
HAL Id: hal-04713420
https://hal.science/hal-04713420v1

Preprint submitted on 29 Sep 2024 (v1), last revised 23 Oct 2025 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ENGINEERING SSF WITH SINGULARITIES FOR
SELF-ADJOINT OPERATORS ON THE LATTICE

Marouane Assal, Olivier Bourget, Diomba Sambou, Amal Taarabt

To cite this version:
Marouane Assal, Olivier Bourget, Diomba Sambou, Amal Taarabt. ENGINEERING SSF WITH
SINGULARITIES FOR SELF-ADJOINT OPERATORS ON THE LATTICE. 2024. �hal-04713420v1�

https://hal.science/hal-04713420v1
https://hal.archives-ouvertes.fr


ENGINEERING SSF WITH SINGULARITIES FOR SELF-ADJOINT

OPERATORS ON THE LATTICE

M. ASSAL1, O. BOURGET2, D. SAMBOU3, A. TAARABT2

1 Departamento de Matemática y Ciencia de la Computatión,
Universidad de Santiago de Chile, Las sophoras 173, Santiago, Chile.

E-mail: marouane.assal@usach.cl

2 Facultad de Matemáticas, Pontificia Universidad Católica de Chile,
Av. Vicuña Mackenna 4860, Santiago, Chile.

E-mails: bourget@uc.cl, amtaarabt@uc.cl

3 Institut Denis Poisson, Université d’Orléans, UMR CNRS 7013,
45067 Orléans cedex 2, France.

E-mail: diomba.sambou@univ-orleans.fr

Abstract. We analyze the properties of the spectral shift function (SSF) for some dispersive
self-adjoint operators under suitable compact perturbations. New mechanisms allowing the SSF
to have singularities at the thresholds are exhibited, based on the degeneracy of the spectrum
of the unperturbed operator. In particular, we show how any desired type of singularities can
be engineered in this situation. These results are completed by Levinson type results.

AMS 2010 Mathematics Subject Classification: 35J10, 81Q10, 35P20, 35P25, 47A10,
47A11, 47A55, 47F05.

Keywords: Discrete Laplacians, spectral shift function, thresholds asymptotics, Levinson
formula, discrete spectrum.

Date: September 29, 2024.

1



2 M. ASSAL1, O. BOURGET2 , D. SAMBOU3, A. TAARABT2

Contents

1. Introduction 2
1.1. General setting 2
1.2. The model 3
1.3. Description of the main results 4
1.4. Comments on the literature 4
2. The free hamiltonian 5
3. The perturbed hamiltonian 6
4. Spectral shift function 8
5. Main results 9
5.1. Statement of the main results 9
5.2. Corollaries 11
5.3. Examples of explicit eigenvalues asymptotics 14
6. Factorisation of the potential 16
7. Preliminary results 18
7.1. Extensions of the kernel of (−∆h − z)−1 to the real axis 18
7.2. Estimates of the weighted resolvents 19
8. Proof of the main results 26
8.1. Proof of Theorem 5.2 27
8.2. Proof of Theorem 5.4 30
9. Proof of the asymptotics (5.22) and (5.25) 32
References 34

1. Introduction

1.1. General setting. This work aims to improve our understanding of the mechanisms involved
in the creation of eigenvalues clusters under (relatively) compact perturbations in the vicinity of
some special points of the spectrum, called here thresholds. So far, such mechanisms have mainly
been studied when a threshold coincides or is induced by an eigenvalue of infinite multiplicity.
This has been performed in the self-adjoint perturbation setting (see [25, 31, 13, 7, 8, 28, 21]
and references therein), as well as in the non-self-adjoint perturbation case (see [27, 29]). Such
phenomena are also related to long range perturbations at the threshold of the absolutely con-
tinuous component of the spectrum, as is the case of the hydrogen atom model [30]. Technically,
the formation of cluster of eigenvalues is somehow encoded in the behavior of the Spectral Shift
Function (SSF) [20, 18], a useful notion for spectral analysis and scattering theory of quantum
system, when it is well defined. However, in contrast to the scattering matrix, the spectral shift
function is meaningful both on the continuous and discrete spectra.

Our purpose here is to analyze the behavior of the SSF when the infinitely degenerated eigen-
value is replaced by a threshold of a highly degenerated absolutely continuous component. The
model introduced hereafter elaborates on previous results based on the discrete Laplace operator
on the 1D lattice. Fibered versions of the 1D discrete Laplacian are considered in [4, 5] and we
proved the finiteness of the discrete spectrum under (non)-self-adjoint exponential decay matrix-
valued perturbations. We have also exhibited some LAP properties that complete some previous
results obtained by [11, 12] for Jacobi matrices. Techniques developed and used in [4, 5] are based
on resonances theory and complex scaling arguments for non necessarily self-adjoint operators.
However, this approach is not adapted to study (matrix-valued) perturbations that decay poly-
nomially at infinity. For such perturbations, the spectral analysis can be done by means of the
SSF. Note also that there are few results showing spectral cluster phenomena near the essential
spectrum for discrete models. In particular, the present paper is an attempt to fill this gap among
the many results obtained so far.

Adapted to our context, let us recall briefly the abstract setting in which the SSF for a pair
(H,H0) of self-adjoint operators occurs. We assume that the operators H and H0 act in the same



ENGINEERING SSF WITH SINGULARITIES FOR SELF-ADJOINT OPERATORS ON THE LATTICE 3

Hilbert space and moreover that

(1.1) H0 −H ∈ S1,

where S1 denotes the trace class operators. Then, there exists (see [18] or e.g. [32, Theorem
8.3.3]) a unique function ξ(·;H,H0) ∈ L1(R) such that the Lifshits-Krein trace formula

(1.2) Tr(f(H)− f(H0)) =

∫

R

ξ(λ;H,H0)f
′(λ)dλ,

holds for every f ∈ C∞
0 (R). The function ξ(·;H,H0) ∈ L1(R) is called the Spectral Shift Function

(SSF) for the pair (H,H0). If we assume that σ(H0) = σac(H0) such that σess(H) = σ(H0),
then the SSF can be related to the eigenvalue counting function of the operator H outside the
essential spectrum. In scattering theory, it is related to the scattering matrix S(λ;H,H0) for the
pair (H,H0) through the Birman-Krein [3] formula

(1.3) detS(λ;H,H0) = e2iπξ(λ;H,H0), a.e. λ ∈ σac(H0).

1.2. The model. We consider the lattice Zh := {hn : n ∈ Z} with mesh size h > 0 and let G be
a separable Hilbert space and ℓ2(Zh,G) be the Hilbert space endowed with the scalar product

〈ϕ, φ〉 :=
∑

n∈Z

〈ϕ(hn), φ(hn)〉G .

Namely,

ℓ2(Zh,G) :=
{
ϕ ∈ GZh : ‖ϕ‖2 =

∑

n∈Z

‖ϕ(hn)‖2G < ∞
}
.

For ϕ ∈ ℓ2(Zh,G), we define the finite-difference bounded operator

(∂hϕ)(hn) :=
1

h2

(
ϕ(h(n+ 1))− ϕ(hn)

)
,

whose adjoint ∂∗
h is given by

(∂∗
hϕ)(hn) =

1

h2

(
ϕ(h(n− 1))− ϕ(hn)

)
.

