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Exact Green’s functions and Bosonization of a Luttinger liquid
coupled to impedances.

K.-V. Pham

Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France.

The exact Green’s functions of a Luttinger Liquid (LL) connected to impedances are
computed at zero and finite temperature. It is also shown that if the resistances are equal to
the characteristic impedance of the Luttinger liquid then the finite Luttinger liquid connected
to resistors is equivalent to an infinite Luttinger liquid. Impedance boundary conditions
(IBC) include also as a special limit the case of open boundary conditions, which are explicitly
recovered. Finally bosonization for a LL with IBC is proven to hold.

§1. introduction

Bosonization is one of the standard methods for one dimensional quantum field
theories.1) Discovered independently in condensed matter and high-energy physics
it is the main tool which has allowed to construct the concept of ’Luttinger liquid’
inspired by the physics of the Tomonaga and Luttinger Hamiltonians.2) The LL is
a universality class of 1D critical systems comprising models as important as the
Heisenberg spin chain, the Hubbard model or the Calogero-Sutherland model.

Various boundary conditions (abbreviated as BC throughout the paper) have
been considered in the past for a LL. The earliest studies focused on the infinite sys-
tem and the finite-size LL with periodic boundary conditions (PBC). The properties
in both cases can be related through a conformal transformation.1) In particular
the finite-size properties have been very useful in conjunction with numerics for ex-
traction of the LL parameters. Later more general boundary conditions were also
considered: for instance twisted boundary conditions (TBC) or open boundary con-
ditions (OBC). TBC led to the discovery of even-odd effects in a LL and periodicity
of permanent currents with the flux.3) The OBC which allow description of broken
chains were found to have a dramatic effect on critical exponents leading to bound-
ary exponents in addition to bulk ones and bridging the physics of the LL to that of
boundary conformal field theory.4), 5) More recently dissipative boundary conditions
were also introduced for the LL and were used to compute transport properties of
the LL: they describe the coupling of a LL wire to electrodes; they comprise the
so-called ’radiative boundary conditions’ (which relate time and space derivative
of the boson fields6)) and a ’chemical potential matching boundary conditions’7) .
Other dissipative boundary conditions include the ’Impedance Boundary Conditions’
(IBC) introduced by the author:8) they consist in a LL connected at its boundaries
to two impedances. The IBC can actually be shown to encompass both ’radiative
boundary conditions’ and ’chemical potential matching boundary conditions’ which
constitute special cases of the IBC with boundary impedances set at half-a-quantum
of resistance h/2e2.9)
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We will deal in the present paper with the following issues for a LL with IBC:
(1) computing its exact Green’s functions and two-point correlators; this will pave
the groundwork allowing for (2) extending the usual bosonization technique to such
a dissipative system.

Indeed there is no reason to believe that bosonization of such a system is a valid
procedure: bosonization is well established in the non-dissipative situations (infinite
LL, finite-size LL with PBC, TBC or OBC) but a LL connected to resistors is a
dissipative system: plasmons have now a finite-lifetime. Actually to the author’s
knowledge bosonization has not been shown to be valid for any LL with dissipative
boundary condition. One strategy to show the validity of bosonization is to start
from fermions and then (by considering the anomalous current algebra of density
operators) to transform the fermionic Hamiltonian into a bosonic one.1) Such a
course is in our case plagued with difficulties related to dissipation: the density
eigenmodes of the cavity do not form a neat orthogonal basis of states and do not
quantize as free bosons. Such problems are actually symptoms of non-hermitian
Hamiltonian physics and the existence of non-trivial self-energies: this is a recurrent
issue for open systems which is well-known and has led to recourse to biorthogonal
bases of states in such diverse contexts as mesoscopic transport,10) laser physics
(leaking cavities in QED where quantization of the gauge field in terms of photons
breaks down),11) acoustics,12) black hole physics,13) etc. Biorthogonal bases of states
lead however for the bosonization program to unnecessary complications.

Nevertheless it will be shown that bosonization does hold for the model at hand
(LL with IBC). Instead of following the afore mentioned strategy for bosonization
we will find more convenient to start from a bosonic theory and then fermionize
it. As an interesting side result of our proof we will compute the exact Green’s
functions and correlators of the boson Hamiltonian. Another interesting side result
with potential applications is the finding that with suitably chosen resistances the
finite LL with impedance boundary conditions (IBC) is equivalent to an infinite LL
(namely by identity of their Green’s functions): in a mesoscopic setting the LL in
principle can not be abstracted from its surroundings so that the intrinsic properties
of an infinite LL are not directly accessible. We show a conceptually simple way out
which exploits the fact that a LL can be viewed as a quantum transmission line.

OBC will also be shown to be a special case of IBC corresponding to infinite
resistances.

The paper structure will be as follows:
- (1) in section 2 we introduce a model of a (fermionic) LL connected to resistors

through boundary conditions (impedance boundary conditions IBC); these boundary
conditions are then recast equivalently in terms of boundary conditions for chiral
bosons.

- (2) In the next two sections 3 and 4 we next focus on the bosonic model and
compute exactly its Green’s functions and correlators (at zero and finite tempera-
ture). As side results we obtain the exact finite-frequency conductivity of the LL
with IBC and we prove the equivalence of an infinite LL to a finite-size LL with IBC
with suitably chosen resistances.

- (3) We prove bosonization for our model in section 5.
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- (4) We compute the fermion correlation functions in 6.
Finally an Appendix (Appendix B) is devoted to the single issue of recovering

explicitly the fermionic Open BC and the Green’s function, with results identical to
those published in the litterature.

§2. Model

2.1. Notations and definitions.

Phase fields: We consider throughout the paper the standard LL Hamiltonian
which written in terms of the usual phase fields reads:

H =
~u
2

∫ L/2

−L/2
dx

1
K

(∂xφ)2 +K Π2

where the fields φ and Π are canonical conjugates

[φ(x, t); Π(y, t)] = i δ(x− y).

In terms of fermionic operators the fermion density operator is related to φ through:

ρ− ρ0 =
1√
π
∂xφ.

(Of course such an identification is not fully warranted at this stage but we will
show later it does hold even for a LL connected to resistors; for the time being we
may view the relations as defining abstractly the operator ρ rather than equating
it with the operator ψ+ψ. Similar remarks apply for all the operators defined for
fermions such as current, etc.)

The phase field Θ is defined per:

Π = −∂xΘ

and
[φ(x, t); Θ(y, t)] = i θ(x− y)

where θ is the Heaviside step function.
Chiral fields: The equations of motion of the phase fields:

∂tφ = −uK ∂xΘ

∂tΘ = − u
K
∂xφ

imply:

∂x (φ±KΘ) = ∓1
u
∂t (φ±KΘ) .

The fields φ±KΘ are therefore chiral and we define chiral phase fields and chiral
densities:
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φ± =
φ±KΘ

2
,

ρ± =
1√
π
∂xφ±.

They obey: φ±(x, t) = φ±(x∓ ut). Evidently ρ− ρ0 = ρ+ + ρ−.
Current: The particle current density is:

i = − 1√
π
∂tφ

=
uK√
π
∂xΘ

= u (ρ+ − ρ−)

where the first line follows from current conservation and the others from the equa-
tions of motion of the phase fields.

Chiral chemical potentials:
We define the following operators µ± (they will prove convenient to define our

model):

µ±(x, t) =
δH

δρ±(x, t)

where functional differentiation with respect to the particle density ρ±(x, t) has been
performed. Physically they correspond to chemical potential operators: their average
value yields the energy needed to add one particle at position x to the chiral density:
ρ± −→ ρ± + δ(x). These chiral chemical potentials correspond to the plasma chiral
eigenmodes of the Luttinger liquid and not to the left or right moving (bare) electrons.
An average chemical potential can be defined also as:

µ =
µ+ + µ−

2
.

From their definition it follows that:

µ± =
hu

K
ρ±, (2.1)

where we used the relation:

H =
π~u
K

∫ L/2

−L/2
dx ρ2

+ + ρ2
−.

Therefore the electrical current ie = e i :

ie(x, t) = K
e

h
(µ+ − µ−)

=
1

2Z0

(µ+

e
− µ−

e

)
(2.2)
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where we have introduced the characteristic impedance of the LL:

Z0 =
h

2Ke2
.

As explained in8) the LL Hamiltonian is identical with that of a quantum trans-
mission line with a characteristic impedance Z0 given as above.

2.2. Model.

Our model consists in a LL connected in series with two impedances. We will use
a description of the LL connected to reservoirs8) which is the exact implementation of
the load impedances boundary conditions customary for transmission lines or sound
waves in tubes.

We thus assume the following boundary conditions:

ZS ie(−L/2, t) = VS(t)− µ(−L/2, t)
e

, (2.3)

ZD ie(L/2, t) =
µ(L/2, t)

e
− VD(t).

ZS and ZD are interface impedances (at respectively the source and the drain)
which for simplicity will be assumed to be positive real numbers throughout the pa-
per (in other words they represent resistors; but more general situations could be
discussed with complex impedances, which is why we stick in this paper to viewing
them as impedances). ie(x, t) is the current operator, and source and drain are set
at a voltage VS or VD (see Fig.1). The Heisenberg picture is assumed so that we
work with time-dependent operators.

As one can see the boundary conditions are tantamount to assuming Ohm’s law
at the boundaries of the system U = RI: the current is proportional to a voltage
drop between the reservoir and the LL wire and the proportionality constant is just
a resistance. In the following the source and drain voltages will be set to zero since
we want to compute the equilibrium Green’s function (in the absence of external
voltage).

