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Line	Ride-Sharing	as	a	bi-sided	mobility	service	

with	price	schedule,	transactional	protocol	and	

waiting	policy:	a	logit	traffic	assignment	model	and	

its	equilibrium	

Abstract 

A line ride-sharing service is supplied along a given roadway path by an operator that matches Users 

(riders) and Agents (drivers), under specific protocol that involves price schedule on both the U and A 

sides, waiting policy on either side and transaction times. The resulting time and money items add up 

over trip legs of Run / Stop / Transaction / Wait, yielding trip time and money cost depending on the 

service role, A or U, compared to Non-commitment, called role N for Neutral. The article brings about 

a traffic model of people involvement in the service. Service conditions of frequency � and average 

number of users per car run � are key factors of the time and money features of the alternative roles 

A, U and N. Individual choice of role is modeled as a rational behavior of maximizing the individual 

utility at the trip level. Aggregation over trip-makers according to a multinomial logit discrete choice 

model yields the respective role flows (��, ��, ��), which in turn determine the macroscopic factors (�, �). Traffic equilibrium is defined as a balance condition between the “supplied flows” and the 

“demanded flows” of the three roles. A computational scheme is provided, with graphical 

interpretation in the (�, �) plane, leading to properties of existence and uniqueness of equilibrium. 

A numerical experiment is conducted, exhibiting the influence of the demand volume on the model 

outcomes. 

Keywords:  

Ride-sharing service; bi-sided platform; traffic equilibrium; multi-sided equilibrium; equilibration 

algorithm 

Highlights 

H1/ Service featured out in terms of run frequency and average car load 

H2/ Microeconomic behavior at the individual level to select a role concerning the service 

H3/ Traffic equilibrium as balance conditions between supplied- and demanded- role flows 

H4/ Equilibrium computation by graphical method 

H5/ Specific domains of equilibrium states according to waiting policy 

1/ Introduction 

Background 

Line ride-sharing (LRS) is a specific kind of platform-based RS service in which the rides take place 

along a specific roadway path, thus called the line or more specifically the line link. Rider access to 

cars may be restricted to special stop points called “stations” (cf. Ecov’s “Line” kind of service
1
) or 

allowed at any point along the line path (cf. Ecov’s “Line+”).  

Then, along the roadway path the car trip-makers fall into either one out of three classes: Service 

users as Riders (type U), car drivers involved in the service as Agents (type A) and other trip-makers 

                                                           
1
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that do not take part to the service, called Neutral (type N). The three types can be seen as specific 

travel modes, say sub-modes of the car mode. By time period and flow direction, the respective trip 

flows of the three roles, denoted as �
 for each role � ∈ ℜ ≡ �U, A, N�, determine both the service 

quantity and quality of the RS line: 

• �� amounts to the service frequency � to potential users – a key component of service 

quality to them. 

• Ratio � = ��/�� is the expected passenger load by service-affiliated car – a basic indicator 

of money incomes to agents based on the principle of trip cost sharing. 

• �� and �� are the basic quantities of service production, leading to its market share within 

the car mode, (�� + ��)/� with � = ∑ �

∈ℜ , and the overall occupancy rate in persons per 

car, �/(�� + ��). 

Service participation either on the User or Agent side depends on the attractiveness of the respective 

modal option to car trip-makers. 

The modal specific money and time expenses per trip constitute option attributes in the modal 

decisions of the individual trip-makers. Money costs �
 are lower for service participants (A/U) than 

for non-participants (N). In contrast, times �
 are higher for service participants A and U than for N 

because of transaction operations, car dwelling and waiting on one side. 

Research questions 

This article addresses the following research questions: 

RQ1/ Given the service conditions in terms of price schedule and usage protocol (including waiting 

conditions), what are the respective money and time attributes of the three modes? 

RQ2/ What are the influences of service factors � and � onto the respective utility of modal options 

A, U and N? 

RQ3/ Given the modal attributes and the (�, �
) pair of trip-maker flow and random variables in the 

modal utilities, what are the modal flows [�
: � ∈ ℜ] and the related service performances (�, �)? 

RQ4/ Taking the determination of modal conditions from the (�, �) factors as a supply function, and 

that of trip flows from the modal conditions as a demand function, what is their joint outcome, is 

there a traffic equilibrium between supply and demand? 

Article objectives 

The article is aimed to devise a multinomial logit (MLN) discrete choice model of traffic assignment to 

a line ride-sharing service on a roadway link.  

Under theoretical form, not only does the model shed light on service issues such as price schedule, 

waiting policies either on the User or Agent side and transactional protocol, but also it yields modal 

flows as analytical formulas of the various parameters and system state variables. It enables us to 

characterize the system state in the form of a fixed-point problem (FPP). 

Two companion objectives are also addressed: (i) a specific, graphical approach is devised to 

compute equilibrium states, and (ii) a mock case study is conducted to provide a first understanding 

of potential situations. 

Approach 

The mode combines two sub-models of supply formation and demand formation. On the supply side, 

given the option flows, the time and money features of the options are derived from elementary 

properties of Poisson stochastic flows. On the demand side, given the option characteristics in money 

and leg times, the modal utility functions are constituted, yielding in turn the option modal shares in 
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the usual way of the MLN. Given the overall trip volume, or an elastic demand function relating that 

volume to the expected maximum utility, the demand sub-model yields the option flows. 

Then, combining the two sub-models gives up a fixed-point problem (FPP) in the option flows, or 

equivalently an FPP in the service attributes (�, �, ��� , ���) (denoting as ��� and ��� the link run time of 

service users or non-committed trip-makers, respectively). The FPP is shown to be equivalent to a 

simpler one with respect to � only, yielding theoretical properties of equilibrium existence and 

uniqueness. 

Article structure 

The rest of the article is in five parts. Section Two represents the system of Roadway path, Line RS 

service and the population of car trip-makers. Section Three provides the traffic assignment model 

and studies its equilibrium state as a multi-sided traffic equilibrium, considering the two sides of 

Service Agents and Users and also the Neutral trips as a third tier. Section Four is devoted to a 

numerical experiment (mock case study). Section Five discusses the model outreach and limitations 

and also some issues of system design. Section Six concludes and points out to some directions of 

further research. 

 

Tab.1: Notation. 

