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Motivated by contradicting reports in the literature, we have investigated the structural stability of tungsten
nanoparticles using density functional theory calculations. The comparison of BCC, FCC, A15, disordered,
and icosahedral configurations unequivocally shows that BCC is the energetically most stable structure when
the number of atoms is greater than 40. A disordered structure is more stable for smaller sizes. This result
conflicts with an earlier theoretical study on transition metal nanoparticles, based on a semi-empirical modeling
of nanoparticles energetics [D. Tománek et al., Phys. Rev. B 28, 665 (1983)]. Examining this latter work in the
light of our results suggests that an erroneous description of clusters geometry is the source of the discrepancy.
Finally, we improve the accuracy of the semi-empirical model proposed in this work, which will be useful to
calculate nanoparticle energies for larger sizes.

I. INTRODUCTION

Due to its high melting and evaporation temperatures and
excellent mechanical properties, tungsten is the selected wall
material to be used in fusion reactor divertors like ITER. De-
spite a high thermal stability and a good resistance to sput-
tering, the interaction with the plasma during operation leads
to the formation of dust composed of tungsten nanoparticles
of various sizes [1]. This aspect motivated extensive investi-
gations on the properties of W nanoparticles, and in particu-
lar their environmental and biological impacts in a fusion-like
environment [2]. Tungsten-based nanomaterials are also in-
creasingly used in biomedicine applications [3].

The most stable phase of bulk tungsten is named α-W
and has a body-centered structure (BCC). Two metastable al-
lotropes are known, which can form in specific conditions.
The first one is named β -W and has a A15 cubic structure.
β -W thin films have been extensively studied owing to the
report of a giant spin Hall effect [4]. The second one is γ-
W, with a face-centered cubic (FCC) structure [5]. Naturally,
one would assume that tungsten nanoparticles are made of the
most stable bulk phase, i.e. α-W [6]. However, in an early the-
oretical paper, Tománek and co-workers predicted that a FCC
structure would be favored in small nanoparticles for several
transition metals, including tungsten [7]. Their conclusions
were based on the argument that surface energies associated
with the FCC structure are typically lower than the ones for
the BCC structure, and that this effect will dominate at small
sizes when the surface-to-bulk ratio increases. In the specific
case of tungsten, they calculated a nanoparticle size thresh-
old of 5-6 nm, below which FCC should be the lowest energy
structure. Later X-ray diffraction experiments on nanometer
sized W clusters confirmed the prediction, and determined the
BCC-FCC structural transition at 7 nm [8]. Similar conclu-
sions in support of this argument were reached for Mo and
Cr clusters [9, 10]. But other experiments led to different ob-
servations. For instance Iwama and Hayakawa found that 3–
20 nm Mo and W nanoparticles show crystalline structures
being either BCC or A15 for Mo, and A15 for W, but not
FCC [11]. More recently, Schöttle and co-workers reported
transmission electron microscopy observations of 1-2 nm W

nanoparticles with a BCC structure [12]. These discrepan-
cies suggest that the observed structure might depend on the
preparation techniques and growth conditions. The substrate,
the presence of impurities or surfactants, are factors that can
change the relative stability of phases. In addition a specific
phase can be kinetically quenched during growth although it is
thermodynamically metastable, and remains stable at ambient
conditions or during moderate annealings.

On the numerical side, classical molecular dynamics simu-
lations were carried out for investigating this possible BCC-
FCC transition as a function of the size and shape in W
nanoparticles. Hence Chen and co-workers reported that the
BCC structure is significantly more stable than the FCC, ex-
cept for a singular high energy shape [13]. This work con-
firms an earlier study by Marville and Andreoni, who found
that tungsten nanoparticles were more stable in a BCC struc-
ture than in a FCC or icosahedral arrangement [14]. These
simulations then support the recent microscopy measurements
against the early predictions and experiments. However one
has to be cautious about definite conclusions, since inter-
atomic potentials are not always accurate in the description of
under-coordinated atoms at the surfaces and edges of nanopar-
ticles. For instance, Lin et al. found different low energy
crystalline structures for W clusters depending on the used
potentials [15]. Another aspect is the potential stabilization of
the A15 phase in the W nanoparticles, which was overlooked
in published numerical works. This motivates us to perform a
thorough investigation of the structural stability of small tung-
sten nanoparticles using first-principles calculations. In par-
ticular we consider numerous systems with BCC, FCC, A15,
disordered, and icosahedral structures.