We consider the bounded self-adjoint Laplacian type operator

(1.4) Hh = −∂h − ∂∗
h on ℓ2(Zh,G).

The spectral analysis of the operator Hh is described in details in Section 2 where it is shown that
its spectrum is purely absolutely continuous and satisfies

(1.5) σ(Hh) = σac(Hh) = σess(Hh) = [0, 4
h2 ].

Here, the points {0, 4
h2 } are the thresholds of this spectrum.

Let B(ℓ2(Zh,G)) be the set of bounded linear operators in ℓ2(Zh,G). We consider the perturbed
operators

(1.6) H±
h := Hh ± Vh,

where Vh ∈ B(ℓ2(Zh,G)) is a positive matrix-valued electric potential such that

(1.7) Vh = {vh(n,m)}(n,m)∈Z2 , vh(n,m) ∈ B(G),
where B(G) denotes the set of bounded linear operators in G. This perturbation Vh can be
interpreted as a summation kernel operator whose kernel is given by the operator-valued function
(n,m) ∈ Z2 7→ vh(n,m) ∈ B(G). Namely, for any ϕ ∈ ℓ2(Zh,G), one has

(1.8) (Vhϕ)(hn) =
∑

m∈Z

vh(n,m)ϕ(hm), n ∈ Z.

We also assumes that ‖vh(n,m)‖B(G) decays more rapidly than ‖(n,m)‖−3 as ‖(n,m)‖ → +∞
(see Assumption 3.1, (3) of Remark 3.5, (6.7) for more details) and we show that (1.1) holds for
the pair (H,H0) = (H±

h , Hh). Therefore, there exists a unique function

(1.9) ξ(·;H±
h , Hh) ∈ L1(R),
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such that the Lifshits-Krein trace formula (1.2) holds. The function ξ(·;H±
h , Hh) is the SSF

for the pair (H±
h , Hh). It can be related to the number of eigenvalues of the operators H±

h in
(−∞, 0) ∪ ( 4

h2 ,+∞) (see formula (4.8)). By the Birman-Krein formula (1.3), it is also related to

the scattering matrix S(λ;H±
h , Hh) for the pair (H±

h , Hh), for a.e. λ ∈ [0, 4
h2 ].

1.3. Description of the main results. The main results of this article concern the asymptotic
behavior of ξ(λ;H±

h , Hh) as λ → z0 ∈ {0, 4
h2 } for matrix-valued perturbations Vh of definite sign.

We will first identify ξ(·;H±
h , Hh) with a representative of its equivalence class described ex-

plicitly in Section 4, assuming that the electric matrix-valued potential Vh has a definite sign.
Then, we prove the boundedness of ξ(·;H±

h , Hh) on compact subsets of R r {0, 4
h2 } (see The-

orem 5.1). In Theorem 5.2, we establish the asymptotic behavior of ξ(λ;H±
h , Hh) as λ → z0,

λ ∈ (−∞, 0) ∪ ( 4
h2 ,+∞), and in Theorems 5.4, 5.6, we determine the asymptotic behavior of

ξ(λ;H±
h , Hh) as λ → z0, λ ∈ (0, 4

h2 ). Several consequences, described below, can be deduced from
Theorems 5.1, 5.2, 5.4, and 5.6.

In the finite-dimensional case where dim(G) < ∞, Theorem 5.7 implies that the SSF ξ(·;H±
h , Hh)

is bounded in Rr{0, 4
h2 }. Notice that Theorem 5.7 is stronger than Theorem 5.1. In particular, if

G = C, then the operator Hh = −∆h is the 1D discrete Laplacian on the lattice hZ and Corollary
5.8 shows the finiteness of the discrete spectrum of −∆h ± Vh for polynomial decay perturbations
at infinity. This extends results of [4, 5] where the finiteness of the discrete spectrum of −∆1 + V
has been proved for exponential decay perturbations.

On the other hand, if dim(G) = +∞, then we show that the SSF can have singularities at
the spectral thresholds {0, 4

h2 } under generic assumptions on Vh (see Theorems 5.11, 5.15 and
Corollaries 5.12, 5.14, 5.16). More precisely, if the perturbation is positive, one has{

ξ(λ;H+
h , Hh) = O(1) as λ ր 0,

ξ(λ;H+
h , Hh) → +∞ as λ ց 0,

while ξ(λ;H+
h , Hh) → +∞ as λ → 4

h2 .

If the perturbation is negative, we have{
ξ(λ;H−

h , Hh) = O(1) as λ ց 4
h2 ,

ξ(λ;H−
h , Hh) → −∞ as λ ր 4

h2 ,
while ξ(λ;H−

h , Hh) → −∞ as λ → 0.

Actually, the singularities of the SSF at the spectral thresholds are described in terms of some
explicit effective "Berezin-Toeplitz" type operators (see (5.6) for a precise definition). Hence and
under suitable condition, we give the main terms of the asymptotics expansions of ξ(λ;H±

h , Hh)
as λ → z0 (see Corollary 5.12 and Theorem 5.15 for the general case, and Corollaries 5.14, 5.16
for power-like and exponential decay perturbations). In particular, if the perturbation is positive
then the limits

lim
λց0

ξ(λ;H−
h , Hh)

ξ(−λ;H−
h , Hh)

and lim
λց0

ξ( 4
h2 − λ;H+

h , Hh)

ξ( 4
h2 + λ;H+

h , Hh)
,

exist and are equal to positive constants depending on the decay rate of Vh at infinity (see Theorem
5.18 and Corollary 5.19). This can be interpreted as generalized Levinson formulae (see the original
work [19] or the survey article [26]).

1.4. Comments on the literature. Our results extend to a class of discrete Laplacians the
results in [25, 31, 13] established for continuous models. More precisely, in [25, 31] the asymptotic
behavior of the SSF has been considered near the low ground energy and near ±m for 2D Pauli
and 3D Dirac operators with non-constant magnetic fields. In [13] the asymptotic behavior of
the SSF has been considered near the Landau levels for 3D Schrödinger operators with constant
magnetic fields. Similar results can be also found in [7, 8]. However, in the discrete case, there are
few results concerning the asymptotics expansions of the SSF at spectral thresholds. We quote to
the recent paper [21] where similar asymptotics to ours are obtained at thresholds for a discrete
Dirac-type operator on Z2. It is important to highlight that in the above papers, the singularities
of the SSF near the spectral thresholds are produced by infinitely degenerated eigenvalues. This is
rather different compared to our situation where the singularities of the SSF near the thresholds
{0, 4

h2 } are produced by a highly degenerated absolutely continuous component. In both situations,
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the singularities of the SSF are probably due to an accumulation of resonances near the spectral
thresholds. However, this aspect of the problem will not be treated here and will be consider
in a further work. Some trace formulas have been also obtained for periodic graphs in [14, 17].
Asymptotics expansions of resolvents at spectral thresholds of discrete Laplacians can be found in
[15, 16], see also references therein.