Service features Territorial setting and link traffic 

  number of riders per agent car run ! link length 

" proportion of agent runs with riders # period duration 

� average rider load per agent car run T
%& run time function of role � ∈ �U, N� under FP 

� service frequency '
%& car flow rate on link of role � ∈ �U, N� 

�, ( ∈ ℜ ≡ �A, U, N� service role Mobility and behaviors 

ℓ ∈ ℒ ≡ �R, S, T, W� trip leg � population size 

.
/ indicator variable of Wait assignment to � �
 person flow of role � 

�IF, JF� Isolated / Joint Flow Policy 3
 car trip flow of role � 

Time and money items 4
ℓ Value-of-Time (VoT) by role � and leg ℓ 

�
 trip time of role �, time �
ℓ by leg ℓ 5
 generalized cost of � to trip-maker 

6
  modal constant of role � 7
 deterministic utility of �  

� base car cost per trip �
 random perturbation of utility of role � 

�8  length factor of car cost 9
  stochastic utility of � 

:
 base trip award (� = A) or fare (� = U) ; concentration parameter of �
 

:8
 length factor of award (� = A) or fare (� = U) <
  population proportion assigned to role � 

:̂
 average trip award (� = A) or fare (� = U) 7ℜ expected maximum utility 

�
 money cost of role �  D demand function 
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2/ System representation 

2.1/ Roadway path and traffic scene 

A roadway link of network length denoted !, is considered in a given flow direction as a specific 

“traffic scene”. It is studied on a daily basis, by within-day time period. A specific period of interest is 

considered, e.g. morning peak or evening peak or in-between, with time duration denoted #. 

2.2/ Service roles as travel modes 

With respect to a line ride-sharing service on the roadway link, three roles are identified for car trip-

makers: service user as Rider (role U), service agent as driver (role A) or non-participant i.e. neutral 

(role N). The set of roles is denoted ℜ ≡ �U, A, N�.  

On a per trip basis, the respective money expenses are denoted as �
, and time expenses as �
. 

These split into “leg times” �
ℓ according to trip phases or legs, ℓ ∈ ℒ ≡ �R, S, T, W�: 

• Leg R of car running on the link,  

• Leg S of Stop or Dwelling for rider boarding and alighting, for Users and for those Agents that 

get “customers”, 

• Leg T of Transaction operations: getting information and possibly being assigned, Paying on 

the User side or Being paid on the Agent side, both using the service digital platform, 

• Leg W of Waiting: either the User is required to Wait for the next Agent under the UW policy, 

or the Agent is asked to wait for an incoming user under the AW policy. 

2.3/ Service features and policy 

Ride-sharing is a bi-sided form of transport service as it involves people in two different ways: not 

only the service-to-demand form of Users, but also the cooperator-to-service form of Agents. These 

cooperate with the service coordination (platform) by supplying seats in their vehicles, the driving 

function including dwelling for rider boarding and alighting, possibly waiting for incoming riders to 

get to the car and other assistance (e.g. putting a foldable two-wheeler in the car trunk). 

Service coordination between the two sides, Agents and Users, relies upon a digital interaction 

platform that achieves user and agent matching (in other words, the assignment of riders to cars and 

that of cars to riders) by suitable information collection and delivery, as well as fare collection from 

users and money compensation to agents. 

Transaction times. These transactional operations are assumedly performed efficiently owing to high 

level of automation and suitable platform customer interface, with total time per trip of ��? and ��? on 

the agent and user side respectively. 

Stop times. Also given is the stop time per user trip, ��@  on the user side, giving rise to a base stop 

time of ��@ on the agent side if the agent car run is endowed with rides. Otherwise, the agent 

experiences no stop time.  

The following Proposition is demonstrated in Appendix A on postulating that both flows of Users and 

Agents are independent Poisson processes with respective time rates A
 ≡ �
/#. 

Proposition 1: Car occupation and time items according to waiting policy. 

1/ Car occupation: (i) The number of users per agent car run, a random variable denoted  , has a 

geometric distribution with parameter " ≡ BC
BCDE, and mean value 

F
GHF denoted �, so that " = I

GJI.  

(ii) The respective probabilities of getting users or not are  Pr� > 0� = "  and  Pr� = 0� = 1 − ".  
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2/ Under User Waits policy (UW): (i) the wait times of agents are negligible: �QR = 0. (ii) The user wait 

times are distributed EXP(A�), i.e., exponentially distributed with parameter A�, so that ��R = #/�. 

3/ Under Agent Waits policy (AW): (i) the wait times of users are negligible: ��R = 0. (ii) The wait 

times of agents make a random variable (RV) that is distributed as the probability mixture of 0 and EXP(A�), with respective coefficients 1 − " and ", yielding average agent wait time of �QR = "#/�.  

We thus have that 

 � ≡ ��, (1a) 

 � ≡ EU V = ��/��, (1b) 

 " ≡ Pr� > 0� = I
GJI. (1c) 

Letting .�/ be the binary indicator of AW and .�/ that of UW, the option wait times are formulated 

generically as follows: 

 ��/ = 0, (2-N) 

 ��/ = .�/"#/�, (2-A) 

 ��/ = .�/#/�. (2-U) 

The average agent stop time satisfies that  ��@ = Pr� > 0� . ��@ + Pr� = 0� . 0, hence 

 ��@ = "��@ . (3) 

Link run times are denoted ��X for Users or ��X for role N to enable for possible distinction, using e.g. 

dedicated lanes for multi-occupied cars. An agent will get the same run time as a user if there is at 

least one user in the car, or the same run time as role N otherwise. Thus, on average, 

 ��X = Pr� > 0� . ��X + Pr� = 0� . ��X = "��X + (1 − ")��X. (4) 

Table 2 summarizes the average leg times by trip leg for each mode. 

Tab. 2: Average trip leg time according to role. 

Leg ℓ Agent User Neutral 

Run R "��X + (1 − ")��X ��X ��X 

Stop S "��@  ��@  0 

Transaction T ��? ��? 0 

Wait W .�/"#/� .�/#/� 0 

Beside the waiting policy and the right-of-way assignment, service policy also includes (i) roadway 

link selection in relation to the local Mobility Organizing Authority, (ii) Access conditions of Rides to 

Car runs, assumed here at link endpoints only, (iii) the price schedule. 

By assumption, for each car trip offered by an agent as a service run, a twofold reward (fee) is 

awarded to the agent: a base fee denoted :� applies whatever the number of riders (including 

modality Zero), plus a per ride contribution that depends on ride length, say !:8Q with :8Q the ride 

award rate per unit length. On average per service run, the money reward to the agent is thus 

 :̂� = :� + �!:8� (5-A) 

On the user side, we similarly distinguish between a fixed fare :� and a length-variable fare !:8�: the 

ride fare is thus 

 :̂� = :� + !:8� (5-U) 
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There certainly is a relationship between :̂� and :̂�: some financial balance between ��:̂� and ��:̂� 

may be expected, up to external subsidizes e.g. from the local mobility organizing authority on a per 

run basis, to taxes and of course to platform remuneration. Such issues, of obvious interest to the 

service business model, are not addressed in this article. 

2.4/ Modal money items, generalized costs and utility functions 

The ride fare constitutes the basic money cost of the link trip to a service user: 

 Y� ≡ :̂� = :� + �!:8� (6-U) 

Service-neutral trip-makers are assumed to spend a fixed money cost of � plus a length-variable cost 

at unit length rate of �8 , yielding link cost of 

 Y� ≡ � + !�8  (6-N) 

To a service agent, the link cost amounts to car expense minus run income, yielding  

 Y� ≡ Y� − :̂� = � + !�8 − :� − �!:8� (6-A) 

Some trip features remain unobserved in the model, notably the sub-paths up- and down-stream the 

roadway link. The unobserved features of the alternative modes � are called “modal constants” 

measured as money costs and denoted 6
. We shall denote �
 ≡ Y
 + 6
. 