It is instructive to recast the (equilibrium) boundary conditions in terms of the
chiral densities. This yields:

ZS u e [ρ+(−L/2)− ρ−(−L/2)] = − hu

2Ke
[ρ+(−L/2) + ρ−(−L/2)] ,

ZD u e [ρ+(L/2)− ρ−(L/2)] =
hu

2Ke
[ρ+(L/2) + ρ−(L/2)] .

So that:

ρ+(−L/2) =
ZS − Z0

ZS + Z0
ρ−(−L/2), (2.4)

ρ−(L/2) =
ZD − Z0

ZD + Z0
ρ+(L/2).
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Fig. 1. Impedance boundary conditions: the LL wire is connected to two electrodes at voltages VS
and VD through two impedances.

This introduces reflection coefficients for the density:

rS =
ZS − Z0

ZS + Z0
, rD =

ZD − Z0

ZD + Z0
. (2.5)

These expressions deserve some comment: they are just what one would expect for a
classical transmission line connected to load and drain impedances. The (classical)
equations of motion are indeed also valid at the quantum level since the LL Hamilto-
nian is quadratic so we might have anticipated any linear relation to carry on. The
basic physics of the boundary conditions considered in this paper are therefore those
of standing waves in a transmission line produced by reflections at the boundaries
due to impedance mismatch.

The reflection coefficients for the phase fields can also be derived; from eq.(2.6)
it follows:

∂xφ+(−L/2, t) = rS ∂xφ−(−L/2, t), (2.6)
∂xφ−(L/2, t) = rD ∂xφ+(L/2, t).

The IBC can then be rewritten as conditions on the non-chiral phase field:

−ZS
1
u
∂tφ(−L/2, t) = Z0∂xφ(−L/2, t), (2.7)

ZD
1
u
∂tφ(−L/2, t) = Z0∂xφ(−L/2, t).

As an aside we note that open boundary conditions (OBC) are recovered by
setting rS = rD = 1 (see Appendix B).

§3. Green’s function of the phase field.

3.1. Green’s function of the phase field φ.

Having derived boundary conditions for the boson fields we now forget the un-
derlying fermions and focus on the following model:
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H =
~u
2

∫ L/2

−L/2
dx

1
K

(∂xφ)2 +K Π2

where as before the fields φ and Π are canonical conjugates and:

φ± =
φ±KΘ

2
.

The problem we will tackle is the following: solving for the retarded Green’s
function of the bosonic Hamiltonian subjected to the boundary conditions for the
fields:

∂xφ+(−L/2, t) = rS ∂xφ−(−L/2, t),
∂xφ−(L/2, t) = rD ∂xφ+(L/2, t).

These boundary conditions introduce dissipation in the problem.
The Green’s function can be conveniently divided into four chiral components:

GR = G++
R +G−−R +G+−

R +G−+
R whereG±±R (x, t; y, t′) = −i θ(t−t′) 〈[φ±(x, t), φ±(y, t′)]〉

for the retarded Green’s function and appropriate definitions for the advanced Green’s
function. Since we will also need the chiral Green’s functions for the bosonization
proof instead of directly computing the full Green’s function we will first compute
the chiral Green’s functions.

Using the equal-time commutation relations for the chiral fields,

[φ±(x, t), φ±(y, t)] = ± iK
4
sgn(x− y),

[φ+(x, t), φ−(y, t)] = − iK
4
,

one gets the equations of motion for the chiral Green’s functions as:[
∂

∂x
± 1
u

∂

∂t

]
G±±(x, t; y, 0) =

K

4u
sgn(x− y) δ(t),

and: [
∂

∂x
± 1
u

∂

∂t

]
G±∓(x, t; y, 0) = −K

4u
δ(t).

The impedance boundary conditions imply:

∂xG
++
R = rS∂xG

−+
R , x = −L/2,

∂xG
+−
R = rS∂xG

−−
R , x = −L/2,

∂xG
−−
R = rD∂xG

+−
R , x = L/2,

∂xG
−+
R = rD∂xG

++
R , x = L/2.

After Fourier transforming according to:

f(t) =
∫ ∞
−∞

dω

2π
f(ω) e−iωt,
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and defining k = ω/u the equations of motion imply the following forms:

G++ = θ(x− y)
(
a>

ik
eikx − K

4iω

)
+ θ(y − x)

(
a<

ik
eikx +

K

4iω

)
,

G−− = θ(x− y)
(
−b

>

ik
e−ikx +

K

4iω

)
+ θ(y − x)

(
−b

<

ik
e−ikx − K

4iω

)
.

Likewise:

G+− = c eikx +
K

4iω
,

G−+ = d e−ikx − K

4iω
.

The boundary conditions imply the following relations:

a< = −ik rS eiϕ d
a> = −ik r−1

D e−iϕ d

b< = ik r−1
S e−iϕ c

b> = ik rD e
iϕ c.

where we have defined a phase ϕ corresponding to the phase accumulated along the
wire by the plasma wave:

ϕ = kL.

Using now the discontinuity of the derivatives of G++ and G−−yields:

a> − a< =
K

2u
e−iky,

b> − b< =
K

2u
eiky.

Finally:

G++
R (x, y, ω) =

K

2iω (1− rSrDei2ϕ)
ei
ω
u

(x−y) [θ(x− y) + θ(y − x) rSrD ei2ϕ
]

− K

4iω
sgn(x− y),

G−−R (x, y, ω) =
K

2iω (1− rSrDei2ϕ)
e−i

ω
u

(x−y) [θ(y − x) + θ(x− y) rSrD ei2ϕ
]

+
K

4iω
sgn(x− y),

G+−
R (x, y, ω) = − K

2iω
rS e

iϕ

(1− rSrDei2ϕ)
ei
ω
u

(x+y) +
K

4iω
,

G−+
R (x, y, ω) = − K

2iω
rD e

iϕ

(1− rSrDei2ϕ)
e−i

ω
u

(x+y) − K

4iω
.
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Gathering all terms the full Green’s function is thus:

GR(x, y, ω) =
K

2i(ω + iδ)
1

1− rSrDei2ϕ
(3.1)

×
{
θ(x− y)

[
ei
ω
u

(x−y) + rSrDe
−iω

u
(x−y−2L)

]
+ θ(y − x)

[
e−i

ω
u

(x−y) + rSrDe
iω
u

(x−y+2L)
]

− rS ei
ω
u

(x+y+L) − rD ei
ω
u

(−x−y+L)
}

(where ϕ = kL). As a function of time this yields:

GR(x, t; y, 0) =− K

2

∞∑
n=0

(rSrD)n
{
θ

(
t− 2nL+ |x− y|

u

)
+ rSrDθ

(
t− 2(n+ 1)L− |x− y|

u

)
− rS θ

(
t− (2n+ 1)L+ x+ y

u

)
− rD θ

(
t− (2n+ 1)L− x− y

u

)}
For t < 0, GR = 0 as it should be.

Technical note: the studious reader interested in deriving directly the ad-
vanced Green’s function from the boundary conditions should take note that they
must be modified. The reason is simple: a retarded Green’s function which describes
outgoing waves (away from the system) are clearly compatible with dissipative BC;
but an advanced Green’s function describes incoming waves. So we need BC invari-
ant under time-reversal: to render the time derivative compatible with time-reversal
we multiply it by sgn(t)

−sgn(t) ZS ∂tφ(−L/2, t) = Z0∂xφ(−L/2, t), (3.2)
sgn(t) ZD ∂tφ(L/2, t) = Z0∂xφ(L/2, t).

In terms of the chiral fields this implies:

∂xφ+(−L/2, t) = r
sgn(t)
S ∂xφ−(−L/2, t),

∂xφ−(L/2, t) = r
sgn(t)
D ∂xφ+(L/2, t).

One can check that the BC are now compatible with the usual relation

GA(x, t; y, 0) = GR(y,−t; x, 0).

Note also that the two-point correlators mix advanced and retarded Green’s
functions: therefore they will obey these modified boundary conditions as can be
readily checked.

3.2. Discussion.

3.2.1. Interpretation.
The interpretation of the Green’s function is quite straightforward: to propagate

from one point to the other there are four kinds of basic trajectories (see Figure 2),
(1) one can go straight from the starting point to the arrival point, or (2-3) go after
bouncing against one of the two boundaries, and (4) lastly go after bouncing two
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times against different boundaries. These basic trajectories must then be convoluted
by round trips along the whole loop (of length 2L) which yield the overall factor(
1− rSrDei2ϕ

)−1 (where ϕ = ω
uL) in the frequency domain expression in eq.(3.1).

The main difference for the chiral propagators is the appearance of zero modes.
The other terms have straightforward interpretations: as before they correspond to
straight trajectories from y to x or to propagation with bouncing at either or both of
the boundaries. The θ(x− y) or θ(y−x) come from the fact that chiral propagation
prevents some trajectories depending on the respective positions of x and y.

Fig. 2. Interpretation of the Green’s function.

We have for now only discussed the retarded Green’s function but of course the
advanced Green’s function is simply related to the retarded one through:

GA(x, t; y, 0) = GR(y,−t; x, 0).
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So there is no more work to do. The causal Green’s function can also be com-
puted: for instance from the two point correlator (which is discussed later).

We also observe that the retarded and advanced Green’s functions do not depend
on temperature since the equation of motion obeyed by the Green’s functions has no
temperature dependence. We have therefore found the phase field Green’s functions
at all temperatures.