The article is organized as follows. In Section 2, we perform in details the spectral analysis of
the free operator Hh and introduce some standard tools needed so far. In Section 3, we state and
discuss our main assumptions concerning the perturbed operators H±

h . In Section 4, we recall
some abstract results due to A. Pushnitski on the representation of the spectral shift function
for a pair of self-adjoint operators. Section 5 is devoted to the formulation of our main results,
some corollaries of them, as well as examples of explicit eigenvalues asymptotics. In Section 6,
we compute a suitable factorisation of the perturbation Vh satisfying a main assumption given in
Section 3. Section 7 contains auxiliary material such as extensions of the convolution kernel of
−∆h, and estimates of appropriate sandwiched resolvents. Finally, in Section 8 we prove Theorems
5.2 and 5.4, while Section 9 establishes the one of the asymptotics identities (5.22) and (5.25).

2. The free hamiltonian

Consider an orthonormal basis (ej)j∈Λ of G where #Λ = dim(G) if dim(G) < +∞, and Λ = Z+

if dim(G) = +∞. Let (δhn)n∈Z be the canonical orthonormal basis of

ℓ2(Zh) := ℓ2(Zh,C),

where δhn(kh) = δnk, k ∈ Z. Then, it is useful to identify the spaces ℓ2(Zh,G) and ℓ2(Zh) ⊗ G:
ℓ2(Zh,G) ∼= ℓ2(Zh)⊗G and it follows that (δhn⊗ ej)(n,j)∈Z×Λ is an orthonormal basis of ℓ2(Zh)⊗G.

For each j ∈ Λ, one defines the subspace Gh
j = span{x ⊗ ej : x ∈ ℓ2(Zh)}, together with its

corresponding orthogonal projection Pj := I ⊗ | ej〉〈ej |, so that

ℓ2(Zh,G) ∼= ℓ2(Zh)⊗ G =
⊕

j∈Λ

Gh
j .

Hence, one observes that for every j ∈ Λ, Gh
j is Hh-invariant so that Hh rewrites

Hh =
⊕

j∈Λ

PjHhPj =
⊕

j∈Λ

−∆h ⊗ | ej〉〈ej | = −∆h ⊗ I,

where −∆h is the 1D Schrödinger operator acting in ℓ2(Zh) by

(−∆hφ)(n) =
1

h2

(
2φ(hn)− φ(h(n+ 1))− φ(h(n− 1))

)
.

Let τ > 0 such that hτ = 2π and

Tτ = R/τZ ∼ [− τ
2 ,

τ
2 ].

In view of the bijection between ℓ2(Zh) and L2(Tτ ) := L2(Tτ ,C), one defines the discrete Fourier
transform Fh : ℓ2(Zh) → L2(Tτ ) by

(2.1) (Fhφ)(θ) :=
∑

n∈Z

φ(hn)e−ihnθ , φ(hn) =
1

τ

∫

Tτ

(Fhφ)(θ)e
ihnθdθ.

The operator Fh is unitary. By using Fh ⊗ I acting in ℓ2(Zh) ⊗ G, one shows that the operator

Hh is unitarily equivalent to the operator −̂∆h ⊗ I acting in L2(Tτ ,G) ∼= L2(Tτ )⊗G, where −̂∆h

is the multiplication operator in L2(Tτ ) by the function fh defined by

(2.2) fh(θ) :=
2− 2 cos(hθ)

h2
=

4

h2
sin2

(hθ
2

)
, θ ∈ Tτ .

Therefore

[0, 4
h2 ] = σ(−∆h) = σ(Hh),

and the operators −∆h and Hh are purely absolutely continuous so that (1.5) holds.
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Remark 2.1. If G = C, then the operator Hh corresponds to −∆h the discrete Laplacian on the
lattice hZ.

3. The perturbed hamiltonian

Recall that the perturbation Vh is a bounded matrix-valued Vh = {vh(n,m)}(n,m)∈Z2 with

coefficients vh(n,m) ∈ B(G). In the basis (ej)j∈Λ of G, for each (n,m) ∈ Z2, the operator vh(n,m)
has the matrix representation

(3.1) vh(n,m) = {vhjk(n,m)}j,k∈Λ, vhjk(n,m) := 〈ej , vh(n,m) ek〉G .
Hence, one has

(3.2) vh(n,m) =
∑

j∈Λ

∑

k∈Λ

vhjk(n,m)| ej〉〈ek |.

The operator vh(n,m) viewed as a matrix {vhjk(n,m)}(j,k)∈Λ2 belongs to Md(C) if d = dim(G) <
∞. In particular, if d = 1 (i.e. G = C), {vh(n,m)}(n,m)∈Z2 is the matrix representation of Vh in

the canonical basis of ℓ2(Zh). In ℓ2(Zh)⊗ G, Vh has a canonical representation given by

Vh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ vh(n,m) =
∑

(n,m)∈Z2

∑

(j,k)∈Λ2

|δhn〉〈δhm| ⊗ vhjk(n,m)| ej〉〈ek |.

In the sequel, for y = (y1, . . . , yd) ∈ Rd, one sets 〈y〉 := (1+ |y|2)1/2. Bearing in mind (1.7) and
(3.1), we introduce the following polynomial decay assumption on Vh.

Assumption 3.1. Vh = {vh(n,m)}(n,m)∈Z2 is of definite sign (Vh ≥ 0) such that

(3.3) |vhjk(n,m)| ≤ Consth ·G1(j, k)〈n〉−ν1 〈m〉−ν2 , (n,m) ∈ Z2,

for some ν1, ν2 > 1, where 0 ≤ G1 defined in Λ2 satisfies{
G1 ∈ L∞(Λ2) if dim(G) < ∞,

G1(j, k) ≤ Const.〈j〉−β1〈k〉−β2 if dim(G) = +∞,

(j, k) ∈ Λ2, for some constants β1, β2 > 1.

Let us make some comments about Assumption 3.1.

• If dim(G) < ∞, then typical examples of potentials satisfying (3.3) are Vh such that

(3.4) |vhjk(n,m)| ≤ Const.〈(hn, hm)〉−ν ,

(n,m) ∈ Z2, (j, k) ∈ Λ2, ν > 2. Indeed (3.4) implies that for every (n,m) ∈ Z2,

|vhjk(n,m)| ≤ Const.〈hn〉−ν/2〈hm〉−ν/2 ≤ Const.
〈n〉−ν/2〈m〉−ν/2

(min(1, h2))ν
.

• If dim(G) = +∞, then (3.3) holds for instance if for (j, k) ∈ Z2
+,

(3.5) |vhjk(n,m)| ≤ Consth · 〈(j, k)〉−β〈(n,m)〉−ν ,

(n,m) ∈ Z2, β > 2, ν > 2. For example, (3.5) is satisfied if β > 2, ν > 2 and the operators
vh(n,m) given by

vh(n,m) = 〈(hn, hm)〉−ν
∑

j∈Λ

∑

k∈Λ

〈(j, k)〉−β | ej〉〈ek |.

In the sequel, one sets

(3.6) ν0 := min(ν1, ν2) > 1 and β0 := min(β1, β2) > 1.

Consider the function

〈(·)h−1〉−ν0/2 : hn ∈ Zh 7→ 〈n〉−ν0/2 ∈ R∗
+,
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and define in ℓ2(Zh) the multiplication operator by this function denoted again by 〈(·)h−1〉−ν0/2.
Namely, for φ ∈ ℓ2(Zh), (〈(·)h−1〉−ν0/2φ)(hn) = 〈n〉−ν0/2φ(hn) or

(3.7) 〈(·)h−1〉−ν0/2 =
∑

n∈Z

〈n〉−ν0/2|δhn〉〈δhn|.