Thus, each mode as a choice option is characterized by a set of attributes: leg times, money costs, 

modal constant, customized to the individual attributes and circumstances. For each individual, the 

own preferences (e.g. Value of Time, VoT) and conditions of exposures (walk speed, money expense 

depending on car type…) are called behavioral parameters. By mode � and trip leg ℓ, the VoT 

denoted 4
ℓ is the change rate of leg time to money. Among the different legs, only the agent run leg 

can vary depending on car occupation: from no riders to one or several, not only may the run time 

change (from ��� to ���) but also the agent VoT, say from 4QZ�  without riders to 4QG�  with riders. On 

average, the agent value of run time is  4Q� = (1 − ")4QZ� + "4QG� . Yet, as the amount of run time 

may vary depending on the load state, we denote loosely 

 (4�)Q� = (1 − ")4QZ� ��� + "4QG� ��� (7) 

At the trip level, the modal option � induces a “travel generalized cost” of 

 5
# ≡ �
 + ∑ 4
ℓ. �
ℓℓ∈ℒ  (8) 

As cost is a disutility, the related deterministic utility function is a value, denoted  

 7
 ≡ −5
# = −�
 − ∑ 4
ℓ. �
ℓℓ∈ℒ  (9) 

Beyond the modal constants, there are other option attributes, individual attributes and choice 

conditions that are unobserved: they are modeled as random variables U�
: � ∈ ℜV that turn the 

deterministic utility function 7
 into a “random utility function” denoted 9
  and defined as 

 9
 ≡ 7
 + �
 . (10) 

2.5/ Mode choice and option flows 

Having modeled the individual preferences in the utility functions, the microeconomic principle of 

individual choice behavior is that, on every occurrence, the individual selects the option of maximum 

utility to him or her. Then, by aggregation over the random occurrences behind the random variables �
, the probability of choosing option � comes out as 

 <
 ≡ Pr�9
 ≥ 9]: ∀( ∈ ℜ�. (11) 

We shall resort to the multinomial logit model, in which the “perturbation” �
 is a random variable 

that follows the Gumbel distribution, and such that between the options the random family 
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U�
: � ∈ ℜV are independent and identically distributed (this assumption reduces to “homoscedastic” 

for Gumbel variables and modal constants). Denoting as ; the concentration parameter of every �
, 

the usage frequency of option � amounts to the following mathematical probability: 

 <
 = _`a (c.de)
_`a (c.dℜ) = exp (;(7
 − 7ℜ)) (12) 

Wherein: 7ℜ ≡ G
c ln ∑ exp (;. 7])]∈ℜ , called the satisfaction function, is the mean value of the 

maximum utility, 9ℜ ≡ max�9]: ∀( ∈ ℜ�. In the logit model, the maximum utility is also a Gumbel 

variable with concentration parameter ;. 

By assumption, each individual in the population of interest makes one and one trip only on the 

roadway link during the period under study. Thus the population size and the trip flow are equal and 

both are denoted as �. The choice model yields modal “demanded flows” �
# such that 

 �
# = �. p
#. (13) 

By construct, it holds that �
# ≥ 0 and ∑ �
#
∈ℜ = �. 

2.6/ Elastic demand 

The trip demand � may be related to the expected overall utility, 7ℜ, through a demand function 

with respect to the expected overall generalized cost 5ℜ ≡ −7ℜ: 

 � = D(5ℜ). (14) 

“Fixed demand” corresponds to a constant function D. 

2.7/ Car flows and traffic issues 

The modal flow �
 by travel mode � ∈ ℜ gives rise to a car flow 3
 that is equal to �
 for � ∈ �A, N� or 

null otherwise, i.e. 3� = 0. Total car flow amounts to 

 3 = 3� + 3� = �� + �� (15) 

The organization of an LRS may be combined to a specific arrangement of car lanes on the roadway 

link by dedicating one lane to multi-occupied vehicles, that is, “Isolated Flow” (IF), or not, that is, 

“Joint Flow” (JF). As agent cars with users are multi-occupied, the run time on the dedicated lane 

would be ���, whereas that on common lanes is just ���: hence the indices for travel time functions. 

The car flow rate eligible to lane dedication is  

 '�m% ≡ ��. Pr� > 0� /# = "�/#, (15-U) 

While that restricted to common lanes is 

 '�m% ≡ (�� + ��. Pr� = 0�)/# = (�� + (1 − ")�)/#. (15-N) 

We model the influence of a car trip flow by flow policy FP ∈ �IF, JF� as a travel time function T
%& 

with respect to the related flow time rate '
%&. Under Isolated Flow, then  

 ��� = T�m%('�m%) (16-I,U) 

 ��� = T�m%('�m%) (16-I,N) 

While under Joint Flow, then T�n% = T�n%
 and '�n% = '�n% = 3/#, so that 

 ��� = ��� = T�n%o'�n%p = T�n%('�n%) (16-J) 

Both flow volumes and run times are traffic conditions determining the local emissions of noise and 

of air pollutants, including GHG emissions of global outreach. 
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3/ Traffic equilibrium 

3.1/ Supply sub-model 

We select the vector qℜ ≡ U�
: � ∈ ℜV of modal flow volumes as “basic” subset of state variables 

from which all of the other exogenous variables are derived. 

Vector qℜ induces first the service conditions (�, �, ") in eqn. (1), then the leg time items  rℜℒ  ≡
U �
ℓ ∶ ℓ ∈ ℒ, � ∈ ℜV in (2,3,4,15,16), next the service fee and fare tuv ≡ U:̂
: � ∈ vV in (5) and the 

money items wℜ ≡ U�
: � ∈ ℜV in (6).  

The supply sub-model is defined as the derivation of ", rℜℒ  and wℜ from vector qℜ. It is denoted as 

 (", rℜℒ , wℜ) = xy(qℜ) (17) 

Only non-negative option flows are considered, making the domain ∆q≡ �qℜ ≥ 0�. We also consider 

the sub-domain ∆q∗ ≡ �qℜ ≥ 0: �� > 0� where the supply function is continuous. On the contrary, if 

�� = 0 then � is indeterminate and so is "; furthermore, � = 0 leads to infinite wait times to users 

under UW. Under AW, if " > 0 then � = 0 also entails infinite wait times to agents. We therefore 

extend the definition of the supply function on points such that �� = 0 in the following way: ��R = �QR = +∞, under both waiting policies AW and UW. 