3.2.2. Poles and relation to open boundary LL.
The open boundary conditions (OBC) are a limiting case of the IBC considered

in this paper. Hard-walls at the boundaries can be reproduced by considering infinite
resistances ZS and ZD : this then implies that the reflection coefficients are equal
to unity rS = rD = 1). It can then be checked that our expression for the Green’s
function reduces to that found for the LL with open boundary conditions. We refer
to Appendix B. Open boundary conditions are actually closely related to the ones
discussed in this paper: indeed the excitations in the LL with IBC are those of the
LL with OBC albeit with a finite-lifetime. While in the infinite LL or the PBC LL
one has travelling waves these excitations are just the standing waves expected from
a system enclosed within boundaries.

Indeed the poles are simply:

ωn =
nπu

L
+ i

u

2L
ln(rSrD). (3.3)

For the OBC there are nodes at the boundaries; the resonances are therefore such
that the length of the wire is L = nλ/2 which leads to ωn = nπu

L . Within the
simple model of boundary resistances (real positive impedances) the lifetime τ =
2L/ (u ln(rSrD)) is independent of the index mode: the level broadening is constant
for each standing wave plasma mode. But more complicated situations can be con-
sidered: if we assume frequency dependent complex impedances the reflection
coefficients then acquire a frequency dependence. This however does not affect the
validity of the expressions in the frequency domain just derived for the Green’s func-
tion. However the structure of the poles will not be quite as simple as that described
above, since the poles are now determined by:

1− rS(ω)rD(ω)ei2Lω/u = 0.

How can we probe these poles? One of the simplest way is through conductivity
or conductance measurements. These poles will show up as resonances. Indeed as
shown in Appendix A the conductivity is simply:

σ(x, y, ω) =
e

π
ωGR(x, y, ω).

The conductance (which is a matrix in this context of a gated wire connected to
two electrodes) was computed elsewhere.8)

3.2.3. Impedance matching.
Let us recall the basic physics of transmission lines: an ideal transmission line

or LC-line (e.g. a coaxial cable) has an energy per unit length E(x) = 1
2L j

2(x) +
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1
2C ρ

2(x) where L and C are respectively an inductance and a capacitance per unit
length. For an infinite transmission line the eigenmodes are traveling waves (plas-
mons) with velocity u = 1/

√
LC. For a finite transmission line connected to two

resistors at both boundaries one observes reflections: in general any pulse injected
in the transmission line is reflected which leads to energy losses. In order to min-
imize losses electrical engineers take advantage of the phenomenon of ’impedance
matching’: if the resistors have identical resistances equal to Z0 =

√
L/C (the char-

acteristic impedance of the transmission line) then the reflection coefficients vanish
so that no reflections can occur in the combined system of two resistors+transmission
line, which becomes effectively lossless. The finite transmission line has become effec-
tively equivalent to an infinite transmission line. This is the origin of the normalized
characteristic impedance of coaxial cables.

What is the relation to the Luttinger liquid ? A LL is actually a quantum
transmission line. Indeed its Hamitonian density is just that of a quantum LC-line
since:

H =
∫
dx

hu

4K
ρ2 +

huK

4
j2

which rewritten in terms of the charge density and the charge current ρe = e ρ and
je = euK j becomes:

H =
∫
dx
L
2
j2e +

1
2C

ρ2
e

with:

L =
h

2uKe2
, C =

2Ke2

hu
.

So it is only natural to inquire whether the ’impedance matching’ physics is still
valid at the quantum level. Quite remarkably it is. We prove the following theorem:

Theorem: the physics of a finite length Luttinger liquid connected to two
resistors having resistances equal to the characteristic impedance ZS = ZD = Z0 is
equivalent to that of an infinite LL (for any observable defined on the length of the
LL).

Proof: the proof follows from identity of the Green’s functions. Indeed Z0 =
ZS = ZD implies: rS = rD = 0. The expressions of the one-body Green’s functions
we have computed then trivially reduce to those of an infinite LL. The N-body
Green’s functions are therefore also equal since by Wick’s theorem they reduce to a
product of single particle Green’s functions.

Here in the quantum case the cancellation of the reflection coefficients leads to
the same physics as in the classical case. Note that the result is still valid if we assume
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Fig. 3. Impedance matching.

frequency dependent reflection coefficients: if one checks carefully our derivation of
the retarded Green’s function in section 3 one will notice that the expressions do not
require frequency-independent coefficients.

Such a result might be useful in any situation where the intrinsic properties of
a LL (infinite system) are needed: for transport experiments on quantum wires or
carbon nanotubes the coupling to the leads (source and drain) unavoidably modifies
the pure physics of the LL. Should one be able to tune the impedance of the leads,
one might be able to disenfranchise oneself from the interfering effects of the leads.

In general however the leads will couple to the LL not only with a resistive
component but also a capacitive (or even an inductive) component. To achieve
perfect impedance matching would mean to be able for all frequency to adjust
ZS(ω) = Z0 = ZD(ω). For all practical purposes depending on the phenomenon
one wishes to observe it will be enough to match impedances on a finite window.

Note also that the possibility to match impedances rests crucially on an inde-
pendent measurement of the characteristic impedance Z0. This can be achieved
through a variety of means: for instance through the finite-frequency conductance
as explained by the author in8) or through tunneling experiments.

However it might not be completely necessary to measure the characteristic
impedance: one might think of time-resolved experiments where one sends a charged
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pulse in the wire; if one detects reflected pulses this means that impedances are
not matched (actually such tests are routinely used by telecom operators on their
transmission lines to find broken lines).

§4. Two-point Correlators of the phase fields.

We derive in this sections several correlators at zero and finite-temperature.
They will be needed for the proof of bosonization but are also interesting in them-
selves since they are the building blocks for the vertex operators correlators. All
observables of interest can then be calculated: tunneling density of states, current
noise, etc.

4.1. Correlators of the fields φ and Θ.

It is a simple matter to extract two-point correlation functions; using the defi-
nitions of the Green’s functions one has indeed at zero temperature:

〈φ(x, ω)φ(y,−ω)〉 = i θ(ω) [GR(x, y, ω)−GA(x, y, ω)] .

Tedious but uneventful calculations finally yield the following correlator at zero
temperature :

F (x, y, t) = 〈φ(x, t)φ(y, 0)〉 (4.1)

=− K

4π

+∞∑
n=−∞

(rSrD)|n| ln

{[
δ + i(t+

2nL
u

)
]2

+ (
x− y
u

)2
}

+
K

4π

+∞∑
n=0

(rSrD)n rS ln
∏
ε=±1

[
δ + i(t+ ε

x+ y + (2n+ 1)L
u

)
]

+
K

4π

+∞∑
n=0

(rSrD)n rD ln
∏
ε=±1

[
δ + i(t+ ε

x+ y − (2n+ 1)L
u

)
]
.

Extension to finite-temperature is done by observing that the retarded and ad-
vanced Green’s function are temperature independent. Let us consider then the
commutator:

M(x, t; y, 0) = 〈[φ(x, t); φ(y, 0)]〉 .
= 〈φ(x, t)φ(y, 0)− φ(y, 0)φ(x, t)〉

By fluctuation-dissipation (Lehmann’s spectral decomposition):

M(x, y, ω) = (1− e−βω) 〈φ(x, ω)φ(y,−ω)〉T
= (eβω − 1) 〈φ(y,−ω)φ(x, ω)〉T

at temperature T . At zero temperature this implies:

M(x, y, ω) = θ(ω) 〈φ(x, ω)φ(y,−ω)〉0 − θ(−ω) 〈φ(y,−ω)φ(x, ω)〉0
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where the subscript denotes zero temperature. Since M is actually temperature
independent, comparison of the two expressions yields:

F (x, y, ω, T ) = 〈φ(x, ω)φ(y,−ω)〉T =
1

1− e−βω
[θ(ω)F (x, y, ω, T = 0)− θ(−ω)F (y, x, ω, T = 0)]

so that the finite-temperature correction is:

F (x, y, ω, T )−F (x, y, ω, T = 0) = θ(ω)
1

eβω − 1
F (x, y, ω, T = 0)−θ(−ω)

1
1− e−βω

F (y, x, ω, T = 0).

To regulate the previous correlator one defines: F̂−+(x, y, t) = 〈φ(x, t)φ(y, 0)〉−
1
2

〈
φ2(x, t) + φ2(y, 0)

〉
.