II. METHODS

A. Electronic structure calculations

We perform first principles calculations in the framework of
density functional theory (DFT) for determining the relaxed
structure and the associated energy of various nanoparticle
models. The code pw.x in the Quantum Espresso software [27]
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TABLE I. Computed data for tungsten in BCC, FCC, and A15 struc-
tures, compared to experimental results when available, and DFT
computed data from the literature. The lattice parameter a0 is ex-
pressed in angstrom, the bulk modulus B in GPa, and the surface
energies γ in J m−2. The bulk energy per atom ε0 are given rel-
atively to the BCC phase (i.e. ε0(BCC) = 0), and are expressed in
eV at−1. Note that the energies for {110} and {111} surfaces of FCC
W (marked with a *) correspond to the unrelaxed slab configuration
(see text for details).

DFT

Exp. This work Others

B
C

C

a0 3.165a 3.1753 3.1741b, 3.172c

B 310d 311 309e

γ100 4.071 3.954f

γ110 3.265g, 3.675h 3.302 3.230f

γ111 3.569 3.466f

FC
C

a0 4.13a 4.0256 4.025c, 3.960i

ε0 0.494 0.49c, 0.50i

B 282 286j

γ100 3.284

γ110 3.736∗

γ111 2.637∗

A
15

a0 5.05a 5.0665 5.059c

ε0 0.082k 0.093 0.09c

B 298 298f

a Reference 16
b Reference 17
c Reference 18
d Reference 19
e Reference 20
f Reference 21
g Reference 22
h Reference 23
i Reference 24
j Reference 25
k Reference 26

is used for this purpose. A well converged electronic struc-
ture is achieved by using a plane wave energy cutoff of 40 Ry
and a charge density cutoff of 320 Ry. Exchange-correlation
contributions are described with the Perdew-Burke-Ernzerhof
functional [28]. We use the Projector Augmented-Wave
method [29] for ion-electron interactions, with the valence
electron configuration 5s25p65d46s2. Finally, the cold smear-
ing method [30] of Marzari and co-workers is applied to im-
prove the convergence of the electronic structure.

We first compute the lattice parameter and bulk modulus
for the three tungsten allotropes, and their energy differences,
using supercells and a very dense grid of k-points for Bril-
louin zone sampling. Our results in Tab. I are in excellent
agreement with other recent calculations and available exper-
iments. The table also includes the energies of surfaces with
low Miller indexes for BCC and FCC W. Those are calculated
using a slab configuration, a large number of layers, and a k-
point grid of 20×20×1, in order to obtain converged results.

The relaxation is achieved when all components of all ionic
forces are lower than 2.6×10−4 eV Å−1. Calculated surface
energies for BCC W are in good agreement with the literature.
We also consider the canonical surfaces of FCC W, for which
no information seems to be available in the literature. In the
case of the (110) and (111) surfaces, we observe distortions
occurring in the center of the slab during force relaxation. We
have not pursued the analysis of this issue any further, since it
is not the focus of the study. For these two surfaces, we report
in Tab. I the energies of the unrelaxed initial configuration.

For the relaxation of nanoparticles, we employ supercells
large enough to allow for at least 10 Å between periodic repli-
cas in all dimensions. The k-point sampling is made at the
Γ-point as is usual for 0D systems. Finally, forces are relaxed
until all components for all ions are lower than 2.6×10−4 eV
Å−1.

B. Nanoparticles selection

The shape of 1-2 nm nanoparticles, i.e. including about
thirty to a few hundred atoms, is often poorly documented,
and tungsten is no exception. Therefore we follow a well
proven, standard methodology [31], in order to generate low
energy initial configurations. For BCC and FCC for which the
energies of surfaces are known, we use a Wulff construction
as a first option. Alternatively, we also carve nanoparticles out
of bulk, with spherical or smoothed cubic shapes. A coordi-
nation analysis is next performed to select configurations with
as few low coordination atoms as possible, since the latter are
associated with a high energy in metals. These two techniques
are both used to obtain initial configurations of BCC and FCC
nanoparticles. To our knowledge, no information is available
regarding possible surfaces for the A15 structure. It is there-
fore difficult to generate Wulff-like nanoparticles. The inspec-
tion of the A15 structure reveals that there are several inequiv-
alent types of (100), (110) and (111) planes. Since one (100)
plane appears denser than the others, we tried to build cubic
nanoparticles with facets corresponding to this specific plane.
We also generated spherical nanoparticles. In all cases poorly
coordinated atoms, at corner edges for instance, are removed
in order to improve the stability.