3.2/ Demand sub-model 

The “demand sub-model” is defined as the derivation of “demanded flows” qℜ# ≡ U�
#: � ∈ ℜV from 

the vector (", rℜℒ , wℜ) through the formation of generalized costs in (7,8) and deterministic utilities 

in (9), expected maximum utility and demand volume in (14), option modal shares in (12), and finally 

demanded flows in (14). It is denoted as  

 qℜ# = x}(", rℜℒ , wℜ) (18) 

The feasible domain of " is ∆F≡ U0,1V and that of (rℜℒ , wℜ) is ∆r,w≡ ℝℒ×ℜJℜ. The composition of 

generalized cost is a linear combination, save for the multiplicative influence of " in 5Q: these are 

well-defined and continuous functions on the joint domain ∆F × ∆r,w. By the properties of the 

exponential function, 7ℜ and the <
# are well-defined and continuous functions of (", rℜℒ , wℜ). 

Postulating a continuous demand function D, so are � and the demand flow functions �
#. 

Fig. 1 exhibits both the supply sub-model and the demand sub-model. 

 

 

Fig.1: (A) Supply sub-model, (B) Demand sub-model. 
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3.3/ Supply-demand equilibrium 

Definition. The system is in equilibrium if the system state (qℜ, ", rℜℒ , wℜ) satisfies jointly that  

o", rℜℒ , wℜp = xy(qℜ), 
qℜ = x}o", rℜℒ , wℜp. 

Proposition 2: Equilibrium as a fixed-point problem. Vector qℜ is a supply-demand equilibrium iff it 

satisfies the fixed-point problem associated to the mapping x} ∘ xy, i.e.,  

 qℜ = x} ∘ xy(qℜ). (19) 

The conjunction of (17) and (18) at qℜ implies (19) straightforwardly. Conversely, if (19) holds true 

then the system state (qℜ, xy(qℜ)) satisfies the equilibrium definition. 

The FPP states that the “demanded flows” should match the “supplied ones”. 

By restricting the feasible set to ∆q�,�≡ �qℜ ≥ 0: �� ≥ �, �
 ≤ �� with some small � > 0 and some 

large � > 0, and defining a modified demand function x}�,�
 such that x},
�,� ≡ max ��, min��, �
#��, 

then the mapping x}�,� ∘ xy is continuous on ∆q�,�
, and we can set parameters � and � to values such 

that x}�,� ∘ xy(∆q�,�) ⊂ ∆q�,�
. Then, by the Brouwer theorem, there exists a solution to the fixed point 

problem. 

Under UW and AW, null agent flow value �� = 0 yields infinite user wait time ��R: then 5�# = +∞ if 

4�R > 0, <�# = 0 and ��# = 0. Similarly, �QR = +∞, 5Q# = +∞ if 4QR > 0, <Q# = 0 and �Q# = 0, which is 

consistent with �� = 0. The point qℜ = (0,0, Do5�# p) is a trivial kind of equilibrium, along with the 

non-trivial kind that solves the truncated program with x}�,�
. 

3.4/ Mathematical characterizations 

As <
# = exp (;7
Hℜ), the equality between qℜ and x} ∘ xy(qℜ) can also be put as  

 �
 = exp(;7
Hℜ) . D(5ℜ). (20) 

It is also equivalent to 

 ∀ � ∈ ℜ ∶   5
 + G
c ln �
 = 5ℜ + G

c ln D(5ℜ). (21) 

This is in essence the Variational Inequality formulation of a logit traffic assignment model, as stated 

by Caroline Fisk (1980) and extended to elastic demand by Akamatsu & Matsumoto (1989). See 

Appendix B. 

This system is equivalent to just 

 5Q + G
c ln �Q = 5� + G

c ln ��, (22a) 

 5� + G
c ln �� = 5� + G

c ln �� , (22b) 

 �Q + �� + �� = D(5ℜ). (22c) 

As ��/�Q = �, condition (22a) becomes 

 
G
c ln � = 5Q − 5�. (23a) 

We call it the “inner service split” (ISS) condition since it compares the two options within the 

service. Given the option run times and � (hence "), the ISS implies � as 

1
; ln � = �Q + (4�)Q��� + .�/4�/

"#
� − �� − (4�)���� − .�/4�/

#
� 
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So that 

#
� (.�/4�/ − .�/4�/") = �QH� + (4�)QH���� − 1

; ln � 

The ISS gives � = �Q as a function �uQ(�) with respect to � (and the run times if variable): 

�uQ(�) = #o.�/4�/ − .�/4�/"p
�QH� + (4�)QH���� − 1; ln �. 

The condition (22b) makes an “outer service split” (OSS) condition since it compares the outside 

option N to the inside option U. Knowing � hence � = �uQ(�) and �u�(�) ≡ �. �uQ(�), then the OSS 

gives �u�(�) with respect to �: 

 �u�(�) = exp(;5�H�) �u�(�). (23b) 

Substituting in (22c), we obtain a condition that 

 �u(�) ≡ �uQ(�)(1 + �) + �u�(�) = D(5ℜ). (23c) 

It is a condition in � only if the run times are fixed. 

Proposition 3. Under fixed run times and fixed demand, then there exists a unique value �∗ solving 

the equilibrium characterization. 

Proof: Function �uQ(�) is monotonous with respect to � and so is �u(�). 

3.5/ Geometric properties 

The ISS condition determines the sign of a function of �, namely FI ≡ �QH� + (4�)QH���� − G
c ln �. As 

� is non-negative, under UW it holds that FI > 0, while under AW it holds that FI < 0. Thus, UW 

equilibrium states belong to �FI > 0� while their AW counterparts belong to �FI < 0�. The line �FI = 0� delimits the respective sub-domains.  

Under fixed run times, condition �FI = 0� amounts to �� = �Z�, with FI < 0 for � > �Z and FI > 0 for � < �Z. Thus, there exists a frontier load rate �Z such that AW equilibrium states lie in �� > �Z� and UW ones in �� < �Z�. 

3.6/ Computational scheme 

Under fixed demand volume �, the obvious way to solve the LRS traffic equilibrium is to search for � 

satisfying (23c) at �. But in fact, the variations of the system state with respect to the demand 

volume are of primary relevance to understand the service performance. 

Then an efficient utilization of (23c) is to make � vary with �, that is, as function �u(�), and to 

analyze any system performance �� as a curve (�u(�), ��) parameterized by �. 
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4/ Numerical experiment 

The experiment is aimed to demonstrate the model outcomes depending on specific conditions, 

most notably the Waiting policy and the effect of trip flow rate low or high. 

4.1/ Case setting 

An interurban road link with ! = 10 km is considered.  

The ride-sharing service has the following price schedule: 

• On the agent side, :� = 0.5 € and :8� = 0.10 €/km, 

• On the user side, :� = 1 € and :8� = 0.20 €/km. 

The base costs of car holding and utilization are set up to � = 1 € per trip and �8 = 0.30 €/km. 

The modal constants are set up to 6� =1 €, 6� =1 € and 6� = 0 €.  