The finite-temperature correlator acquires then a correction from its zero tem-
perature expression ∆F = F̂−+(x, y, t, T )− F̂−+(x, y, t, T = 0):

∆F = −K
4π

+∞∑
n=−∞

(rSrD)|n| ln


∣∣Γ [1 + iβ−12nL)

]∣∣4∣∣∣Γ [1 + iβ−1(t+ x−y+2nL
u )

]
Γ
[
1 + iβ−1(t+ y−x+2nL

u )
]∣∣∣2


+
K

4π

+∞∑
n=0

(rSrD)n rS ln


∣∣∣Γ [1 + iβ−1(2x+(2n+1)L

u )
]∣∣∣2 ∣∣∣Γ [1 + iβ−1(2y+(2n+1)L

u )
]∣∣∣2∣∣∣Γ [1 + iβ−1(t+ x+y+(2n+1)L

u )
]∣∣∣2 ∣∣∣Γ [1 + iβ−1(t− x+y+(2n+1)L

u )
]∣∣∣2


+
K

4π

+∞∑
n=0

(rSrD)n rD ln


∣∣∣Γ [1 + iβ−1(2x−(2n+1)L

u )
]∣∣∣2 ∣∣∣Γ [1 + iβ−1(2y−(2n+1)L

u )
]∣∣∣2∣∣∣Γ [1 + iβ−1(t+ x+y−(2n+1)L

u )
]∣∣∣2 ∣∣∣Γ [1 + iβ−1(t− x+y−(2n+1)L

u )
]∣∣∣2


where we have made use of the product expansion of the Gamma function Γ and β
is 1

T . This can also be rexpressed as:

∆F = −K
4π

+∞∑
n=−∞

(rSrD)|n| ln


[
shcπβ

−1(t+ x−y+2nL
u )

] [
shcπβ

−1(t+ y−x+2nL
u )

]
[shcπβ−12nL]2


+
K

4π

+∞∑
n=0

(rSrD)n rS ln


[
shcπβ

−1(t+ x+y+(2n+1)L
u )

] [
shcπβ

−1(t− x+y+(2n+1)L
u )

]
[
shcπβ−1(2x+(2n+1)L

u )
] [
shcπβ−1(2y+(2n+1)L

u )
]


+
K

4π

+∞∑
n=0

(rSrD)n rD ln


[
shcπβ

−1(t+ x+y−(2n+1)L
u )

] [
shcπβ

−1(t− x+y−(2n+1)L
u )

]
[
shcπβ−1(2x−(2n+1)L

u )
] [
shcπβ−1(2y−(2n+1)L

u )
]


whare we have defined the function shcx = sinhx/x.

The correlator for the other phase field Θ can be found from the previous ex-
pressions by the operations: (rS , rD,K)→ (−rS ,−rD, 1/K). The change of sign for
the reflection coefficients follows from the fact that the chiral components of Θ are
Θ± = ±φ±/K so that the reflection coefficients for Θ acquire a relative minus sign
with respect to those for φ.
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4.2. Chiral correlators.

The chiral correlators will be useful for computing the cross-correlators of the
phase fields. We use again:

〈φ±(x, ω)φ±(y,−ω)〉 = i θ(ω)
[
G±±R (x, y, ω)−G±±A (x, y, ω)

]
.

(= −2 θ(ω) =mG±±R (x, y, ω) ).

Using the expressions of the chiral retarded propagators and sinceG±±A (x, y, ω) =
G±±R (y, x,−ω) and G±∓A (x, y, ω) = G∓±R (y, x,−ω) one finds finally:

〈φ±(x, t)φ±(y, 0)〉 = −K
4π

+∞∑
n=−∞

(rSrD)|n| ln
[
δ + i

(
t− 2nL± (x− y)

u

)]

〈φ+(x, t)φ−(y, 0)〉 =
K

4π

+∞∑
n=0

(rSrD)n
{
rS ln

[
δ + i

(
t− x+ y + (2n+ 1)L

u

)]
+rD ln

[
δ + i

(
t− x+ y − (2n+ 1)L

u

)]}
− iK

8
+ i

K

8
rS − rD
1− rSrD

〈φ−(x, t)φ+(y, 0)〉 =
K

4π

+∞∑
n=0

(rSrD)n
{
rS ln

[
δ + i

(
t+

x+ y + (2n+ 1)L
u

)]
+rD ln

[
δ + i

(
t+

x+ y − (2n+ 1)L
u

)]}
+ i

K

8
− iK

8
rS − rD
1− rSrD

Note the presence of non-trivial zero-mode terms for the cross-correlators of the
chiral fields.

For later use in the bosonization proof it will be useful to consider these expres-
sions for K = 1. To avoid confusion we define the chiral fields for K = 1 as ϕR and
ϕL; their correlators are therefore as above with K = 1:

〈
ϕR/L(x, t)ϕR/L(y, 0)

〉
= − 1

4π

+∞∑
n=−∞

(rSrD)|n| ln
[
δ + i

(
t− 2nL± (x− y)

u

)]
;

〈ϕR(x, t)ϕL(y, 0)〉 =
1

4π

+∞∑
n=0

(rSrD)n
{
rS ln

[
δ + i

(
t− x+ y + (2n+ 1)L

u

)]
+rD ln

[
δ + i

(
t− x+ y − (2n+ 1)L

u

)]}
− i

8
+
i

8
rS − rD
1− rSrD

;

〈ϕL(x, t)ϕR(y, 0)〉 =
1

4π

+∞∑
n=0

(rSrD)n
{
rS ln

[
δ + i

(
t+

x+ y + (2n+ 1)L
u

)]
+rD ln

[
δ + i

(
t+

x+ y − (2n+ 1)L
u

)]}
+
i

8
− i

8
rS − rD
1− rSrD

.

4.3. Cross correlators of φ and Θ.

Since:

φ = φ+ + φ−
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Θ =
φ+ − φ−

K

one has:

〈φ Θ〉 = K−1{〈φ+φ+〉 − 〈φ−φ−〉 − 〈φ+φ−〉+ 〈φ−φ+〉}
〈Θ φ〉 = K−1{〈φ+φ+〉 − 〈φ−φ−〉+ 〈φ+φ−〉 − 〈φ−φ+〉}

Finally:

〈φ(x, t)Θ(y, 0)〉 = − 1
4π

+∞∑
n=−∞

(rSrD)|n| ln

δ + i
(
t+ 2nL+y−x

u

)
δ + i

(
t+ 2nL+x−y

u

)


− 1
4π

+∞∑
n=0

(rSrD)n rS ln

δ + i
(
t− x+y+(2n+1)L

u

)
δ + i

(
t+ x+y+(2n+1)L

u

)


− 1
4π

+∞∑
n=0

(rSrD)n rD ln

δ + i
(
t− x+y−(2n+1)L

u

)
δ + i

(
t+ x+y−(2n+1)L

u

)


+
i

4
− i

4
rS − rD
1− rSrD

〈Θ(x, t)φ(y, 0)〉 = − 1
4π

+∞∑
n=−∞

(rSrD)|n| ln

δ + i
(
t+ 2nL+y−x

u

)
δ + i

(
t+ 2nL+x−y

u

)


+
1

4π

+∞∑
n=0

(rSrD)n rS ln

δ + i
(
t− x+y+(2n+1)L

u

)
δ + i

(
t+ x+y+(2n+1)L

u

)


+
1

4π

+∞∑
n=0

(rSrD)n rD ln

δ + i
(
t− x+y−(2n+1)L

u

)
δ + i

(
t+ x+y−(2n+1)L

u

)


− i
4

+
i

4
rS − rD
1− rSrD

At finite temperature the regularized correlators F1 = 〈φ(x, t)Θ(y, 0)〉−1
2 〈φ(x, 0)Θ(x, 0)〉−

1
2 〈φ(y, 0)Θ(y, 0)〉 and F2 = 〈Θ(x, t)φ(y, 0)〉 − 1

2 〈Θ(x, 0)φ(x, 0)〉 − 1
2 〈Θ(y, 0)φ(y, 0)〉

get the corrections:

∆F1 = − 1
4π

+∞∑
n=−∞

(rSrD)|n| ln

shcπβ
−1
(
t+ 2nL+y−x

u

)
shcπβ−1

(
t+ 2nL+x−y

u

)


− 1
4π

+∞∑
n=0

(rSrD)n rS ln

shcπβ
−1
(
t− x+y+(2n+1)L

u

)
shcπβ−1

(
t+ x+y+(2n+1)L

u

)

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− 1
4π

+∞∑
n=0

(rSrD)n rD ln

shcπβ
−1
(
t− x+y−(2n+1)L

u

)
shcπβ−1

(
t+ x+y−(2n+1)L

u

)


and:

∆F2 = − 1
4π

+∞∑
n=−∞

(rSrD)|n| ln

shcπβ
−1
(
t+ 2nL+y−x

u

)
shcπβ−1

(
t+ 2nL+x−y

u

)


+
1

4π

+∞∑
n=0

(rSrD)n rS ln

shcπβ
−1
(
t− x+y+(2n+1)L

u

)
shcπβ−1

(
t+ x+y+(2n+1)L

u

)


+
1

4π

+∞∑
n=0

(rSrD)n rD ln

shcπβ
−1
(
t− x+y−(2n+1)L

u

)
shcπβ−1

(
t+ x+y−(2n+1)L

u

)


where as before we have defined shc(x) = sinhx/x.

§5. Bosonization.

It is far from obvious that bosonization works with the boundary conditions
considered in this paper.

