.0 * 9.5 ± 1.0 9.3 ± 1.1 

Highest perf. (%) 

Solution #1 103.9 ± 1.3 103.8± 1.3 103.8± 1.3 

Solution #2 104.3 ± 1.6 104.3 ± 1.6 104.3 ± 1.6 

* : significant difference between solutions #1 and #2.
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Table 7 compares the accuracy of performance prediction computed using the two set of 

parameters for Model Ba and Bu. Statistical difference between the two solutions was 

observed for MAPE for the two validation datasets. These small differences lower than 

0.1 % are explained by significant difference in systematic error : greater for solution #2 

than solution #1 for Validation dataset 1 and lower for solution #2 than solution #1 for 

Validation dataset 2. 

Table 7 : Accuracy of the performance prediction for validation dataset 1 and 2 using 

cycles #1 and #2 for training models 

Model Ba Model Bu 

Data set Solution #1 Solution #2 Solution #1 Solution #2 

Validation 1 

Systematic error 0.16 ± 0.40 0.49 ± 0.43 * 0.21 ± 0.42 0.47 ± 0.50 * 

Typical error 2.40 ± 0.74 2.44 ± 0.75 * 2.56 ± 0.80 2.54 ± 0.80 

MAPE 2.02 ± 0.65 2.12 ± 0.66 * 2.17 ± 0.70 2.22 ± 0.70 * 

Validation 2 

Systematic error -1.74 ± 1.23 -1.48 ± 1.15 * -1.64 ± 1.15 -1.50 ± 1.16 *

Typical error 2.43 ± 0.51 2.51 ± 0.59 2.32 ± 0.49 2.36 ± 0.50

MAPE 2.69 ± 1.23 2.60 ± 0.85 * 2.56 ± 0.79 2.52 ± 0.78

Systematic and typical error are expressed as a percentage of first performance of Season 1. 

* : significant difference between solutions #1 and #2.
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