Thus, the per-trip costs amount to: 

• Neutral: Y� = 4 € and �� = 5 €, 

• User: Y� = 3 € and �� = 3 €, 

• Agent: Y� = 3.5 − � € and �� = 4.5 − � €. 

As for time items, base stop times of ��� =1 min and ��� =1 min are assumed, together with 

transaction times of ��� =1 min and ��� = 1.5 min.  

In the population of trip-makers, homogenous VoT of 15€/h is assumed. During a period of # =1 

hour, contrasted flow levels are considered: “low flow” with � = 20 trips, versus “high flow” with � = 200 trips. 

Link run time is fixed and homogenous among cars, under average speed of � = 60 km/h.  

4.2/ Traffic equilibrium 

By waiting policy either UW or AW, the OSS and ISS relationships in the (�, �) domain are depicted 

in Figure 2 under low flow (part A) and under high flow (part B). Intersection points between two 

function graphs of the same color (meaning the same policy) make states of traffic equilibrium. 

At low flow under UW, about 10 individuals choose the service as agents, but only 5 as users, yielding 

relatively high frequency of �/# � 10/h but moderate car load of � � 0.5 riders per car. Taken 

together, the two service roles have a market share of about 3/4 in the population of trip-makers.  

 

Fig.2: Equilibrium determination in the (�, �) domain: (A) under low flow, (B) under high flow. 
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Still at low flow but under AW the service is used quite differently (Table 3): about 5 individuals only 

choose the service as agents, but 12 as users, yielding moderate frequency of �/# � 5/h despite 

high car load of � � 2.7 riders per car. The reason is that relatively high Agent wait times counteract 

the money advantages.  

Under high flow, both waiting policies yield relatively close results, with more than 80% of trip-

makers involving themselves in the service, among them a larger half as users and a smaller half as 

agents. Under User waits, the gap between the numbers of agents and users is narrow. Both policies 

entail high frequency �/# � 80/h (very high indeed) and consistent car load of � � 1 − 1.2 riders 

per car. The money costs are greater for agents than for users, but both their costs are about half 

less than the money cost �� to individuals N staying out of the service. 

Tab. 3: Equilibrium states under low flow (left part) versus high flow (right part). 

Indicator (unit) LOW FLOW HIGH FLOW 

 UW AW UW AW 

� (riders/car) 0.468 2.73 1.038 1.189 

� = �� (trips) 10.021 4.52 85.05 80.32 

�� (trips) 4.685 12.35 88.32 95.53 

�� (trips) 5.293 3.12 26.64 24.15 

�� (€) 4.032 1.77 3.46 3.311 

�� (hour, with base run time) 0.189 0.357 0.192 0.199 

�� (hour, with base run time) 0.308 0.208 0.220 0.208 

7ℜ# (€) -6.171 -5.643 -5.484 -5.386 

Equilibrium involves LRS YES YES YES YES 
 

4.3/ Cost-Benefit Analysis (COBA) 

User surplus: out of speed improvement, the availability and usage of the service give rise to average 

utility 7ℜ#, to be compared to initial neutral utility of 7� =-7.5 €/trip, yielding benefit of 1 to 2 €/trip 

(Table 4) depending on waiting policy and flow level. N.B. Part of this gain comes from modal 

constant 6� that is assumedly lower than 6�. 

Given the flow level, policy AW yields more benefits to the trip-makers than policy UW: the per-trip 

difference between the respective policy gains is higher under low flow than under high flow.  

Tab. 4: COBA according to Wait Policy under low flow (left part) versus high flow (right part). 

Indicator (unit) LOW FLOW HIGH FLOW 

 UW AW UW AW 

Individual ∆U 1.329 1.857 2.016 2.114 

People ∆U 26.58 37.14 403.2 422.8 

User fares 14.06 37.05 264.96 286.59 

Agent fees 9.70 14.60 130.81 135.66 

Service net added value 4.35 22.45 134.15 150.93 
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5/ Discussion 

5.1/ Lessons from the numerical experiment 

The graphical determination of equilibrium constitutes a robust computational scheme. It is 

essentially a specific kind of fixed-point algorithm. Demand disaggregation underpinning the random 

utilities of the options is the source of computational robustness that is all the more useful here since 

the traffic effects between modal flows and modal conditions are much involved and highly 

intertwined, yielding asymmetry effects in addition to nonlinearities. 

The numerical experiment demonstrates the different outcomes of different waiting policies. Yet, 

under high flow the respective equilibrium states are relatively close. 

Lastly, the modal proportions varied greatly among the four instances: such variations call for truly 

behavioral modeling of ride-sharing services rather than making educated guesses on the respective 

modal proportions (e.g. Yin et al. 2018). 

5.2/ About model assumptions: outreach and limitations 

The temporal features of wait times and their assignment to either Users or Agents, of stop times 

and of transaction times are as much influential in service usage as the money items from the price 

schedule. Both the money items and the “time items” aside from car run times constitute key 

features in the “user experience” and the “customer journey” as evocated in marketing literature. 

Our model captures these features as well as the run times and the other physical times that are 

commonly modeled for passenger traffic in transit networks (dwell times, wait times, in addition to 

run times) and the transaction times specific to the roles. 

On the demand side, the random utility functions capture not only the deterministic features in 

money and time but also random fluctuations around them among the population of individuals – 

some kind of population disaggregation. The individual behaviors, notably the trade-offs between 

time and money items, lie at the heart of the model, which also derives the aggregate consequences 

on the supply side in terms of service frequency � and car occupancy rate �. 

The framework of random utility theory and discrete choice models enables one not only to model 

unobserved effects as residual random variables (and the modal constants) but also to represent 

comfort issues, notably VoT modulation according to service role and trip leg. Such modulation is 

especially important about waiting policies, since Agent wait times take place in-vehicles hence at 

sitting comfortably, whereas User wait times occur out of cars, possibly at standing, maybe so 

outdoor and subjected to meteorological circumstances. 

Beyond comfort come the issues of individual mobility practices, routines and attitudes. Here, service 

awareness is postulated, so that parameter � standing for population size represents in fact the 

number of service-aware people. The prior mobility routines of individuals may also induce 

captivities of some sort: some car drivers have specific requirements of their private cars in their day 

activity programs, possibly with professional constraints. Such constraints may come with company 

rules about access to company cars and usage conditions, departing from our assumptions about the 

microeconomic situation of the trip-maker. 

Yet, other features of individual travel routines may also align with our modeling assumptions. Home 

to work or study commuting is a recurrent purpose for the working people on a daily basis or so (at 

least on worked days, up to working from home). Frequent reiteration at the individual level of the 

travel situation is likely to even out the fluctuations between the occurrences, giving ground to 

considering the expected times and money outcomes of each role as statistical means over the 

population of occurrences. In other words, commuting frequency certainly is a factor of alignment 

between the real-world conditions and the model assumptions. 
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5.3/ Some hints about service design 

As an abstract representation, the model brings about concepts, state variables and notations to 

describe a real-world system, to indicate its conditions and to monitor its performances. It is inspired 

from early field experiments of ride-sharing lines along some roadway paths and also from pioneer 

implementations in France by the Ecov company. Our numerical experiment, though simple, reveals 

density economies and supports the techno-economic principle of lines for ride-sharing.  