Similarly, one defines pGβ0
the operator acting in G by

(3.8) pGβ0
:=
∑

j∈Λ

〈j〉−β0/2| ej〉〈ej |.

Remark 3.2.

(1) The matrix representations of 〈(·)h−1〉−ν0/2 and pGβ0
are diagonal. Moreover, 〈(·)h−1〉−ν0/2

and pGβ0
belong to S2 the Hilbert-Schmidt class, since

∑
n∈Z

〈n〉−ν0 < ∞ and
∑

j∈Λ〈j〉−β0 <
∞. So, they belong to S∞ the class of compact linear operators.

(2) Of course, if dim(G) < ∞, then pGβ0
∈ S2.

In Lemma 6.1, one proves that if Vh satisfies Assumption 3.1, then there exists Vh ∈ B(ℓ2(Zh,G)),
Vh ≥ 0, such that

(3.9) Vh = (〈(·)h−1〉−ν0/2 ⊗ pGβ0
)Vh(〈(·)h−1〉−ν0/2 ⊗ pGβ0

).

Moreover, Vh = M ∗
0,hM0,h is trace class with M0,h = V

1/2
h (〈(·)h−1〉−ν0/2 ⊗ pGβ0

) and

‖Vh‖S1 ≤ ‖M0,h‖2S2
.

Remark 3.3. Under Assumption 3.1, the factorisation (3.9) of Vh is not unique and other choices
can be more convenient.

(1) For instance, if dim(G) < ∞, one can deal in our analysis with the factorisation (6.5)
introduced in the proof of Lemma 6.1.

(2) If dim(G) = +∞, suppose moreover that there exists N > 0 (fixed) such that for all
(n,m) ∈ Z2, vhjk(n,m) = 0 for each j > N or k > N . That is, vh(n,m) is of the form

(3.10) vh(n,m) =

(
Mh

N(n,m) 0

0 0

)
.

Then, by arguing as in the the proof of Lemma 6.1 part b), one can replace the operator
pGβ0

in (3.9) by the finite rank operator

(3.11) p̃Gβ0
:=

N∑

j=0

〈j〉−β0/2| ej〉〈ej |.

So, bearing in mind (3.9) and Remark 3.3, we will consider in the sequel the perturbed op-
erators H±

h with self-adjoint perturbations Vh satisfying the next assumption which generalizes
Assumption 3.1.

Assumption 3.4. Vh = (〈(·)h−1〉−ν0/2 ⊗ K∗)Vh(〈(·)h−1〉−ν0/2 ⊗ K), ν0 > 1, where 0 ≤ Vh ∈
B(ℓ2(Zh,G)) and K acting in G satisfies K ∈ S2(G).

In order to fix ideas, let us point out some important remarks on Assumption 3.4.

Remark 3.5.

(1) If dim(G) = +∞, then Assumption 3.1 implies Assumption 3.4 with K = K∗ = pGβ0
,

according to (3.9). Since pGβ0
is of infinite rank, then Assumption 3.4 includes the class of

finite rank operators K in G.
(2) Under Assumption 3.4, one has

(3.12) Vh = M
∗
hMh, Mh := V

1/2
h (〈(·)h−1〉−ν0/2 ⊗K) ∈ S2.

(3) Our main results will be formulated under a more restrictive assumption, namely under
the condition ν0 > 3.
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Potentials Vh satisfying Assumption 3.4 belong to the trace class S1 with

(3.13) ‖Vh‖S1 ≤ ‖Mh‖2S2
≤ ‖Vh‖‖〈(·)h−1〉−ν0/2 ⊗K‖2S2

.

Then, (1.1) holds with (H,H0) = (H±
h , Hh). By (1.2), we know that there exists a unique function

ξ(·;H±
h , Hh) ∈ L1(R) such that the Lifshits-Krein trace formula

(3.14) Tr(f(H±
h )− f(Hh)) =

∫

R

ξ(λ;H±
h , Hh)f

′(λ)dλ, ∀ f ∈ C∞
0 (R),

called the SSF for the pair (H±
h , Hh).

4. Spectral shift function

In this section, one recalls some abstract results due to A. Pushnitski on the representation of
the spectral shift function for a pair of self-adjoint operators.

Let us define the sandwiched resolvent

(4.1) Th(z) := Mh(Hh − z)−1
M

∗
h , z ∈ C r σ(Hh),

where Mh is given by (3.12). Denote by

(4.2) Ah(z) := ReTh(z) and Bh(z) := ImTh(z),

respectively the real and the imaginary parts of the operator Th(z). Then, under (3.12), it is well
known that for a.e. λ ∈ R, the limit

(4.3) Th(λ+ i0) := lim
εց0

Th(λ+ iε),

exists in the S2-norm (and even in the Sp-norm for any p > 1). Moreover 0 ≤ Bh(λ + i0) ∈ S1.
See [32, 2] and [22] for the case p > 1. Let T = T ∗ ∈ S∞(G). Define

(4.4) N±(r, T ) := Rank 1(r,∞)(±T ), r > 0,

the counting functions of the positive eigenvalues of the operators ±T . Therefore, by [24, Theorem
1.1], one has the following result:

Theorem 4.1. Let Assumption 3.4 holds. Then, for a.e. λ ∈ R, the SSF ξ(·;H±
h , Hh) admits the

representation via the converging integral

(4.5) ξ(λ;H±
h , Hh) = ±

∫

R

N∓(1, Ah(λ + i0) + tBh(λ + i0))
dt

π(1 + t2)
.

For further use, let us recall the following estimates, useful in the study of the convergence of
the r.h.s. of (4.5).

Lemma 4.2 (Lemma 2.1 of [24]). Let T1 = T ∗
1 ∈ S∞(G) and T2 = T ∗

2 ∈ S1(G). Then, for any
0 < x < 1, one has

1

π

∫

R

N±(1, T1 + tT2)
dt

1 + t2
≤ N±((1 − x), T1) +

1

πx
‖T2‖S1 .

In Corollary 7.9, one establishes that Th(λ+i0) belongs to S1 for every λ ∈ Rr{0, 4
h2 }. It follows

from Lemma 4.2 that the r.h.s. of (4.5) will turn out to be well-defined for each λ ∈ Rr {0, 4
h2 }.

So, one can consider the function ξ̃(·;H±
h , Hh) defined in Rr {0, 4

h2 } by

(4.6) λ ∈ R r {0, 4/h2} 7→ ξ̃(λ;H±
h , Hh) = ± 1

π

∫

R

N∓(1, Ah(λ+ i0) + tBh(λ+ i0))
dt

1 + t2
.

By Theorem 4.1,

ξ̃(λ;H±
h , Hh) = ξ(λ;H±

h , Hh), a.e. λ ∈ R.

Then, in the sequel, we identify these two functions. If Assumption 3.4 is fulfilled, then the
potential Vh is relatively compact w.r.t. Hh and by Weyl’s criterion on the invariance of the
essential spectrum, it follows that

(4.7) σess(H
±
h ) = σess(Hh) = [0, 4

h2 ].
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However in (−∞, 0) ∪ ( 4
h2 ,+∞), Hh has no spectrum and the spectrum of H±

h is purely discrete.