The carving strategy is more difficult to implement in the
case of a disordered structure, since bulk tungsten does not
exist in an amorphous phase to our knowledge. Recently,
Jana and Caro performed an extensive search for the most sta-
ble structures of iron nanoparticles including less than 200
atoms [32]. Except for a few crystalline configurations at
magic numbers, they found that most of these structures are
amorphous. We select several of these configurations from
their freely available structures database, which can be used
as initial configurations after a small rescaling. These systems
are labeled D (for disordered) in the remainder of the paper.

Finally, we also consider icosahedral nanoparticles, identi-
fied with label ’I’. The two possible candidates in the investi-
gated size range contain 55 and 147 atoms [33]. Overall we
select 27 different nanoparticles, with atoms numbers rang-
ing from 55 to 169, to be used as starting configurations in
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first-principles calculations. The set includes 8 BCC, 7 FCC,
5 A15, 5 disordered (D), and 2 icosahedral (I) nanoparticles.

III. STABILITY

FIG. 1. Examples of DFT relaxed tungsten nanoparticles, with var-
ious sizes (given as a number of atom in the label) and different
atomic structures (BCC, FCC, A15, D for disordered, I for icosa-
hedral).

Selected examples of DFT relaxed nanoparticles are rep-
resented in Fig. 1. In most cases we observe limited struc-
tural changes compared to the initial configurations. In par-
ticular only a slight surface relaxation is observed for BCC
and I nanoparticles, with an energy gain of 0.15 eV/at in av-
erage. For A15 and FCC systems, the surface relaxation is
greater, with an average relaxation energy of 0.26 eV/at and
0.32 eV/at, respectively. The larger energy gain is obtained for
D nanoparticles, for which significant surface atom displace-
ments are identified. In average, the relaxation of D nanopar-

FIG. 2. Nanoparticle energy per atom (eV) as a function of the num-
ber of atoms N, the reference being the BCC bulk energy, after DFT
relaxation (BCC: blue circles; FCC, orange squares; A15: magenta
diamonds; D: green triangles; I: golden stars). Dashed lines are ob-
tained by fitting all data points for a given set with Eq. 3 (fit parame-
ters reported in Tab. II).

ticles yields an energy gain of 0.83 eV/at.
The energy E (with respect to the perfect BCC bulk) of a

relaxed nanoparticle made of N atoms can be written

E = Nε0 +Es(N), (1)

with ε0 the bulk energy per atom relatively to the ground
state BCC structure (ε0(BCC) = 0). Es is an excess energy,
akin to a surface energy, although it can in principle includes
further contributions associated with Laplace pressure, sur-
face stress relaxation, or quantum confinement effects. As-
suming that only surface atoms contributes to Es, and that the
number of surface atoms is roughly N2/3, Eq. 1 becomes

E = Nε0 +βN2/3, (2)

with β the average energy contribution to Es from surface
atoms. The energy per atom of a nanoparticle can then be
written

E/N = ε0 +βN−1/3. (3)

Figure 2 shows the nanoparticle energies calculated by DFT
for all configurations. As predicted by Eq. 3, E/N values in-
crease for N → 0 due to the growing surface contribution, and
converge to ε0 for N → ∞. The most striking result is that
for a given N, BCC nanoparticles appear to be always more
stable than the others. Fitting the Eq. 3 separately for each
kind of structure better highlights this finding (dashed lines
in Fig. 2). We observe overall E(BCC)< E(A15)< E(D)<
E(I) < E(FCC) in the investigated N range. Therefore our
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results disagree with predictions made in Ref. 7. In fact our
calculations clearly show that FCC nanoparticles are not en-
ergetically more stable than BCC nanoparticles. They also
reveal that BCC is the lowest energy structure and that A15,
disordered and icosahedral nanoparticles are more stable than
FCC nanoparticles. For N ≃ 120− 140, we estimate an en-
ergy difference of 0.18 eV/at between BCC and icosahedral
nanoparticles, in excellent agreement with a previous investi-
gations [34].