Path selection and identification is a primary topic of service design, along with station identification 

and the allowance or not to stop at any place along the path. Up to now, the waiting policy in Ecov’s 

implementations is an “Agent waits” one. Our numerical experiment suggests that the alternative 

policy “User waits” may be fruitful on some path and demand conditions. 

The model also emphasizes the importance of the price schedule and of the transactional conditions. 

Transaction times, though expectedly short, are nonetheless significant compared to dwell times and 

even to run times on one or two tens of km. While wait times are even more important under low 

flows, under high flows they are likely to fall down to a level similar to dwell times and transaction 

times. The ease and comfort of transaction operations are important, too, so as to make transaction 

times enjoyable rather than hard-felt. The “customer journey” has to be addressed in all of its 

respects by any LRS operator. 

About the business model of the LRS operator, we have considered mainly the demand and traffic 

facets of the service as a system. Such model of demand and traffic can be a useful tool to design a 

business model, by considering path features (!, �
X) as well as population characteristics (�, 4) and 

by specifying service scenarios in terms of Waiting policy, price schedule and transactional 

conditions, up to access conditions. 

While the model is focused on service attractiveness compared to the Neutral option, we have not 

addressed the issue of service awareness. Awareness rising in the population living near the line 

corridor is especially important to develop the service basis both of users and of agents. Among the 

solutions under way, displaying RS lines in local MaaS systems of multimodal service information is a 

prominent one, since they are purported for general use by all of the local population. MaaS 

integration will likely not be limited to service and traffic information, it will also foster commercial 

integration and multimodal synergies between the different kinds of public transit services. 

6/ Conclusion 

To understand and simulate a line ride-sharing service, we devised a model that is both a traffic 

model and a microeconomic model of the service on its two sides of Users and Agents. The economic 

conditions in money and time of the User and Agent roles and also of the service-Neutral role, are 

modeled at the trip kevel from the expected conditions of trip legs (Run, Stop, Wait, Transaction), 

depending on the service protocol that includes price schedule, waiting policy and transaction times, 

together with macroscopic service conditions in run frequency � and average car rider load �. This 

sensitive and parametric representation of service roles answers to the first Research Question. 

Then, on the demand side, role choice is modeled at the individual level as a rational microeconomic 

behavior of utility maximization, considering the utility functions of the roles according to the 

individual VoT by trip leg and role. This microeconomic model answers to the second Research 

Question. Individual assignment according to random utility maximization among the population of 

car trip-makers yields the modal flows, which in turn determine the (�, �) variables. This answers to 

the third RQ. 

The “service facet” and the “people facet” of the LRS as a traffic system interact in two ways: from 

service to people (RQ1&2) and conversely from people to service (RQ2&3). The resulting equilibrium 

was defined mathematically as a set of balance conditions by role A, U and N, between “supplied 
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flow” (from � and �) and “demanded flow”. This answers to the fourth Research Question, while 

raising a further question of equilibrium determination. A computational scheme was devised that 

locates the two essential balance conditions as a pair of so-called Outer- and Inner- Split Service 

conditions in the (�, �) plane. 

The formulation of traffic equilibrium as a fixed point problem ensures the existence of an 

equilibrium state, up to degenerate cases. The issue of uniqueness is still under study.  

In its current stage, the model of LRS as a bi-sided mobility service with traffic equilibrium and 

configuration issues lies at the interface of economic modeling and traffic modeling. Further research 

may be invested along three avenues. The first avenue consists in developing the physical and 

economic content. On the demand side, multiple classes may be considered with different conditions 

regarding travel modes, for instance car dependency or transit dependency. The individual frequency 

of the travel situation in a multi-day timeframe also deserves specific investigation, as does the 

consideration of individual mobility at the level of the day chain of activities and trips. On the supply 

side, the interaction of people through and with the service operator may be modeled in a dynamic 

way rather than reduced to average conditions – cf. hyperpath motivation in traffic assignment to 

transit networks. Furthermore, the economic conditions of the service operator deserve to be 

modeled, not only commercial revenues but also specific production costs and the relationship 

between the operator and the mobility authority – the potential rewarding of runs and rides in line 

with the service impacts on the society and the environment. Potential applications may be targeted 

to the design of price schedules. 

The second avenue of research is to develop the spatial scope of the model by introducing the LRS 

concept into OR problems of network design and service planning. Potential applications include 

(i) path selection for LRS design, (ii) optimal development of LRS network. 

Empirical matters constitute the third avenue of research. The model may be applied to LRS 

experiments so as to characterize the service conditions and assess its performances. Conversely, 

such application would enable for econometric estimation of the model parameters, from 

transaction times to VoT depending on service role and trip leg. 
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Appendix A: Car occupation & time items depending on waiting policy 

It is postulated that the flows of Users and Agents are independent Poisson processes with 

respective time rates A
 ≡ �
/#. On average over #, the expected number of individuals with role � 

is then A
. # = �
. In each flow, the individuals arrive successively, with inter-arrival times between 

two successive individuals that are independent and distributed EXP(A
): the average inter-arrival 

time is thus 1/A
 = #/�
. 

A1/ Number of users per agent car run 

Let us consider any agent conditionally to time ; taken either [AW] from his instant of arrival to that 

of the next agent, [UW] from the arrival time of the previous agent to his own one. The users taking 

the car run are those arriving during time lapse ;. Conditionally to ;, the number  c of user arrivals 

is an RV distributed Poisson with parameter A�;, yielding  

 Pr� c = �� = �HBCc. (BCc)�
�! , ∀� ∈ ℕ (A.1) 

Deconditioning over ; which is distributed EXP(AQ), and denoting A�J� ≡ A� + A�, 

Pr� = �� = � Pr� c = ���
Z

� Pr�;� 
= � �HBCc. (A�;)�

�! �HBEcA�
�

Z
�;  

=   A�A�J�¡� A�A�J� � (A�J�;)�
�! �HBCDEcA�J��;�

Z
 

The latter integral is easily integrated by parts, yielding say ¢� such that 

¢� ≡ � (A;)�
�! �HBcA�;�

Z
= £− (A;)�

�! �HBc¤
Z

�
+ � (A;)�HG

(� − 1)! �HBcA�;�
Z

= ¢�HG 

So that ¢� = ¢Z = 1. Thus,  

 Pr� = �� = ¥ BC
BCDE¦� BE

BCDE = (1 − "). "�, ∀� ∈ ℕ (A.2) 

We recognize a geometric distribution with parameter " ≡ BC
BCDE. Put in words, the number of users 

per agent is an RV that only depends on the ratio of their respective flows. The average value of such 

distribution is  

 EU V = F
(GHF) = BC

BE. (A.3) 

This implies the intuitive property that  

EU V = §C
§E. 