We now show it does or more precisely we show that:
The bosonic field theory on a finite length with boundary conditions

H =
∫ L/2

−L/2
dx (∂xϕR)2 + (∂xϕL)2

∂xϕR(−L/2) = rS ∂xϕL(−L/2)
∂xϕL(L/2) = rD ∂xϕR(L/2)

with : [
ϕR/L(x, t), ϕR/L(y, t)

]
= ± i

4
sgn(x− y)

[ϕR(x, t), ϕL(y, t)] = − i
4

is equivalent to the fermionic field theory:

H =
∫ L/2

−L/2
dx − iR+∂xR+ iL+∂xL

ρR(−L/2) = rS ρL(−L/2)
ρL(L/2) = rD ρR(L/2)

where R and L are Fermi fields obeying the usual anticommutation rules and:

ρR(x, t) = : R+(x, t)R(x, t) :
ρL(x, t) = : L+(x, t)L(x, t) :
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provided we identify:

R(x, t) =
1√
2πδ

exp 2i
√
πϕR

L(x, t) =
1√
2πδ

exp − 2i
√
πϕL

where δ is a short-distance cut-off.
Note that we have normalized the Fermi velocity to u = 1.
We proceed in three steps:
(1) we check that the vertex operators obey fermionic commutation relations;
(2) by point-splitting we show that the usual relations still hold:

: ρR(x, t) :=
1√
π
∂xϕR

: ρL(x, t) :=
1√
π
∂xϕL

(3) and also by point splitting that:

:: ρR(x, t) :2:=
−i
π

: R+∂xR :

:: ρL (x, t) :2:=
i

π
: L+∂xL :

from which the proof is trivially completed by substitution.
Step 1:
For R(x, t) = 1√

2πδ
exp 2i

√
πϕR the relation {R(x, t);R(y, t)} = 0 is automati-

cally fulfilled given the commutation relation of the chiral field.
Indeed using the identity :

eAeB =: eA+B : e
〈
AB+A2+B2

2

〉
it follows that

R(x, t)R(y, t) = R(y, t)R(x, t) e−4π〈[ϕR(x,t),ϕR(y,t)]〉

= R(y, t)R(x, t) e−iπ sgn(x−y)

= −R(y, t)R(x, t)

Similarly {R(x, t);L(y, t)} = 0 using [ϕR(x, t), ϕL(y, t)] = −i/4.
This step is trivial but it remains to show that {R(x, t), R+(y, t)} = δ(x − y)

which is less straightforward.
We use the expressions derived for the chiral correlators (inserting K = 1 and

u = 1) (note that to make clear that the fields are taken at K = 1 we use the
notations ϕR and ϕL instead of φ± in the whole section):

〈ϕR(x, t)ϕR(y, 0)〉 = − 1
4π

+∞∑
n=−∞

(rSrD)|n| ln [δ + i (t− 2nL± (x− y))] .

This entails:



20 K.-V. Pham

{
R(x, t), R+(y, t)

}
=

1
2πδ

: exp 2i
√
π (ϕR(x, t)− ϕR(y, t)) :

×
{

exp 4π
〈
ϕR(x, t)ϕR(y, t)− 1

2
(
ϕ2
R(x, t) + ϕ2

R(y, t)
)〉

+

+ exp 4π
〈
ϕR(y, t)ϕR(x, t)− 1

2
(
ϕ2
R(x, t) + ϕ2

R(y, t)
)〉}

=
1

2πδ
: exp 2i

√
π (ϕR(x, t)− ϕR(y, t)) :

×

{
exp −

+∞∑
n=−∞

(rSrD)|n| ln
(
δ + i(2nL+ x− y)

δ + i2nL

)
+

+ exp −
+∞∑

n=−∞
(rSrD)|n| ln

(
uδ + i(2nL+ y − x)

uδ + i2nL

)}

=
1

2πδ
: exp 2i

√
π (ϕR(x, t)− ϕR(y, t)) :

×

exp − ln(
δ − i(x− y)

δ
) exp −

∑
n6=0

(rSrD)|n| ln
(

2nL+ y − x
2nL

)

+ exp − ln(
δ − i(y − x)

δ
) exp −

∑
n6=0

(rSrD)|n| ln
(

2nL+ x− y
2nL

)
=

1
2π

: exp 2i
√
π (ϕR(x, t)− ϕR(y, t)) : exp −

∑
n6=0

(rSrD)n ln
(

2nL+ y − x
2nL

)

×
{

1
δ − i(x− y)

+
1

δ + i(x− y)

}
= : exp 2i

√
π (ϕR(x, t)− ϕR(y, t)) : exp −

∑
n6=0

(rSrD)n ln
(

2nL+ y − x
2nL

)
δ(x− y)

= δ(x− y).

Step two:

R+(x)R(x) = lim
ε→0

1
2πδ

exp −2i
√
πϕR(x+ ε) exp 2i

√
πϕR(x)

= lim
ε→0

1
2πδ

: exp −2i
√
π (ϕR(x+ ε)− ϕR(x)) :

exp 4π
〈
ϕR(x+ ε)ϕR(x)− 1

2
(
ϕ2
R(x+ ε) + ϕ2

R(x)
)〉

= lim
ε→0

1
2πδ

[
1− 2i

√
πε∂xϕR(x)

]
exp −

+∞∑
n=−∞

(rSrD)|n| ln
(
δ + i(2nL+ ε)
δ + i2nL

)
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= lim
ε→0

1
2πδ

[
1− 2i

√
πε∂xϕR(x)

] δ

δ − iε
exp −

∑
n 6=0

(rSrD)|n| ln
(
i(2nL+ ε)
i2nL

)
In the last line the regulator can safely be put to zero in the exponential (except for
the n = 0 term) since the 2nL term is finite. δ being the short-distance cut-off (the
inverse of the bandwidth) is smaller than any distance, so smaller than ε. The limit
δ → 0 is therefore taken before the ε→ 0 :

R+(x)R(x) = lim
ε→0

1
2π(−iε)

[
1− 2i

√
πε∂xϕR(x)

]
exp −

∑
n 6=0

(rSrD)|n| ln
(
i(2nL+ ε)
i2nL

)
and we get after normal ordering (discarding a c-number piece) the expected result.
So:

ρR(x, t) = : R+(x, t)R(x, t) :=
1√
π
∂xϕR

ρL(x, t) = : L+(x, t)L(x, t) :=
1√
π
∂xϕL

Step three:
We will need the correlators of the vertex operators.〈

R+(x)R(y)
〉

=
1

2πδ
〈
: exp −2i

√
π (ϕR(x)− ϕR(y)) :

〉
exp 4π

〈
ϕR(x)ϕR(y)− 1

2
(
ϕ2
R(x) + ϕ2

R(y)
)〉

=
1

2πδ
exp −

+∞∑
n=−∞

(rSrD)|n| ln
(
δ + i(2nL+ x− y)

δ + i2nL

)
and:〈
R(x)R+(y)

〉
=

1
2πδ

〈
: exp 2i

√
π (ϕR(x)− ϕR(y)) :

〉
exp 4π

〈
ϕR(x)ϕR(y)− 1

2
(
ϕ2
R(x) + ϕ2

R(y)
)〉

=
1

2πδ
exp −

+∞∑
n=−∞

(rSrD)|n| ln
(
δ + i(2nL+ x− y)

δ + i2nL

)
.

We now compute the square of the normal ordered chiral density. This is of
course a singular operator which needs itself to be normal ordered. By point splitting
and then Wick’s theorem:

: R+(x)R(x) :2 = lim
ε→0

: R+(x+ ε)R(x+ ε) :: R+(x)R(x) :

= lim
ε→0

: R+(x+ ε)R(x+ ε)R+(x)R(x) : +
〈
R+(x+ ε)R(x)

〉
: R(x+ ε)R+(x) :

+ R+(x+ ε)R(x) :
〈
R(x+ ε)R+(x)

〉
+
〈
R+(x+ ε)R(x)

〉 〈
R(x+ ε)R+(x)

〉
= lim

ε→0

1
2πδ

exp −
+∞∑

n=−∞
(rSrD)|n| ln

(
δ + i(2nL+ ε)
δ + i2nL

)
{

: R(x+ ε)R+(x) : +R+(x+ ε)R(x) :
}

+ c− number.
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As before in the exponential only the n = 0 is really singular in the limit δ → 0; it
cancels with the prefactor so that after normal ordering:

:: R+(x)R(x) :2 := lim
ε→0

1
2πiε

exp −
∑
n6=0

(rSrD)|n| ln
(

2nL+ ε

2nL

)
{

: R(x+ ε)R+(x) : +R+(x+ ε)R(x) :
}

= lim
ε→0

1
2πiε

{
: R(x+ ε)R+(x) : +R+(x+ ε)R(x) :

}
=
−i
π

: R+∂xR :

Finally: using the relations proven in step two the Hamiltonian can be rewritten in
terms of the currents of the fermion vertex operators:

H = π

∫ L/2

−L/2
Ldx : ρ2

R + ρ2
L :

Then using the relation derived in step three:

: ρR(x, t) :2=
−i
π

: R+∂xR :

: ρL (x, t) :2=
i

π
: L+∂xL :

implies immediately:

H =
∫ L/2

−L/2
dx − iR+∂xR+ iL+∂xL :

It remains to prove that the boundary conditions for the boson theory translate
into the quoted boundary conditions for the free fermion theory: but this has already
been shown in section 2 of the paper (see eq.(2.3,2.6,2.8) ).

Switching on interactions. What about interactions? Having shown the
relation between the free boson and the Dirac fermions, interactions can now be
switched on for the fermions. But since we have proven that the customary dictionary
of correspondence still holds (vertex operator, currents ) it is clear that for the LL
with boundary conditions the transcription of fermion interactions will go as in the
standard LL. For example if we add the interaction:

V =
∫ L/2

−L/2
dx g2 ρRρL + g4

(
ρR

2 + ρL
2
)

the full Hamiltonian can be rewritten in terms of the phase fields as:

H =
1
2

∫ L/2

−L/2
dx (1 + g4 + 2g2)(∂xφ)2 + (1 + g4 − 2g2)Π2
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which takes the standard form:

H =
u

2

∫ L/2

−L/2
dx

1
K

(∂xφ)2 +K Π2

with

K =
√

1 + g4 − 2g2
1 + g4 + 2g2

,

u =
√

(1 + g4)2 − 4g2
2.