Let λ1 < λ2 with [λ1, λ2] ⊂ R r [0, 4
h2 ] and λ1, λ2 /∈ σ(H±

h ). Then, thanks to [23, Theorem 9.1],

the SSF ξ(·;H±
h , Hh) is related to the number of eigenvalues of H±

h through the formula

(4.8) ξ(λ1;H
±
h , Hh)− ξ(λ2;H

±
h , Hh) = Rank 1[λ1,λ2)(H

±
h ).

5. Main results

5.1. Statement of the main results. Our first theorem is the next simple result which is an
immediate by-product of (4.6), Lemma 4.2, ii) of Proposition 7.2, (8.3), (8.31), Lemma 7.6 and
Weyl’s inequality (8.2).

Theorem 5.1. Suppose that the potential Vh satisfies Assumption 3.4. Then, on compact subsets
Γ ⊂ Rr {0, 4

h2 }, one has

sup
λ∈Γ

ξ(λ;H±
h , Hh) < ∞.

That is, the SSF ξ(·;H±
h , Hh) is bounded on compact subsets of Rr {0, 4

h2 }.
This result will be useful in Section 5.2.
For further use in the next sections, one introduces some notations. Let pν0 : ℓ2(Zh) → C be

the operator defined by

(5.1) pν0 :=
〈
〈(·)h−1〉−ν0/2

∣∣ =⇒ p∗ν0 : ζ ∈ C 7→ p∗ν0ζ = ζ〈(·)h−1〉−ν0/2 ∈ ℓ2(Zh).

Define the compact operator L0,h : ℓ2(Zh)⊗ G → C⊗ G by

(5.2) L0,h := (pν0 ⊗K∗)V 1/2
h =⇒ L∗

0,h = V
1/2
h (p∗ν0 ⊗K) : C⊗ G → ℓ2(Zh)⊗ G.

Let J be the self-adjoint unitary operator defined in ℓ2(Zh) by

(5.3) (Jϕ)(hn) := (−1)nϕ(hn).

Note that J commutes with any multiplication operator. Moreover, it relates both thresholds
through the relation J(−∆h)J

∗ = −∆h + 4
h2 . As above, one introduces the compact operators

(5.4) L4/h2,h := (pν0J
∗ ⊗K∗)V 1/2

h : ℓ2(Zh)⊗ G → C⊗ G,
and

L∗
4/h2,h = V

1/2
h (Jp∗ν0 ⊗K) : C⊗ G → ℓ2(Zh)⊗ G.

Finally, for two real-valued functionals F1(V, λ) and F2(V, λ) of V depending on λ ∈ Rr{0, 4
h2 },

one writes

F1(V, λ) ∼ F2(V, λ), λ → z0 ∈ {0, 4
h2 },

if for every ε ∈ (0, 1), one has

F2((1 − ε)−1V, λ) +Oε(1) ≤ F1(V, λ) ≤ F2((1 + ε)−1V, λ) +Oε(1),

as λ → z0.

5.1.1. The case λ ∈ (−∞, 0)∪ ( 4
h2 ,+∞). Our second theorem concerns the asymptotic behavior

of the SSF ξ(λ;H±
h , Hh) as λ → 0 from below and as λ → 4

h2 from above. Define the operators

P := pν0 ⊗ I : ℓ2(Zh)⊗ G → C⊗ G,
pν0 being defined by (5.1), and

(5.5) Vh := (I ⊗K∗)Vh(I ⊗K).

Our results are closely related to the trace class operators

(5.6) PVhP
∗ = L0,hL

∗
0,h and PVJ

hP
∗ = L4/h2,hL

∗
4/h2,h,

acting from C⊗ G → C⊗ G, where

(5.7) VJ
h := (J ⊗ I)∗Vh(J ⊗ I),
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and J is given by (5.3). Therefore, VJ
h is unitarily equivalent to Vh. Next, one sets

(5.8) ωh
0 (λ) :=

h

2

PVhP∗
√
|λ|

and ωh
4/h2(λ) := −h

2

PVJ
hP∗

√
|4/h2 − λ|

, λ ∈ Rr {0, 4
h2 }.

The following result holds true:

Theorem 5.2. Let Vh satisfy Assumption 3.4 with ν0 > 3. Then:

• As λ ր 0,

(5.9) ξ(λ;H+
h , Hh) = O(1),

(5.10) ξ(λ;H−
h , Hh) ∼ −Tr 1(1,+∞)(ω

h
0 (λ)).

• As λ ց 4
h2 ,

(5.11) −ξ(λ;H+
h , Hh) ∼ −Tr 1(1,+∞)(−ωh

4/h2(λ)),

(5.12) ξ(λ;H−
h , Hh) = O(1).

Remark 5.3. Inequalities (5.9) and (4.8) imply that the discrete eigenvalues of Hh + Vh do
not accumulate at 0 from the left. Otherwise, the inequalities (5.10) tell us that the number of
eigenvalues of Hh − Vh in (−∞, 0), as λ ր 0, scales up to O(1) terms, as

Tr 1(x,+∞)(ω
h
0 (λ)) = Tr 1( 2x

h

√
−λ,+∞)(PVhP

∗), x ≈ 1.

So, the problem of counting the number of eigenvalues of the operator Hh − Vh near 0 from the
left, is reduced to the problem of counting the number of eigenvalues of the positive trace class
operator PVhP∗ near 0. The inequalities (5.11) and (5.12) lead to similar conclusions on the
number of eigenvalues of the operators Hh ± Vh in ( 4

h2 ,+∞) near 4
h2 . In particular, the number

of eigenvalues of Hh + Vh in ( 4
h2 ,+∞), as λ ց 4

h2 , scales up to O(1) terms, as

Tr 1(x,+∞)(−ωh
4/h2(λ)) = Tr 1

( 2x
h

√
λ−4/h2,+∞)

(PVJ
hP

∗), x ≈ 1.

Similarly, the problem of counting the number of eigenvalues of the operator Hh+Vh near 4
h2 from

the right, is reduced to the problem of counting the number of eigenvalues of the positive trace class
operator PVJ

hP∗ near 0.

5.1.2. The case λ ∈ (0, 4
h2 ). Our third theorem concerns the asymptotic behavior of the SSF

ξ(λ;H±
h , Hh) as λ → 0 from above and as λ → 4

h2 from below. One needs first to introduce some
notations. Set

(5.13) gh(λ) := arcsin
(h
2

√
λ
)
, λ ∈ (0, 4

h2 ).

Introduce the operators cosν0,h, sinν0,h : ℓ2(Zh) → C defined by

(5.14) cosν0,h(λ) :=
〈
〈(·)h−1〉−ν0/2 cos[2(·)h−1gh(λ)]

∣∣,
and

(5.15) sinν0,h(λ) :=
〈
〈(·)h−1〉−ν0/2 sin[2(·)h−1gh(λ)]

∣∣.
The adjoints cos∗ν0,h, sin∗

ν0,h : C → ℓ2(Zh) are the rank one operators given by

(5.16) cosν0,h(λ)
∗ζ = ζ〈(·)h−1〉−ν0/2 cos[2(·)h−1gh(λ)],

and

(5.17) sinν0,h(λ)
∗ζ = ζ〈(·)h−1〉−ν0/2 sin[2(·)h−1gh(λ)].