Denoting � ≡ §C
§E, then  



F. Leurent  Line Ride Sharing as a Traffic Equilibrium 

September 2024  17 

 " = §C
§CDE = I

GJI. (A.4) 

N.B. In the Poisson stochastic model, � is just the average number of users per agent car. Its effect 

on the agent stop time is just to multiply the base stop time ��@  by " that is a probability. In case of 

several users boarding the car, we can expect them to board simultaneously under UW, or under AW 

maybe to board in turn – yet, if so then the stop time associated to all of them save the last one are 

embedded in the agent wait time. 

Under either waiting policy, conditionally to ; the probability of No users riding in the agent car is Pr� c = 0�, i.e. exp(−A�;). Deconditioning over ;, we get 

 Pr� = 0� = BE
BCDE = 1 − " = G

GJI. (A.5) 

This outcome can be obtained more straightforwardly by considering the respective inter-arrival 

times ;� and ;� of users and agents: the probability of an agent not getting any user is the 

probability that there would be no user arriving during the inter-arrival time between himself and 

the next agent (AW) or between himself and the previous agent (UW), so that 

 Pr� = 0� = Pr�;� ≤ ;�� = Pr�;� = min�;�, ;��� = BE
BEJBC = G

GJI = 1 − ". (A.6) 

Thus, to the agent the probability of having to stop is 

 Pr� > 0� = 1 − Pr� = 0� = ". (A.7) 

It yields an average Agent stop time of  

 E¨��@© = "��@. (A.8) 

A2/ Under User Waits: User wait time 

The seat capacity in cars is neglected, so that every user can board any car as soon as it arrives after 

the user own time of arrival at the origin station. Whatever the user time of arrival, from it the wait 

time up to an agent arrival is distributed EXP(A�), from the memory-less property of the 

exponential distribution of agent inter-arrival times. Thus 

 EU��RV = G
BE = ª

§E = ª
«. (A.9) 

As for Agents, there is no wait time on their side. In practice, an exception would be the arrival of 

additional users during the stop time of an agent dwelling for a first user to board in it. 

A3/ Under Agent Waits: Agent wait time 

Conditionally to agent inter-arrival time ;, letting � c = ��, from the properties of the Poisson 

process of user arrivals, the � instants of user arrivals are independent RVs denoted �¬ with identical 

uniform distribution on U0, ;V, hence with CDF as follows: 

Fc(­) ≡ Pr��¬ ≤ ­ | ;� = min (1, ¯
c), ∀­ ∈ ℝJ. 

The agent wait time �R|c,� conditionally to ; and � is the maximum of the � RVs �¬:  
�c,� ≡ max��¬: ° ∈ �1, . . ��� 

Thus ±�R|c,� ≤ ­ | ;² = ⋂ ��¬ ≤ ­ | ;��¬´G . From the independence between the �¬, the CDF of �R|c,� 

is  

Pr±�R|c,� ≤ ­ | ;² = ∏ Pr��¬ ≤ ­ | ;��¬´G = (¶̄ c)�, wherein ¶̄ c ≡ Fc(­). 

Deconditioning over �,  
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Pr±�R|c ≤ ­ | ;² = · Pr� ç = �� Pr±�R|c,� ≤ ­ | ;, �²�¹Z  
= �HBCc · (A�;¶̄ c)�

�!�¹Z  
= exp(−A�;(1 − ¶̄ c)) = exp(−A�(; − ­)J) 

Deconditioning now over ;, 

Pr��R ≤ ­� = � Pr±�R|c ≤ ­ | ;² � Pr�;��
Z

 

= � exp(−A�(; − ­)J) �HBEcA��;�
Z

   
= � �HBEcA��;¯

Z
+ �BC¯ � �HBCDEcA��;�

¯
  

= 1 − �HBE¯ + �BC¯�HBCDE¯ A�A�J� 
= 1 − �HBE¯" = (1 − ") + "(1 − �HBE¯) 

This CDF is that of the probabilistic mixture of a Dirac variable at 0 and a variable EXP(A�), with 

respective probabilities 1 − " and ", i.e., of the probabilities of having null or strictly positive number 

of users on board the Agent’s car. Thus, under AW, 

 EU�QRV = (1 − "). 0 + " G
BE = " ª

§E = " ª
«. (A.10) 

N.B. To satisfy the distributional assumptions, it requires that (i) user flow to be not so large 

compared to agent flow, so that the seat capacity in the car is mostly sufficient, (ii) the service 

coordination collects information about passage times from both the users and the agents, so that 

the platform can know ; and � “in advance” compared to the individuals: thus, the platform is able 

to tell to each agent whether to stop or not, and how many users will board the car. 

Appendix B: Traffic equilibrium 

B1/ System state and state vector 

A line ride-sharing service as a system has a system state determined by the values of its endogenous 

variables. These include (cf. Figure 1):  

(i) people trip flows (�
) according to service roles � ∈ ℜ, 

(ii) service quality variables (�, �, "), 

(iii) the money and time items of the roles, denoted �
ℓ and �
ℓ by leg ℓ ∈ �R, S, T, W�, depending on 

waiting policy # ∈ �AW, UW� and on the flow policy, 

(iv) the deterministic utility functions 7
# according to role � and waiting policy #, 

(v) the role probabilities p
# among the � individuals. 

These probabilities sum up the preferences of the individuals, by assigning each of them to the 

optimal role according to deterministic features together with random circumstances. 

B2/ Structure of influences and basic state vector 

The endogenous variables are related by the following set of conditions: 

a/ �
 ≥ 0 and ∑ �

∈ℜ = �. 
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b/ quality formation: � = �Q and � such that �� = �. �Q, denoted as (�, �) = (�u, �º)(qℜ). 
c/ traffic laws yielding link run times according to roles and depending on flow policy. 

d/ time and money item composition on the basis of (�, �, ») and according to waiting policy. 

e/ modal utility function composition from money and time items. 

f/ optimal choices: choice probabilities p
# stem from random utility functions. 

g/ flow assignment �
# = �. p
#, ∀� ∈ ℜ. 

The flow vector [�
: � ∈ ℜ] can make a basic state vector from which all of the other variables are 

derived. Such flow vector constitutes an equilibrium state if it satisfies that: 

 ∀� ∈ ℜ:  �
 = �
#(qℜ)  (B.1) 

It is a condition of quantitative balance (market clearing) between supply (�
) and demand (�
#). 

Yet, as basic state vector it is more convenient to consider the (�, �) pair, from which stem (�uQ, �u�), 

service flow �u� = �uQ + �u�, neutral flow �u� = � − �u�, hence » and the rest of endogenous variables. 

This basic state vector is feasible if � ≥ 0, � ≥ 0 and � ≤ �. 