(we have normalized the Fermi velocity vF to 1 and also ~ = 1 in all this section).
If we look closely at the bosonization proof we see that what does the trick is al-

ways the n = 0 term in the sum (this term corresponds to reflectionless propagation
in the propagator): this is sensible since it corresponds to what one would have with-
out reflections as in the infinite system. Remarkably this shows that the ultralocal
structure of the current algebra is unaffected by the dissipative boundaries.

What about spin? Extension to spinful LL is done in the same manner as with
the usual LL. We consider a second copy of the LL with IBC and add a spin index
σ. Given the fact that the boson fields ϕRσ and ϕLσ for different spins commute,
as usual it suffices to add Majorana fermions ησ to enforce equal time commutation
relations for the fields for different spins1) so that:

Rσ = ησ
1√
2πδ

exp 2i
√
πϕRσ

and {
Rσ(x, t), R+

σ′(y, t)
}

= δσσ′ δ(x− y)

if {ησ, ησ′} = 2δσσ′ and η+
σ = ησ.

§6. Fermion correlators.

The fermion operators are given by the usual relation with the phase fields :

R(x, t) =
1√
2πδ

exp i
√
π (φ+Θ) ,

L(x, t) =
1√
2πδ

exp i
√
π (−φ+Θ) ,

up to unessential phases corresponding to shifts of the chemical potential (see Ap-
pendix B and the discussion regarding open boundary conditions).

The two-point correlators are given by:

〈
R(x, t)R+(y, 0)

〉
=

1
2πδ

expπ 〈φ(x, t)φ(y, 0)〉+ 〈Θ(x, t)Θ(y, 0)〉+ 〈φ(x, t)Θ(y, 0)〉+

+ 〈Θ(x, t)φ(y, 0)〉 − 1
2
[〈
φ2(x, t) + φ2(y, 0)

〉
+
〈
Θ2(x, t) +Θ2(y, 0)

〉
+

+ 〈φ(x, t)Θ(x, t) + φ(y, 0)Θ(y, 0)〉+ 〈Θ(x, t)φ(x, t) +Θ(y, 0)φ(y, 0)〉]}
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and a similar relation for the left fermion. It then suffices to insert the expressions
derived in the previous section.

For instance at zero temperature:〈
R(x, t)R+(y, 0)

〉
=

1
2πδ

+∞∏
n=−∞

[
(δ + i2nL)2

[δ + i(ut+ 2nL)]2 + (x− y)2

]K+K−1

4
(rSrD)|n|

×
+∞∏

n=−∞

[
δ + i(ut+ 2nL+ x− y)
δ + i(ut+ 2nL+ y − x)

] (rSrD)|n|
2

×
+∞∏

ε=±1, n=0

[
[δ + i(ut− x− y + ε(2n+ 1)L)]2

[δ + i(ut− 2x+ ε(2n+ 1)L)] [δ + i(ut− 2y + ε(2n+ 1)L)]

]K−K−1

8
(rSrD)|n|rS

×
+∞∏

ε=±1, n=0

[
[δ + i(ut+ x+ y + ε(2n+ 1)L)]2

[δ + i(ut+ 2x+ ε(2n+ 1)L)] [δ + i(ut+ 2y + ε(2n+ 1)L)]

]K−K−1

8
(rSrD)|n|rD

and appropriate expressions at finite-temperature. The tunneling DOS is the Fourier
transform of this correlator.

§7. Conclusion.

We have extended the bosonization technique to a LL connected to resistances
computing correlators of the boson fields in so doing. The latter are the building
blocks allowing calculation of the fermion correlators. As side results we derived
also the finite-frequency conductivity and found that the finite-size LL with IBC
is equivalent to an infinite LL by virtue of identity of Green’s functions whenever
impedance matching is realized.

We also recovered explicitly the properties of an open LL: it corresponds to IBC
with infinite resistances.

But in general the LL with IBC has distinctly different properties (it is a dissipa-
tive system) and forms a universality class in its own right much as the LL with OBC
which exhibits critical exponents different from those of the infinite LL. Further in-
teresting developments using the results in this paper would be a study of the single
particle spectral density which is the object of interest in tunneling experiments. A
study of the shot noise using the Keldysh technique would also be straightforward
given the knowledge of the Green’s functions.

Appendix A
Conductivity.

We use linear response theory: let us consider the perturbation V̂ = −
∫
dxρ U

where U is a voltage. Integrating by parts one gets: V̂ = −
∫
dxE φ√

π
. By linear
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response:

δ 〈φ(x, t)〉 =
i√
π

∫ L

0
dy

∫ +∞

−∞
dt′GR(x, t; y, t′)E(y, t′).

But ie(t) = − e√
π
∂φ
∂t therefore:

ie(x, ω) =
i e ω√
π
φ(x, ω) = − e

π
ω

∫
dy GR(x, y, ω)E(y, ω)

so that the non-local conductivity is:

σ(x, y, ω) =
e

π
ωGR(x, y, ω).

The expression of GR(x, y, ω) was computed in section 3. This expression allows
measurement of the complex boundary impedances.

Appendix B
Recovering the Luttinger liquid with open boundary conditions.

In this Appendix we will show that the LL with OBC is a special limit of the
LL with IBC when the reflection parameters at the boundaries are set to unity.
Physically this comes about because perfect reflection can be equated with having a
hard-wall.

The OBC for the fermion operator:

ψ(x) = 0 (x = 0 or L)

i.e.

ψR(0) = −ψL(0)
ψR(L) = −ψL(L)

will be derived explicitly from the IBC (with rS = 1 = rD) (we have dropped the
phase ei2kFL since kF = Nπ/L). This will show the perfect equivalence between the
LL with OBC and the LL with IBC when rS = 1 = rD. But already we observe
that:

OBC =⇒ IBC (rS = 1 = rD)

since cancellation of the fermion operator implies that its current is also zero (and
particularly its k � kF harmonics: see for instance the relation ρ+(x) = ρ−(−x)
found for the OBC, third equation below eq.(10) of Ref. 4)).

But for reflection coefficients rS = 1 = rD the IBC is equivalent to stating that
ρ+ = ρ− at both boundaries (therefore the current I ∝ ρ+− ρ−vanishes). The OBC
therefore does imply the IBC.

We now prove the converse and establish:

IBC (rS = 1 = rD) =⇒ OBC.
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The proof actually exists already at 90% in Ref. 5 which in order to quantize the
LL with OBC actually started from the zero current condition on the boson field:
in that work the fermionic boundary conditions are used to derive the quantization
rules on charges. But one can take a reverse standpoint: this allows to derive the
fermionic boundary conditions by demanding that charge be conserved. (We will
also in the course of the proof reconcile Ref. 4 and Ref. 5 which find a slightly
different Green’s function [see eq.(29) of Ref. 5 and the discussion after it about the
difference with eq.(31) of Ref. 4] .)

B.1. Derivation of the OBC.

B.1.1. Mode development of the fields.
We depart in this Appendix from the definition of the boundaries at x = ±L/2

to set them at x = 0, L. For reflection coefficients rS = 1 = rD the IBC imply:

∂xφ+(0, t) = ∂xφ−(0, t),
∂xφ−(L, t) = ∂xφ+(L, t).

Therefore:

∂tφ+(0, t) = −∂tφ−(0, t),
∂tφ−(L, t) = −∂tφ+(L, t).

This implies:
φ(0, t) = C0, φ(L, t) = CL (B.1)

where the operators C0 and CL do not depend on time.
For these values of rS and rD the boson theory is dissipationless and will be

described by a c = 1 conformal field theory. It will be necessary to make an eigen-
mode development of the fields. To do it we follow closely Ref. 5 who treated the
quantization of the OBC by using as a starting point eq. (B.1) (i.e. by using the
IBC!). Since the field φ obeys the standard wave equation and given the boundary
conditions ( eq.(B.1) ) the mode expansion for φ and Θ must have the form:

φ(x, t) = φ0 +
√
π

L
Q x+

√
K
∑
n≥1

sin(qnx)√
πn

(
−iane−iqnut + ia+

n e
iqnut

)
(B.2)

Θ(x, t) = Θ0 −
√
π

L

Q

K
ut− 1√

K

∑
n≥1

cos(qnx)√
πn

(
ane
−iqnut + a+

n e
iqnut

)
where qn = nπ/L.

We impose the standard equal time commutation relations for the fields:

[φ(x); φ(y)] = 0, [Θ(x); Θ(y)] = 0, [φ(x); Θ(y)] = iθ(x− y)

where θ(x) is the Heaviside step function. The first two commutators [φ(x); φ(y)] =
0, [Θ(x); Θ(y)] = 0 imply that all the commutators vanish except [an; a+

n ] and
[Q; Θ0]. Expanding the third commutator one gets:

iθ(x− y) =
√
π

L
[Q; Θ0]x+ 2i

∑
n≥1

sin(qnx) cos(qny)
πn

[
an; a+

n

]
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and by making use of the expansion:

iθ(x− y) = i
x

L
+ 2i

∑
n≥1

sin(qnx) cos(qny)
πn

which can be proved by using eq. (A-1) of Ref. 4 one finds that the only non-zero
commutators are: [

an; a+
n

]
= 1, [Q; Θ0] = i/

√
π.

We note that φ0 is a c-number; this is normal since the operator J which is usually
its conjugate momentum in the periodic LL does not appear in the theory. We can
therefore remove it altogether since the LL Hamiltonian is invariant under constant
shifts of the phase field: φ −→ φ− φ0.