Define Yh(λ) : ℓ
2(Zh) → C2 the operator given by

(5.18) Yh(λ)φ =

(
cosν0,h(λ)φ
sinν0,h(λ)φ

)
,
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so that the adjoint operator Yh(λ)
∗ : C2 → ℓ2(Zh) is given by

(5.19) Yh(λ)
∗
(
ζ1
ζ2

)
= cosν0,h(λ)

∗ζ1 + sinν0,h(λ)
∗ζ2.

The next result is closely related to the trace class positive operator

(5.20) Ωh(λ) =
1√

λ
√
4/h2 − λ

(Yh(λ) ⊗ I)Vh(Yh(λ)
∗ ⊗ I) : C2 ⊗ G → C2 ⊗ G,

where Vh is given by (5.5).

Theorem 5.4. Let Vh satisfy Assumption 3.4 with ν0 > 3. Then,

(5.21) ∓ξ(λ;H±
h , Hh) ∼ − 1

π
Tr arctan(Ωh(λ)),

as λ ց 0 and λ ր 4
h2 .

Remark 5.5. Under the conditions of Theorem 5.4 and for x > 0, the operator Ωh(λ) satisfies

(5.22) Tr arctan(x−1Ωh(λ)) = Tr arctan(x−1Ω0,h(λ)) +Oh(1), λ ց 0,

where for λ > 0, the operator Ω0,h(λ) is given

(5.23) Ω0,h(λ) :=
h

2
√
λ
(Y0,ν0 ⊗ I)Vh(Y

∗
0,ν0 ⊗ I), Y0,ν0 =

(
pν0
0

)
: ℓ2(Zh) → C2,

with pν0 defined by (5.1). The estimate (5.22) follows by using the Lifshits-Krein trace formula
(1.2). The details of the proof are given in Section 9 and the argument is analogous to the one of
[13, Corollary 2.2]. Now, using (8.36), one gets

(5.24) Tr arctan(x−1Ω0,h(λ)) = Tr arctan(x−1ωh
0 (λ)),

the operator ωh
0 (λ) being defined by (5.8). In particular, it follows from (5.22) and (5.24) that

Theorem 5.4 can be expressed as λ ց 0 in terms of the operator ωh
0 (λ), as in Theorem 5.2. In a

similar way, one has for x > 0

(5.25) Tr arctan(x−1Ωh(λ)) = Tr arctan(x−1Ω4/h2,h(λ)) +Oh(1), λ ր 4

h2
,

where the operator Ω4/h2,h(λ) is given

Ω4/h2,h(λ) :=
h

2
√
4/h2 − λ

(Y4/h2,ν0 ⊗ I)Vh(Y
∗
4/h2,ν0

⊗ I), Y4/h2,ν0 =

(
pν0J

∗

0

)
: ℓ2(Zh) → C2,

with J defined by (5.3). By using (8.36), one obtains

(5.26) Tr arctan(x−1Ω4/h2,h(λ)) = Tr arctan(−x−1ωh
4/h2(λ)),

ωh
4/h2(λ) being defined by (5.8). In particular, it follows from (5.25) and (5.26) that Theorem 5.4

can be expressed as λ ր 4
h2 in terms of the operator ωh

4/h2(λ), as in Theorem 5.2.

It follows from Theorem 5.4 and Remark 5.5 the following result:

Theorem 5.6. Let Vh satisfy Assumption 3.4 with ν0 > 3. Then,

∓ξ(λ;H±
h , Hh) ∼ − 1

π
Tr arctan(ωh

0 (λ)), λ ց 0,

and

∓ξ(λ;H±
h , Hh) ∼ − 1

π
Tr arctan(−ωh

4/h2(λ)), λ ր 4

h2
.

5.2. Corollaries. In this section, one presents some consequences of the above results gathered in
two parts. The first one concerns the case dim(G) < ∞ and the second one the case dim(G) = +∞.
We will see that in the first situation, the SSF is bounded at the spectral thresholds {0, 4

h2 } while
it may have singularities in the second one.
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5.2.1. Boundedness of the SSF at the spectral thresholds. Here, one assumes that dim(G) <
∞. Then, the operators PVhP∗ et PVJ

hP∗ acting from C ⊗ G → C ⊗ G are of finite rank.
Otherwise, for x > 0 we have

(5.27) Tr arctan(x−1ωh
0 (λ)) =

∫

R+

N+

(
x
√
|λ|t, (h/2)PVhP

∗) dt

1 + t2
,

(5.28) Tr arctan(−x−1ωh
4/h2(λ)) =

∫

R+

N+

(
x
√

|4/h2 − λ|t, (h/2)PVJ
hP

∗) dt

1 + t2
.

Together with Theorems 5.2, 5.6, 5.1, this implies the following result:

Theorem 5.7. Let Vh satisfy Assumption 3.4 with ν0 > 3 and dim(G) < ∞. Then,

(5.29) sup
λ∈Rr{0, 4

h2 }
ξ(λ;H±

h , Hh) < ∞.

Corollary 5.8. If Vh satisfies Assumption 3.4 with ν0 > 3 and dim(G) < ∞, then:

• σess(Hh ± Vh) = σess(Hh) = [0, 4
h2 ].

• The discrete eigenvalues of the operators Hh ± Vh do not accumulate to {0, 4
h2 }. In par-

ticular, it follows that
#σdisc(Hh ± Vh) < ∞.

Remark 5.9. Thanks to Lemma 6.1, it follows from Corollary 5.8 that the discrete eigenvalues of
the perturbed operators Hh ± Vh do not accumulate to {0, 4

h2 }, under Assumption 3.1 with νi > 3,
i = 1, 2. In particular, according to Remark 2.1, the perturbed Laplacians −∆h ± Vh satisfy

(5.30) #σdisc(−∆h ± Vh) < ∞.

One can compare Corollary 5.8 and (5.30) with [4, Corollary 2.1] where we prove, for h = 1,
the finiteness of σdisc(−∆h ± V ) under a more restrictive assumption, namely V exponentially
decaying at infinity.

5.2.2. Thresholds singularities and asymptotics behaviors of the SSF. In this part, we
assume that dim(G) = +∞ and we start with by the following comments:

Remark 5.10. If the positive trace class operators PVhP∗ and PVJ
hP∗ acting from C⊗G →

C⊗G are of finite rank, then Theorem 5.7 and Corollary 5.8 remain valid. For instance this holds
when the operator K acting in G is finite rank. A non-trivial example is given in point (2) of
Remark 3.3. In order to shorten the paper, one omits the statements of the corresponding results.

Then, one focuses on the case where PVhP∗ and PVJ
hP∗ are of infinite rank.

− Case λ ∈ (−∞, 0) ∪ ( 4
h2 ,+∞): A direct consequence of Theorem 5.2 is the following result:

Theorem 5.11. Let Vh satisfy Assumption 3.4 with ν0 > 3, and suppose that RankPVhP∗ = ∞
and Rank PVJ

hP∗ = ∞. Then:

• H−
h has infinitely many discrete eigenvalues below 0. They accumulate to 0 with

ξ(λ;H−
h , Hh) = −Tr 1(−∞,λ)(H

−
h ) ∼ −Tr 1( 2

h

√
−λ,+∞)(PVhP

∗), λ ր 0.