A feasible vector (�, �) is an equilibrium state iff 

 ∀� ∈ ℜ: �u
(�, �) = �
#(�, �)  (B.2) 

B3/ Fixed-point problem and iterative solution scheme 

FPP in (�, �). A basic state vector (�, �) is in equilibrium if it is a fixed point for the mapping (�, �) ↦ (�′, �′) such that �¾ = y�#(�, �) and �′ satisfies that y�#(�, �) = �′y�#(�, �). 

FPP in (��, ��). A basic state vector (��, ��) is in equilibrium if it is a fixed point for the chained 

mapping (��, ��) ↦ (�, �) such that � = �� and � satisfies that �� = ���, followed by (�, �) ↦ oy�#, y�#p. 

Iterative solution scheme. The basic strategy to solve an FPP is to progressively adapt a current state 

vector by combining it with its image through the mapping so as to obtain the next value. At step À, 

current state (�Á , �Á) induces image (�uÁ , �ºÁ) : then the next step can be obtained as 

�ÁJG ← FnU�Á , �uÁV, 
�ÁJG ← FnU�Á , �ºÁV. 

For instance, a convex combination scheme with step sizes ÃÁ that decrease to zero: 

�ÁJG ← �Á + ÃÁ(�uÁ − �Á) = (1 − ÃÁ)�Á + ÃÁ�uÁ 

�ÁJG ← �Á + ÃÁ(�ºÁ − �Á) = (1 − ÃÁ)�Á + ÃÁ�ºÁ. 
A similar strategy on the (��, ��) flow vector constitutes an equilibration algorithm well-known in 

network traffic assignment. The convex combination scheme is an instance of the “Method of 

Successive Averages”. Yet the graphical scheme in Section 3 is a more straightforward strategy. 

C/ Equilibrium properties 

C.1/ Mathematical property of existence 

On the demand side, model functions leading from (�, �) to �
# are continuous because they 

combine continuous elementary functions (e.g., deterministic utility 7
) in simple, continuous ways 

(e.g. �
# as a ratio of strictly positive functions exp(;. 7
) that are continuous owing to the continuity 

of the exponential function and that of 7
). 
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On the supply side, the derivation of �u
 from (�, �) is continuous: �uQ = � is continuous everywhere, 

so are �u� = �. � and �u� = � − �uQ − �u�. 

Now, for any small parameter � > 0, function (�u, �º) = (�Q , §Ä
§Å) is continuous on the parameterized 

set ∆q�≡ ±qℜ ∈ ∆q∶ �Q ≥ �². Defining �u� ≡ max��, �u� and �º� = ��/ max��, �Q�, the function 

qℜ ↦ qℜ# ∘ (�u� , �º�)(qℜ) is continuous on ∆q� where it takes its values, hence, owing to Brouwer’s 

theorem, it admits a fixed point there which we denote as q�∗ . 

Furthermore, any sequence of (�� > 0: � ∈ ℕ) such that �� → 0 for � → ∞ yields an associated 

sequence of points q�(�)∗  in the overall feasible domain ∆q. As it is a compact set, the sequence 

(q�(�)∗ : � ∈ ℕ) admits at least one accumulation point, denoted q∗. If �Q∗ > 0 then q∗ satisfies all of 

the model equations if, making it a solution to the unrestricted FPP, hence a traffic equilibrium state. 

But otherwise, if �Q∗ = 0 for all such accumulation points, then the accumulation principle shows that 

there is no non-degenerate solution to the problem of traffic equilibrium.  

C.2/ Min-cost formulation of traffic equilibrium 

In logit traffic assignment, each path or mode � with cost function 5
 and flow �
 gives rise to an 

impedance function as follows: 

Ç
 ≡ 5
 + 1
; ln �
  

This is because �
 exp(−;7
) = �
 exp(;5
) is equal between options � of positive flow �
 and finite 

cost 5
  : taking the natural logarithm, lnU�
exp (;5
)V = ;5
 + ln �
, leading to the impedance 

function. 

A logit traffic equilibrium with demand volume � is a flow vector U�
: � ∈ ℜV such that 

�
 ≥ 0 

· �

∈ℜ = � 

�
 . oÇ
 − ÇÈℜp = 0 

With ÇÈℜ ≡ min�Ç
 ∶  � ∈ ℜ�. 

The last condition states that only an option of minimum impedance can have positive flow. 

C.3/ VIP formulation of traffic equilibrium 

Defining impedance functions Ç
 ≡ 5
 + G
c ln �
, the VIP associated to mapping Éℜ ≡ UÇ
: � ∈ ℜV is 

“Find  qℜ∗ ≥ 0 and satisfying  ∑ �
∗
∈ℜ = �: denoting Éℜ∗ ≡ Éℜ(qℜ∗ ), such that  ∀qℜ ≥ 0 with ∑ �

∈ℜ = �, Éℜ∗ . (qℜ − qℜ∗ ) ≥ 0.” 

It means that under option costs Éℜ∗ , no admissible assignment qℜ can get total cost Éℜ∗ . qℜ lower 

than at qℜ∗ . Demand elasticity can be taken into account by considering domain qℜ ≥ 0 and mapping 

Ç
 ≡ 5
 + G
c ln �
 − D(HG)(∑ �

∈ℜ ). 

C.4/ Nesting the service options in the choice universe 

The three options {U,A,N} are put on the same level in the multinomial logit model. We may also 

think of a composite option “Service” v ≡ �9, Ê� and of a nested logit model with choice set {v,N} on 

the first level and, on the second level, choice subset {U,A} at v as a nest. 
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Fig. 3: (A) Multinomial choice model, (B) Nested choice model. 

The combined utility function is 9v ≡ max�9�, 9��. 

In the logit framework, it is a Gumbel variable with concentration parameter ; and mean value 

7v ≡ 1
; (exp(;7�) + exp (;7�)) 

As 9� and 9� are independent of 9�, so is 9v. 

The impedance function associated with v is 

Çv ≡ 5v + 1
; ln �v 

With 5v ≡ −7v. Under demand choice in the v nest, the impedance functions satisfy that 

Çv = Ç� = Ç� 

Hence that 5v + G
c ln �v = 5� + G

c ln �� = 5� + G
c ln �� 

Considering now the complementary probabilities " = ��/�v  and 1 − " = ��/�v, we get that 

5v = 5� + 1
; ln " = 5� + 1

; ln(1 − ") 

Thus, decomposing 5v = "5v + (1 − ")5v = "(5� + G
c ln ") + (1 − ")(5� + G

c ln(1 − ")), 

5v = "5� + (1 − ")5� − 1
; ℋF 

Wherein ℋF ≡ −" ln " − (1 − ") ln(1 − ") is the entropy function of the probability distribution 

[", 1 − "]. On changing signs, we get the equivalent relationship that 

7v = "7� + (1 − ")7� + 1
; ℋF 

The service deterministic utility is a convex combination of the U and A deterministic utilities, plus 

(up to factor 1/;) the entropy function of their respective shares within the service (entropy is 

positive, making the service utility higher than the convex combination of its two constituents). 
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