TABLE II. β parameters obtained by fitting Eq. 3 with DFT calcula-
tions (shown in Fig. 2). For BCC, FCC, and A15 nanoparticles, ε0
values calculated for bulk systems are used in the fit. For disordered
(D) and icosahedral (I) nanoparticles, ε0 is computed together with
β by fit. The table also includes the corresponding surface energies
calculated using the spherical model described in the appendix, and
the number of atoms Nc below which each phase becomes more sta-
ble than BCC.

β (eV) ε0 (eV) γ (J m−2) Nc

BCC 7.149 0.000 3.729

FCC 5.861 0.494 3.019 17

A15 7.000 0.093 3.614 4

D 6.099 0.307 3.142 40

I 5.836 0.433 3.006 27

The β values determined in the fitting process are reported
in Tab. II. We adjust β while using ε0 from bulk calculations
(Tab. I), except for disordered and icosahedral nanoparticles
for which ε0 is also adjusted. Note that only minor changes
are observed when both β and ε0 are adjusted on DFT data for
BCC, FCC, and A15 nanoparticles.

β in Eq. 3 corresponds to an energy per surface atom. Con-
version into the usual surface energies γ , i.e. energies per sur-
face area, is straightforward if one assumes that nanoparticles
are spherical (see the Appendix). Computed values are in-
cluded in Tab. II. We find that the lowest γ values are ob-
tained for I and FCC, followed by D, A15, and finally BCC.
This is in agreement with arguments based on a lower surface
to volume ratio for icosahedral and FCC [7, 9, 33]. We also
observe that γ values for BCC and FCC are in the range of
surface energies calculated for well defined orientations as re-
ported in Tab. I. However, it is difficult to push further the
comparison. Swaminarayan and co-workers proposed that the
surface energy of spherical nanoparticles made of FCC met-
als is close to γ110 [35]. This is clearly not valid in the present
work. Our value of 3.019 J m−2 is also larger than predictions
made using an analytical model [36].

The largest surface energy for BCC systems necessarily im-
plies that other structures will be energetically favored below
a given size. Using Eq. 3, the critical transition between BCC
and phase X is predicted to occur at

Nc =

[
β (BCC)−β (X)

ε0(X)

]3

, (4)

since ε0(BCC) = 0. Computed values are reported in

TABLE III. Root mean square deviations (RMSD, in eV) of
Es(DFT)-Es(Eq. 5) for each set and different optimization levels.
Opt0: Es(Eq. 5) is calculated using the original parameters (λ ,η)
given in Ref. 7. Opt1: η is optimized. Opt2: both λ and η are opti-
mized.

Opt BCC FCC A15 D I

0
η 0.4 0.08 0.4 0.08 0.08

λ 0.5 0.5 0.5 0.5 0.5

RMSD 23.17 13.06 29.46 22.01 9.84

1
η 1.00 0.20 0.42 0.00 0.33

λ 0.5 0.5 0.5 0.5 0.5

RMSD 12.91 11.19 27.76 17.94 4.15

2
η 1.00 0.20 0.77 0.04 0.12

λ 0.546 0.461 0.579 0.619 0.540

RMSD 4.35 7.17 2.20 2.76 0.00

Tab. II. We find that FCC nanoparticles become more sta-
ble than BCC nanoparticles for N ≤ 17. This is dramatically
smaller than previously reported sizes of Nc = 5660 (Ref. 7)
and Nc = 10470 (Ref. 8). In addition, such a transition is
not relevant here because our data also suggest that a disor-
dered state is favored for N ≤ 40. It is well known that a
non-crystalline molecular configuration should prevail for all
metals at the smallest scales. Our computed threshold is close
to a measured value of N = 30, but this good agreement may
be fortuitous given the large experimental uncertainty [8] and
the limited set of disordered configurations considered in our
simulations.