• H+
h has infinitely many discrete eigenvalues above 4

h2 . They accumulate to 4
h2 with

−ξ(λ;H+
h , Hh) = −Tr 1(λ,+∞)(H

+
h ) ∼ −Tr 1

( 2
h

√
λ−4/h2,+∞)

(PVJ
hP

∗), λ ց 4

h2
.

Notice that it is not difficult to construct potentials V such that Rank PVhP∗ = ∞ and
Rank PVJ

hP∗ = ∞. But, it is more interesting to investigate cases where we can obtain a more
precise description of the asymptotic behavior of ξ(λ;H+

h , Hh) near the spectral thresholds. So,
in what follows below, one sets for r > 0

(5.31) Φ1(r) := Tr 1(r,+∞)(PVhP
∗) and Φ2(r) := Tr 1(r,+∞)(PVJ

hP
∗).

Actually, under additional conditions on the functions Φi, i = 1, 2, Theorems 5.11 and 5.2
produce the next more precise result giving the main terms of the asymptotics of ξ(λ;H±

h , Hh),

λ ∈ (−∞, 0) ∪ ( 4
h2 ,+∞), near the spectral thresholds.
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Corollary 5.12. Under the assumptions of Theorem 5.11, suppose in addition that for any ε ∈
(0, 1) small, Φi(r(1± ε)) = Ψi(r)(1+ o(1)+O(ε)) as r ց 0, i = 1, 2, with Ψi(r) → +∞ as r → 0.
Then, one has the asymptotics

ξ(λ;H−
h , Hh) = −Tr 1(−∞,λ)(H

−
h ) =

{
−Ψ1((2/h)

√
−λ)(1 + o(1)) as λ ր 0,

O(1) as λ ց 4
h2 ,

and

ξ(λ;H+
h , Hh) = Tr 1(λ,+∞)(H

+
h ) =

{
O(1) as λ ր 0,

Ψ2((2/h)
√
λ− 4/h2)(1 + o(1)) as λ ց 4

h2 .

Remark 5.13. Examples of such Ψi, i = 1, 2 of Corollary 5.12 are given by

(5.32) Ψi(r) = Ψ(r) =






C0r
−α, α > 0

C0| ln r|α, α > 0

C0(ln | ln r|)α, α > 0

C0| ln r|(ln | ln r|)−1,

, r > 0,

where C0 > 0 is a constant (see [9, Proof of Corollary 3.11]). For more details, one gives examples
of explicit computations of Φ1(r), Φ2(r) and Ψ(r) in Section 5.3, including polynomial and (super)-
exponential decay potentials along the component G of ℓ2(Zh,G) (see Propositions 5.20 and 5.21).

Taking into account the previous remark, the next result holds.

Corollary 5.14. Let λ ∈ (−∞, 0) ∪ ( 4
h2 ,+∞), z− = 0, z+ = 4

h2 . Suppose that Vh satisfies:

(1) The assumptions of Proposition 5.20 with ν0 > 3. Then, one has respectively

ξ(z± ± λ;H±
h , Hh) = ±

(∑

n∈Z

〈n〉−ν0
)1/β0

(2/h)−1/β0(
√
λ)−1/β0(1 + o(1)), λ ց 0.

(2) The assumptions of Proposition 5.21 with ν0 > 3. Then, one has w.r.t. ±,
i) If ξ(j) = ηjβ, η > 0 and β > 0,

ξ(z± ± λ;H±
h , Hh) = ±(2/η)1/β| ln

√
λ|1/β(1 + o(1)), λ ց 0.

ii) If ξ(j) = eηj
β

, η > 0 and β > 0,

ξ(z± ± λ;H±
h , Hh) = ±η−1/β(ln | ln

√
λ|)1/β(1 + o(1)), λ ց 0.

iii) If ξ(j) = χ−1
η (j), η > 0,

ξ(z± ± λ;H±
h , Hh) = ±2η| ln

√
λ|(ln | ln

√
λ|)−1(1 + o(1)), λ ց 0.

− Case λ ∈ (0, 4
h2 ): For λ ∈ (0, 4

h2 ), formulas (5.27) and (5.28) can be rewritten as

(5.33) Tr arctan(x−1ωh
0 (λ)) =

∫

R+

Φ1

(
(2/h)x

√
λt
) dt

1 + t2
,

(5.34) Tr arctan(−x−1ωh
4/h2(λ)) =

∫

R+

Φ2

(
(2/h)x

√
4/h2 − λt

) dt

1 + t2
.

As above, if the functions Φi, i = 1, 2 verify some asymptotics behaviors near 0, then Theorem
5.6 together with (5.33) ans (5.34) produces the next more precise result giving the main terms of
the asymptotics of ξ(λ;H±

h , Hh), λ ∈ (0, 4
h2 ), near the spectral thresholds.

Theorem 5.15. Let Vh satisfy Assumption 3.4 with ν0 > 3. Suppose in addition that Φi(r) =
Ψi(r)(1 + o(1)) as r ց 0, i = 1, 2, with Ψi(r) given by (5.32). Set z1 = 0 and z2 = 4

h2 . Then,

one has the following asymptotics for λ ∈ (0, 4
h2 ):

i) If Ψi(r) = C0r
−α, 0 < α < 1, then

ξ(λ;H±
h , Hh) = ± 1

2 cos(πα )
Ψi

(
(2/h)

√
|zi − λ|

)
(1 + o(1)), λ → zi.
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ii) If Ψi(r) = C0| ln r|α, or C0(ln | ln r|)α, or C0| ln r|(ln | ln r|)−1, then

ξ(λ;H±
h , Hh) = ±1

2
Ψi

(
(2/h)

√
|zi − λ|

)
(1 + o(1)), λ → zi.

Corollary 5.16.

(1) Let Vh satisfy the assumptions of Proposition 5.20 with ν0 > 3. Then, as λ → z ∈ {0, 4
h2 },

λ ∈ (0, 4
h2 ),

ξ(λ;H±
h , Hh) = ± 1

2 cos(πβ0)

(∑

n∈Z

〈n〉−ν0
)1/β0

(2/h)−1/β0(
√
|z − λ|)−1/β0(1 + o(1)).

(2) Suppose that Vh satisfies the assumptions of Proposition 5.21 with ν0 > 3. Then, as
λ → z ∈ {0, 4

h2 }, λ ∈ (0, 4
h2 ), one has:

i) If ξ(j) = ηjβ, η > 0 and β > 0,

ξ(λ;H±
h , Hh) = ±1

2
(2/η)1/β | ln

√
|z − λ||1/β(1 + o(1)).

ii) If ξ(j) = eηj
β

, η > 0 and β > 0,

ξ(λ;H±
h , Hh) = ±1

2
η−1/β

(
ln | ln

√
|z − λ||

)1/β
(1 + o(1)).

iii) If ξ(j) = χ−1
η (j), η > 0,

ξ(λ;H±
h , Hh) = ±η| ln

√
|z − λ||

(
ln | ln

√
|z − λ||

)−1
(1 + o(1)).

Remark 5.17. By (1.3), Corollary 5.15 as well as Theorem 5.15, Theorem 5.6 and Theorem 5.4
concern the asymptotics of the scattering phase arg detS(λ;H±

h , Hh) near the spectral thresholds

{0, 4
h2 }.