The zero mode Q is as usual the charge added to the system since the number
density is ρ− ρ0 = 1√

π
∂xφ:

N −N0 =
1√
π

(φ(L)− φ(0)) ,

= Q.

B.1.2. Picking the right bosonization formula.
The usual bosonization formula for the fermion operator used in infinite systems

ψR/L =
1√
2πδ

exp i
√
π (±φ+Θ)

is not the only one possible; other valid vertex operators for a fermion operator are
for instance:

ψ̃R =
eiαx+β√

2πδ
exp i

√
π (φ+Θ) ,

ψ̃L =
e−iαx+γ√

2πδ
exp i

√
π (φ+Θ)

where α, β and γ are real constants. It is easy to check that these constants do not af-
fect the bosonization proof given in Section 5: β and γ correspond to a U(1)L×U(1)R
invariance of the free Dirac lagrangian while α only shifts the chemical potential (sub-
stitution in the Dirac Hamiltonian leads simply to the additional term α(NR+NL)).
The effect of these constants on the physics is slight: the α term leads to additional
oscillations in the Green’s function, which are in a sense trivial because they only
correspond to a shift in chemical potential; the other constants have no effect. How-
ever when one wishes the operators to obey specific boundary conditions they will
be necessary.

Indeed this liberty in the choice of the fermion operator is useful: remember that
OBC can be obtained from a variety of conditions, for instance Dirichlet BC (van-
ishing of the fermionic wavefunction) or Neumann BC (vanishing of its derivative).
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Dirichlet BC ψ = 0 at a boundary at x = 0 or x = L reads:

ψR(0) = −ψL(0),
ψR(L) = −e−i2kFLψL(L).

A Neumann BC reads ∂xψ = 0. In the low-energy limit k � kF :

∂xψ = 0 =⇒ kF

(
eikF xψR − e−ikF xψL

)
= 0

and therefore at x = 0, L:

ψR(0) = ψL(0),
ψR(L) = e−i2kFLψL(L).

Therefore the same vertex operator can not obey both Dirichlet and Neumann
BC at the same time (at the same location). We now give the correct prescriptions
for both situations and also mixed ones (Dirichlet at one boundary and Neumann at
the other).

It will be convenient to define in the following discussion the ’primed’ operators
which differ from the usual ones by a shift of the Fermi vector π

2L :

ψ′R(x, t) =
1√
2πδ

exp i
√
π (φ+Θ) exp i

π

2L
(x− u

K
t);

ψ′L(x, t) =
1√
2πδ

exp i
√
π (−φ+Θ) exp−i π

2L
(x+

u

K
t).

These operators correspond actually to factoring out the zero modes from the phase
fields:

ψ′R(x, t) =
1√
2πδ

exp i
√
πΘ0 exp iπ

Q

L
(x− u

K
t) exp i

√
π
(
φ′ +Θ′

)
ψ′L(x, t) =

1√
2πδ

exp i
√
πΘ0 exp−iπQ

L
(x+

u

K
t) exp i

√
π
(
−φ′ +Θ′

)
(where the prime ’ means fields from which the zero modes have been subtracted).
These relations follow immediately from Campbell-Haussdorf formula and the com-
mutator [Q; Θ0] = i/

√
π (φ′ and Θ′ commute with the zero modes).

Dirichlet boundary conditions.
In the free-fermion limit the zeros at the two boundaries imply that the Fermi

vector has the form: kFL = πN so we can remove the phase e−i2kFL from the BC.
Let us consider the operators:

ψDR (x, t) = ψ′R(x, t);
ψDL (x, t) = −ψ′L(x, t).
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(the upper index D stands for Dirichlet).
We now use the mode expansion on the fields (eq.(B.2) ) which implies:

φ′(0) = 0 = φ′(L).

This in turn implies:

ψDR (0, t) =
1√
2πδ

exp i
√
πΘ0 exp−iπQ

L

u

K
t exp i

√
πΘ′(0, t)

ψDL (0, t) =
−1√
2πδ

exp i
√
πΘ0 exp−iπQ

L

u

K
t exp i

√
πΘ′(0, t)

Therefore at x = 0 we have trivially a Dirichlet BC:

ψDR (0, t) = −ψDL (0, t).

At x = L:

ψR(L, t) =
1√
2πδ

exp i
√
πΘ0 exp iπQ exp iπ

Q

KL
(−ut) exp i

√
πΘ′,

ψDL (L, t) =
−1√
2πδ

exp i
√
πΘ0 exp−iπQ exp iπ

Q

KL
(−ut) exp i

√
πΘ′.

The two expressions are almost identical except for the second term at the right of
the sign equal. We now enforce charge quantization: the operator Q must have only
integral eigenvalues. Therefore we have the operator equality:

exp iπQ = exp−iπQ.

This then implies Dirichlet BC at x = L (with kFL = πN ):

ψDR (L, t) = −ψDL (L, t).

Furthermore using the mode expansion one finds that:

φ′(x) +Θ′(x) = −φ′(−x) +Θ′(−x).

Since:

ψDR =
1√
2πδ

exp i
√
πΘ0 exp iπ

Q

L
(x− ut

K
) exp i

√
π
(
φ′ +Θ′

)
ψDL = − 1√

2πδ
exp i

√
πΘ0 exp iπ

Q

L
(−x− ut

K
) exp i

√
π
(
−φ′ +Θ′

)
it follows that:

ψDR (x) = −ψDL (−x).

One can check that the prescription is exactly that of F-G in Ref. 4 (see eq. (9)
and eq. (7)).

We have thus recovered Dirichlet boundary conditions starting from the IBC at
rS = 1 = rD.
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Neumann boundary conditions.
Again in the free-fermion limit the zeros at the two boundaries imply that the

Fermi vector has the form: kFL = πN so we can remove the phase e−i2kFL from the
BC.

Since we are at liberty to add constant phases and still get vertex operators for
fermions, the previous discussion suggests that suitable expressions are:

ψNR = ψ′R,

ψNL = ψ′L.

This leads immediately to Neumann BC at x = 0 and x = L:

ψNR (0) = ψNL (0),
ψNR (L) = ψNL (L).

Mixed boundary conditions.
For mixed boundary conditions kF is quantized as kFL = π(N + 1

2) (which is
the correct quantization for free fermions in a box with mixed conditions ψ = 0 at
one end and ∂xψ = 0 at the other one).

- for Dirichlet BC at x = 0 and Neumann BC at x = L:

ψR(0) = −ψL(0)
ψR(L) = e−i2kFLψL(L) = −ψL(L).

therefore the expressions of the fermion fields used for Dirichlet BC still work:

ψDR (x, t) = ψ′R
ψDL (x, t) = −ψ′L

- for Neumann BC at x = 0 and Dirichlet BC at x = L, the Neumann prescrip-
tion above is the correct one.

A ’Twisted’ boundary condition.
The interested reader may inquire what boundary conditions the standard op-

erators ψR/L can describe; it can be checked that:

ψR/L =
1√
2πδ

exp i
√
π (±φ+Θ)

implies:

ψR(0) = ψL(0),
ψR(L) = −ψL(L).

This can describe a system with any combination of Dirichlet or Neumann BC pro-
vided we add the condition that one boundary adds a π phase; a way to do that with
free fermions is to add a boundary interaction with reflection coefficient r = −1 such
as ψ+

RψR + ψ+
LψL − ψ

+
RψL − ψ

+
LψR . If we unfold the non-chiral system of length

L into a chiral system of length 2L this corresponds to the theory of a single chiral
fermion on a circle threaded by a flux π.
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B.1.3. Fabrizio-Gogolin Bosonization of OBC versus Mattsson et coll. Bosonization.
The earliest theory on the LL with OBC is due to Fabrizio and Gogolin (F-G).4)

A little bit later the problem was also treated by Mattsson and collaborators (M-E-
J)5) with a different bosonization scheme namely the standard prescription used for
the infinite system:

ψR/L =
1√
2πδ

exp i
√
π (±φ+Θ) .

The treatments lead mostly to the same results although there are in details some
minor differences. For instance, M-E-J find that the Green’s function has an addi-
tional modulation coming from zero modes not present in F-G’s results (see eq. (29)
of Ref. 5 and the discussion which follows and compare to eq. (31) of Ref. 4):

GM−E−J(x, t; y, 0) = e−i
π
2L

(2n0−1)(x−y+ucK−1
c t)GF−G(x, t; y, 0)

(the Green’s function written is that of the left fermion ψL with n0 defined by M-
E-J as n0 = kFL/π mod 1). M-E-J comment that this difference with F-G will have
implications for time correlations but do not explain the origin of the discrepancy.

The previous discussion should hint at the explanation: the additional phase as
compared with F-G comes from the fact that F-G use the primed operators ψ′R/L.

This leads naturally to the question: which is the correct prescription since M-
E-J also use Dirichlet BC? We now show that M-E-J choice leads to inconsistencies
with regard to conserved charges and that the correct prescription for Dirichlet BC
is indeed that of F-G.

M-E-J find (eq.(22a-b) of Ref. 5 and eq.(5) and (18) for definitions) for the total
charge Qc = Q↑+Q↓and Qs = Q↑−Q↓(after proper rescaling to extract the physical
charges):

Qc = n+ 1 +
2kFL
π

Qs = m

where n and m are integers having the same parity. M-E-J derived these constraints
by imposing the Dirichlet BC.