To conclude this section, our DFT calculations unambigu-
ously show that a BCC structure is favored for small tung-
sten nanoparticles of 1-1.6 nm. Nanoparticles with FCC or
A15 structures are always higher in energies. When the num-
ber of atoms is lower than about 40, a disordered state be-
comes favorable. These results are at odds with a theoretical
analysis [7] and X-ray diffraction experiments [8]. They are
however in agreement with microscopy measurements [12]
and classical molecular dynamics calculations [13, 14]. The
main factor explaining the BCC stability over FCC despite
the higher surface energy contribution, is the large bulk en-
ergy difference in favor of BCC. It is then obvious that the
BCC structure will be favored for nanoparticles larger than
those investigated here. Finally, it is important to keep in mind
that we compute 0 K energy differences, and an evaluation of
nanoparticle free energies would be needed for more definite
conclusions. As a first hint, the bulk entropy difference be-
tween FCC and BCC is estimated to be approximately 1 kB
per atom [37], thus at least one order of magnitude lower than
the energy differences in Tab. I at 300 K.

IV. SEMI-EMPIRICAL MODELING

In this section, we focus on the semi-empirical model pro-
posed by Tománek and co-workers [7]. We first aim at com-
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FIG. 3. Surface energy Es computed with the Eq. 5 plotted against Es
calculated by DFT, for all nanoparticles (BCC: blue circles; FCC, or-
ange squares; A15: magenta diamonds; D: green triangles; I: golden
stars). Open symbols show values obtained using the initial param-
eters as given in Ref. 7 and reported in Tab. III (Opt0, see text for
details), while filled symbols correspond to those obtained using op-
timized parameters (Opt2). The dashed black line marks the perfect
agreement. The inset graph shows the root mean square deviations
(RMSD) for each set (lines with same colors than the points in the
main graph) and different optimization levels (Tab. III).

paring and improving predictions from this model with our
DFT calculated nanoparticle energies. In a second step, we
try to understand why using this model leads to overestimated
sizes for the BCC-FCC transition.

We summarize the basics of this model in the first place.
Using the second moment approximation, Tománek and co-
workers proposed that Es in Eq. 1 can be approximated by

Es = Ec

Ns

∑
i=1

[
(Zi/Zb)

λ −1
]
, (5)

where Ns is the number of surface atoms and λ = 1/2. Ec
is the cohesive energy of the bulk state. Zi is an effective co-
ordination number including both first and second neighbors:
Zi = Z1

i +ηZ2
i where Z1

i and Z2
i refer to nearest neighbors and

next-nearest neighbors, respectively. In their paper Tománek
and co-workers reported that appropriate values for parameter
η are 0.08 for FCC and 0.4 for BCC [7]. They also defined
surface atoms as those with Zi lower than 10. Finally, Zb is
the coordination for bulk atoms, which depends on the atomic
structure.

We first compute Zi for all BCC and FCC nanoparticles
studied in the present work, from the DFT relaxed config-
urations and following the rules mentioned above. Using

Ec(BCC) = −8.90 eV/at [38] and Ec(FCC) = −8.90+ ε0 =
−8.406 eV/at, Es is calculated according to Eq. 5. The re-
sults are plotted against DFT data in Fig. 3, and labeled as
’Opt0’. It appears that compared to DFT Es for BCC systems
is systematically underestimated, whereas it is overestimated
for FCC systems. The root mean square deviations (RMSD)
are reported in Tab. III. One can see that the error is signifi-
cant, in particular for BCC nanoparticles.

Nanoparticles with A15, disordered and icosahedral struc-
tures are not considered in Ref. 7, and we have to determine
appropriate guess for model parameters. For disordered D
and icosahedral I nanoparticles, we use the same parameters
than for FCC ones. We know that Ec(D) =−8.593 eV/at and
Ec(I) =−8.467 eV/at, using ε0 from Tab. II. In the A15 struc-
ture, there are 8 atoms in the elementary cell, with two dif-
ferent atomic environments. 2 of them have 12 neighbors at
2.83 Å, and the remaining 6 have 2 neighbors at 2.53 Å, 4
at 2.83 Å, and 8 at 3.102 Å. We assume that the first neigh-
bors distance is lower than 2.95 Å, i.e. Z1

i = 7.5 on average.
Neighbors atoms at 3.102 Å are considered second neighbors,
i.e Z2

i = 6 on average. We use η = 0.4 as initial guess by anal-
ogy with BCC, and Ec(A15) = −8.807 eV/at. In all cases,
atoms are identified as belonging to the surface if their effec-
tive coordination number is lower than 10, as in Ref. 7. Es
values computed with the model for A15, D and I nanoparti-
cles are included in Fig. 3. In most cases they are underes-
timated compared to the DFT results. The RMSD for D and
A15 are similar to the BCC value (Tab.III). Note that the low
RMSD value for I is due to the limited size of the set (two
nanoparticles).

In order to improve the accuracy of the semi-empirical
model, an optimization method is applied with η as a variable
parameter (Opt1). The new η and RMSD values are shown
in Tab. III. The best improvements are obtained for BCC and
I, but only a moderate RMSD reduction is observed for FCC,
A15 and D nanoparticles. Finally, we allow both η and λ to
vary during the optimization (Opt2). Final results are plotted
in Fig. 3. A remarkable refinement is achieved for A15, D and
BCC systems, and to a lesser extent for FCC. This is clearly
demonstrated by the RMSD values which become lower than
3 eV for D and A15. Overall, we find that the model is highly
sensitive to λ , and much less to η . Except for FCC, a λ value
slightly greater than 0.5 greatly increases the model accuracy.

Surface energies calculated using the original model in
Ref. 7 are therefore not very accurate, but it is not clear
whether this is the main reason behind the difference in pre-
diction for the BCC-FCC transition. In the same paper, the
following expression is defined:

δ (N) =
1
N

 Ns

∑
i=1
FCC

[
(Zi/Zb)

1/2 −1
]
−

Ns

∑
i=1
BCC

[
(Zi/Zb)

1/2 −1
] .

(6)
δ (N) depends only on the cluster geometry and is repre-

sented in the Fig. 3 of Ref. 7 and reproduced in our Fig. 4.
Tománek and co-workers proposed that the FCC-BCC transi-
tion occurs when the following condition is met:
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FIG. 4. δ (N) as a function of N, the number of atoms: data from
Fig. 3 in Ref. 7 (blue line), and computed from DFT data using
Eq. 9 (orange line). The dotted blue line shows the best fit of δ (N)

data in Ref. 7 with the expression µN−1/3. The dashed green line
is positioned at (Ec(BCC)−Ec(FCC))/Ec(BCC) = 0.0555 (using
Ec(BCC) =−8.90 eV and Ec(FCC) =−8.406 eV).

δ (N)
N=Nc=

Ec(BCC)−Ec(FCC)
Ec(BCC)

, (7)

with the right-hand side a constant, plotted as a dashed line
in Fig. 4. They found that Nc = 5660 using their δ (N) values.

We remark that δ (N) can also be computed from the β val-
ues in Tab. II determined from DFT results. In fact, using
Eq. 5, we can write

δ (N) =
1
N

[
Es(FCC)

Ec(FCC)
− Es(BCC)

Ec(BCC)

]
. (8)

Since Es = βN2/3, we finally obtain

δ (N) = N−1/3
[

β (FCC)
Ec(FCC)

− β (BCC)
Ec(BCC)

]
. (9)

Figure 4 shows δ (N) computed with Eq. 9, β values in
Tab. II, Ec(BCC) = −8.90 eV and Ec(FCC) = −8.406 eV.
Note that a closely matching curve is obtained if δ (N) is cal-
culated using Eqs. 5 and 8, and the Opt2 set of parameters.
There is clearly a large difference with δ (N) as given in Ref. 7,
which likely explains the disagreement concerning the criti-
cal size of the BCC-FCC transition. With our data and using
Eq. 7, we find a transition at Nc = 7. The small difference with
Nc = 17 in Tab. II can be explained by the fact that an addi-
tional approximation is made in Ref. 7 to derive the Eq. 7.