But for free fermions with Dirichlet BC at both boundaries: kFL = πN (which
implies that 2kFL

π is an even number!). M-E-J equations therefore imply that Qc and
Qs have opposite parity.

However since Qc = Qs + 2Q↓, Qc and Qs must have the same parity: we
have therefore a contradiction. Having the correct quantization conditions plays
an important role for the partition function and for the finite temperature Green’s
function for the zero modes part so the issue is not innocuous.

An obvious way to cure the problem would be to artificially prescribe that the
Fermi wavevector is k′FL = π(N + 1

2) since this avoids the problem with charges:
it also removes the additional phase M-E-J find in the Green’s function and yields
Dirichlet BC but of course the value of k′F is incorrect in the limit of free fermions.
A possible interpretation of the shift might be that it proceeds from a change in
Maslov-Morse index in the trajectory.
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B.2. Recovering the correlators of OBC.

We will check here directly using the expressions computed with IBC that we
recover the correlators of OBC. (NB: In order to compare our results with those of
the litterature which work with x ∈ [0, L], since we worked with x ∈ [−L/2, L/2] we
shift all the space arguments by L/2 when using the expressions derived in the bulk
of this paper.)

B.2.1. Boson correlator.
Chiral boson correlator:
For rS = 1 = rD the chiral boson fields correlators read:

F++(x, t; y, 0) = 〈φ+(x, t)φ+(y, 0)〉 = −K
4π

+∞∑
n=−∞

(rSrD)|n| ln [δ + i(ut− 2nL− x+ y)] .

One can also check directly that:

〈φ+(x, t)φ−(y, 0)〉 = −F++(x, t; −y, 0),
〈φ−(x, t)φ+(y, 0)〉 = −F++(−x, t; y, 0),
〈φ−(x, t)φ−(y, 0)〉 = F++(−x, t; −y, 0).

Using the product expansion of the sine function:

sin(πz) = πz
∏
n≥1

(1− z2

n2
)

one gets:

∆F++ = F++(x, t; y, 0)−F++(0, 0; 0, 0) = −K
4π

ln
[

2L
πδ

δ + i(ut− x+ y)
ut− x+ y

sin
π(ut− x+ y)

2L

]
.

This yields:

∆F++ =

{
−K

4π ln
[
i2L
πδ sin π(ut−x+y)

2L

]
for ut− x+ y 6= 0;

0 for ut− x+ y = 0.

This agrees with the expressions found in the litterature (e.g. eq. (28) in Ref. 5) in
the limit of zero temperature for finite-length.

One checks easily that

∆F++ =
K

4π

{
iπ
x− y − ut

2L
− S(x− y − ut) + S(0)

}
where S(z) introduced by F-G is (see eq.(A-1) of Ref. 4):

S(z) = ln
L

πδ
P (z) + if(z)
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P (z) =
πδ

2L
√

sinh2 πδ
2L + sin2 πz

2L

f(z) = arctan
sin πz

2L

exp πδ
L − cos πz2L

.

This cumbersome expression will be useful to neatly separate the phase in the fermion
Green’s function.

Non-chiral correlator:
Using our previous results (eq. (4.1) ) one has (we keep the calculations at zero

temperature for simplicity):

〈φ(x, t)φ(y, 0)〉 = −K
4π

+∞∑
n=−∞

ln
{

[δ + i(ut+ 2nL)]2 + (x− y)2
}

+
K

4π

+∞∑
n=−∞

ln [δ + i(ut− x− y + (2n+ 1)L)]

+
K

4π

+∞∑
n=−∞

ln [δ + i(ut+ x+ y + (2n+ 1)L)] .

We regularize by adding −1
2

〈
φ(x, t)2

〉
− 1

2

〈
φ(y, 0)2

〉
and by using the infinite

product expressions for cos and sin (cos(π2 z) =
∏
n≥1(1 − z2

(2n+1)2
) and sin(πz) =

πz
∏
n≥1(1− z2

n2 ) ) one gets:

〈φ(x, t)φ(y, 0)〉 − 1
2
〈
φ(x, t)2

〉
− 1

2
〈
φ(y, 0)2

〉
= −K

4π
ln

{(
2L
πuδ

)2

sin
( π

2L
(ut− x+ y)

)
sin
( π

2L
(ut+ x− y)

)}

+
K

4π
ln

{(
cos
(
π
2L(ut+ x+ y)

)
cos
(
π
2L(ut− x− y)

)
cos
(
π
Lx
)

cos
(
π
Ly
) )}

.

Ref.5) does not give explicitly the full correlator for the field φ and only the following
chiral correlator for the left field φL is derived for K = 1:

FM−E−J−− = 〈φL(x, t)φL(y, 0)〉 − 1
2
〈
φL(x, t)2

〉
− 1

2
〈
φL(y, 0)2

〉
= −K

4π
ln
{(

2L
πuδ

)
sin
( π

2L
(ut+ x− y)

)}
For the sake of comparison with our expression let us rebuild the full correlator using
the previous equation. Indeed taking into account the OBC leads to:

F++(x, t; y, 0) = F−−(−x, t;−y, 0)
F+−(x, t; y, 0) = −F−−(−x, t; y, 0)
F−+(x, t; y, 0) = −F−−(x, t;−y, 0)



34 K.-V. Pham

which yields finally (after rescaling the fields to make the LL parameterK appear):

FM−E−J = 〈φ(x, t)φ(y, 0)〉 − 1
2
〈
φ(x, t)2

〉
− 1

2
〈
φ(y, 0)2

〉
= −K

4π
ln

{(
2L
πuδ

)2

sin
( π

2L
(ut− x+ y)

)
sin
( π

2L
(ut+ x− y)

)}

+
K

4π
ln

{(
sin
(
π
2L(ut+ x+ y)

)
sin
(
π
2L(ut− x− y)

)
sin
(
π
Lx
)

sin
(
π
Ly
) )}

.

This is identical with our result if one takes care to shift the origin to the left
boundary x→ x+ L/2 (since Ref.5) uses the left boundary as origin).

Our results are therefore in perfect agreement with the calculations of Ref. 4
and Ref. 5.

B.2.2. Fermion correlator.
After recovering the boson correlator we turn to the fermion operator for a

spinful LL (with customary definitions):

ψR↑ =
1√
2πδ

exp i
√
π (φ↑ +Θ↑) exp i

π

2L
(x−

∑
ν=c,s

uν
2Kν

t)

where the phase comes from the fact that the operators obeying the Dirichlet bound-
ary conditions have the zero modes extracted from the exponential as explained
above.

Defining the correlator as:

GR↑ = −i
〈
ψR↑(x, t)ψ+

R↑(y, 0)
〉

and inserting the expressions of the (charge and spin) chiral fields one finds:

GR↑ = − i

2πδ
exp i

π

2L
(x− y −

∑
ν=c,s

uν
2Kν

t) exp
π

2

∑
ν=c,s

Cν(x, t; y)

where:

Cν(x, t; y) = (1 +K−1
ν )2∆F ν++(x, t; y) + (1−K−1

ν )2∆F ν++(−x, t; −y)
−(1−K−2

ν )
{
F ν++(−x, t; y) + F ν++(x, t; −y)

− 1
2

[
F ν++(x, 0; x) + F ν++(−x, 0; −x) + F ν++(y, 0; y) + F ν++(−y, 0; −y)

]}
Substitution of the chiral boson correlator yields as a function of P (z) and f(z):

GR↑ =
−i
2πδ

(
L

πδ

) 1
4

∑
ν Kν+K

−1
ν ∏

ν=c,s

P (x− y − uνt)c
2
ν/2P (x− y + uνt)s

2
ν/2

×
[
P (x+ y − uνt)P (x+ y + uνt)

P (2x)P (2y)

]−sνcν/2
exp iΦ(x, y, t)
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where if we define Kν = exp 2χν :

cv = coshχν , sν = sinhχν

and where the phase factor Φ(x, y, t) (it is not the boson field φ!) is given by:

Φ(x, y, t) =
π

L
(x− y)− π

2L

∑
ν

uν
Kν

t+
1
2

∑
ν

[
c2νf(x− y − uνt)

− s2νf(x− y + uνt) + sνcν (f(x+ y + uνt)− f(x+ y − uνt))
]
.

Our expression coincides with that found by F-G (eq. (31) in Ref. 4) apart

from two things: (i) an unessential constant
(
L
πδ

) 1
4

∑
ν Kν+K

−1
ν which comes from a

difference of normalization of the Fermion operator (eq. (9) of Ref. 4 has a prefactor
∝ 1/

√
2L while we have ∝ 1/

√
2πδ); (ii) the phase factors Φ(x, y, t) are identical

except for the term π
2L

∑
ν
uν
Kν
t (F-G have π

4L

∑
ν
uν
Kν
t, [factor 2 instead of 4] ).

One can check however by taking the non-interacting limit that the term π
2L

∑
ν
uν
Kν
t

is the correct one: in the non-interacting case the phase must be a chiral function of
x−y− vF t since we compute a right fermion correlator; substituting Kν = 1, sν = 0
and cν = 1 , uν = vF in our expression then yields Φ(x, y, t) = π

L(x − y − vF t) +
f(x − y − vF t) which has the right dependence (which F-G can not have with the
π
4L

∑
ν
uν
Kν
t term).

In conclusion we have recovered using IBC the fermion correlator for OBC (cor-
recting in passing a misprint in Ref. 4).
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