It is also noteworthy that the δ (N) curve provided in Ref. 7
does not seem physically correct. In fact, it should mainly
obey a N−1/3 variation. The best fit of δ (N) with the expres-
sion µN−1/3 is represented as a dotted blue line in Fig. 4, with
µ = 0.6646. The agreement is obviously not satisfactory. This

cast some doubts about the validity of these δ (N) data. In ad-
dition, according to Eq. 9 one can write

µ =
β (FCC)
Ec(FCC)

− β (BCC)
Ec(BCC)

. (10)

This expression can be employed to compute β (FCC) as-
suming that β (BCC) = 7.149 eV, Ec(BCC) = −8.90 eV,
Ec(FCC) =−8.406 eV, and µ = 0.6646. We find β (FCC) =
1.166 eV, which corresponds to γ = 0.601 J m−2 (see the Ap-
pendix). Such a surface energy value is too low for W to be
physically meaningful. This confirms that the main source of
discrepancy between our calculations and predictions made in
Ref. 7 is the δ (N) curve. Since the latter is not a material de-
pendent quantity, this unfortunately questions the validity of
their predictions for other metals.

V. CONCLUSIONS

In this paper we report investigations on the structure and
stability of tungsten nanoparticles, based on first-principles
DFT calculations. In particular, various nanoparticles with
BCC, FCC, A15, disordered and icosahedral structures, are
considered. These models include 55 to 169 atoms, equiva-
lent to sizes of about 1–1.6 nm. Our first conclusion is that
BCC nanoparticles are the most stable energetically, followed
by A15, disordered, icosahedral, and FCC in this order. Vari-
ations of nanoparticle energy as a function of size reveal a
BCC-disordered transition at small sizes (at 40 atoms), and no
BCC-FFC transition. It contradicts an earlier benchmark theo-
retical study on transition metal nanoparticles [7]. Our inves-
tigations suggest that the discrepancy could be explained by
an erroneous description of the cluster geometry in this study.
Finally, we also analyze the proposed semi-empirical model
based on the second moment approximation, and improve its
accuracy by adjusting the model parameters with respect to
our DFT data. This will be useful for accurately calculating
the energy of tungsten nanoparticles for all investigated struc-
tures, at much larger sizes and without the need of explicit
atomistic calculations.

As it stands, our calculations do not explain why A15 and
FCC tungsten nanoparticles were observed [8, 11], and not
only BCC ones [12]. The most likely rationale is that in these
experiments several factors like the substrate, the presence
of impurities or surfactants, could have influenced the rela-
tive stability of the different phases. A thermodynamically
metastable structure could also form due to favorable kinetics
during the synthesis, and remains stable at ambient conditions
or during moderate annealings.

In perspective to this study, in the light of the results pre-
sented here, it seems worthwhile to perform DFT calculations
of the structure and stability of nanoparticles made of other
transition metals, in particular those for which a BCC-FCC
transition was predicted like Mo, Ta, Nb, Cr and V.
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Appendix: Spherical nanoparticle model

A general expression of the energy E of a nanoparticle of N
atoms is

E = Nε0 + γS(N), (A.1)

with S(N) the surface of the nanoparticle, γ the surface en-
ergy, and ε0 the energy per atom of the corresponding bulk
phase. This is equivalent to Eq. 1 if Es(N) = γS(N). Assum-
ing a spherical shape for the nanoparticle and a radius r, the
nanoparticle surface is

S = 4πr2, (A.2)

and the nanoparticle volume is

V =
4π

3
r3 = Nv0, (A.3)

with v0 the volume of one atom. Combining Eqs. A.2 and
A.3, we obtain

r =
(

3v0N
4π

)1/3

, (A.4)

and

S = 4π

(
3v0

4π

)2/3

N2/3. (A.5)

Finally, Eq. A.1 can be written

E = Nε0 +4γπ

(
3v0

4π

)2/3

N2/3, (A.6)

and

E/N = ε0 +4γπ

(
3v0

4π

)2/3

N−1/3. (A.7)

In comparison with Eq. 3, we finally get

γ =
β

4π

(
4π

3v0

)2/3

. (A.8)

v0 is taken to be equal to the bulk atomic volume, assum-
ing that the nanoparticle relaxation is small, and that v0 is the
same for all nanoparticle atoms. v0 is then easily calculated
for each crystalline structure using DFT determined a0 (given
in Tab. I). For the disordered D and icosahedral I nanoparti-
cles, we use the same v0 than for the FCC structure.
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