5.2.3. Levinson type formulas. By putting together Corollary 5.12 and Theorem 5.15, one
obtains the next result which can be interpreted as generalized Levinson formulae.

Theorem 5.18. Under the assumptions of Theorem 5.15, i), one has

(5.35) lim
λց0

ξ(λ;H−
h , Hh)

ξ(−λ;H−
h , Hh)

=
1

2 cos(πα )
= lim

λց0

ξ( 4
h2 − λ;H+

h , Hh)

ξ( 4
h2 + λ;H+

h , Hh)
,

while under the assumptions of Theorem 5.15, ii), one has

(5.36) lim
λց0

ξ(λ;H−
h , Hh)

ξ(−λ;H−
h , Hh)

=
1

2
= lim

λց0

ξ( 4
h2 − λ;H+

h , Hh)

ξ( 4
h2 + λ;H+

h , Hh)
.

In particular, the results of Corollaries 5.14 and 5.16 give the following result:

Corollary 5.19.

(1) Let Vh satisfy the assumptions of Proposition 5.20 with ν0 > 3. Then,

(5.37) lim
λց0

ξ(λ;H−
h , Hh)

ξ(−λ;H−
h , Hh)

=
1

2 cos(πβ0)
= lim

λց0

ξ( 4
h2 − λ;H+

h , Hh)

ξ( 4
h2 + λ;H+

h , Hh)
.

(2) Let Vh satisfy the assumptions of Proposition 5.21 with ν0 > 3. Then,

(5.38) lim
λց0

ξ(λ;H−
h , Hh)

ξ(−λ;H−
h , Hh)

=
1

2
= lim

λց0

ξ( 4
h2 − λ;H+

h , Hh)

ξ( 4
h2 + λ;H+

h , Hh)
.

5.3. Examples of explicit eigenvalues asymptotics. One gives in this section examples of
computations of the quantities Φ1(r), Φ2(r) and Ψ(r) defined by (5.31) and (5.32).
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5.3.1. Polynomial decay potentials.

Proposition 5.20. Let ν0 > 1, β0 > 1, Vh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ vh(n,m) such that vh(n,m) = 0

if n 6= m and vh(n, n) = 〈n〉−ν0
∑

j∈Z+

〈j〉−β0 | ej〉〈ej |. Then,

Φ1(r) = Φ2(r) = Tr 1(r,+∞)(PVhP∗),

and

(5.39) Tr 1(r,+∞)(PVhP
∗) =

(∑

n∈Z

〈n〉−ν0
)1/β0

r−1/β0(1 + o(1)), r ց 0.

Proof. Clearly, Vh satisfies Assumption 3.1 if ν0 > 2, β0 > 2. Moreover, recalling that 〈(·)h−1〉−ν0/2

and pGβ0
are respectively given by (3.7) and (3.8), one obtains

Vh =
∑

n∈Z

∑

j∈Z+

〈n〉−ν0 〈j〉−β0 |δhn ⊗ ej〉〈δhn ⊗ ej | =
(
〈(·)h−1〉−ν0/2 ⊗ pGβ0

)2
.

Then, Vh fulfills Assumption 3.4 with K∗ = K = pGβ0
and Vh = I. It follows that

VJ
h = Vh = (I ⊗ pGβ0

)2 = I ⊗
∑

j∈Z+

〈j〉−β0 | ej〉〈ej |

so that PVhP∗ : C⊗ G → C⊗ G is given by

PVhP
∗ = pν0p

∗
ν0 ⊗

∑

j∈Z+

〈j〉−β0 | ej〉〈ej | = ‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

(
I ⊗

∑

j∈Z+

〈j〉−β0 | ej〉〈ej |
)
.

One can see that the eigenvalues of the operator PVhP∗ are simple and

(5.40) σ(PVhP
∗) =

{
‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

〈j〉−β0 : j ∈ Z+

}
,

with eigenvectors respectively given by the orthonormal basis (1⊗ ej)j∈Z+ of C⊗G. So, for r > 0
small enough, one has

Φ2(r) = Φ1(r) = Tr 1(r,+∞)(PVhP
∗)

= #
{
‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

〈j〉−β0 : j ∈ Z+ : r < ‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)
〈j〉−β0

}

= #
{
j ∈ Z+ : j <

(
‖〈(·)h−1〉−ν0/2‖4/β0

ℓ2(Zh)
r−2/β0 − 1

)1/2}
.

By denoting ⌊x⌋ the integer part of x ∈ R, one obtains finally

Φ2(r) = Φ1(r) = Tr 1(r,+∞)(PVhP
∗) ∼

r→0

⌊(
‖〈(·)h−1〉−ν0/2‖4/β0

ℓ2(Zh)
r−2/β0 − 1

)1/2⌋

∼
r→0

(
‖〈(·)h−1〉−ν0/2‖4/β0

ℓ2(Zh)
r−2/β0 − 1

)1/2 ∼
r→0

‖〈(·)h−1〉−ν0/2‖2/β0

ℓ2(Zh)
r−1/β0 .

The claim follows by noting that ‖〈(·)h−1〉−ν0/2‖2/β0

ℓ2(Zh)
=
(∑

n∈Z
〈n〉−ν0

)1/β0
. �

5.3.2. (Super)-exponential decay potentials along the component G of ℓ2(Zh,G). Con-
sider ξ an increasing unbounded real-valued function of the form

(5.41) ξ(x) =





ηxβ , η > 0, β > 0

eηx
β

, η > 0, β > 0

χ−1
η (x), η > 0

, x > 0,

where χ−1
η is the inverse of the function y 7→ χη(y) =

ηy
ln(y+2) , y > 0.

Proposition 5.21. Let ν0 > 1 and consider the potential Vh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ vh(n,m) such

that vh(n,m) = 0 if n 6= m and vh(n, n) = 〈n〉−ν0
∑

j∈Z+

e−ξ(j)| ej〉〈ej |. Then, one has
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Φ1(r) = Φ2(r) = Tr 1(r,+∞)(PVhP∗).

Moreover:

• If ξ(j) = ηjβ, η > 0 and β > 0,

(5.42) Tr 1(r,+∞)(PVhP
∗) = (2/η)1/β| ln r|1/β(1 + o(1)), r ց 0.

• If ξ(j) = eηj
β

, η > 0 and β > 0,

(5.43) Tr 1(r,+∞)(PVhP
∗) = η−1/β(ln | ln r|)1/β(1 + o(1)), r ց 0.

• If ξ(j) = χ−1
η (j), η > 0,

(5.44) Tr 1(r,+∞)(PVhP
∗) = 2η| ln r|(ln | ln r|)−1(1 + o(1)), r ց 0.

Proof. It can be checked, making the change of variable x = χ(y), that

lim
x→+∞

χ−1(x)

x ln(x)
=

1

η
.

Hence, Vh satisfies Assumption 3.1 if ν0 > 2 and one has

Vh =
∑

n∈Z

∑

j∈Z+

〈n〉−ν0e−ξ(j)|δhn ⊗ ej〉〈δhn ⊗ ej | =
(
〈(·)h−1〉−ν0/2 ⊗K

)2
,

where K =
∑

j∈Z+
e−

1
2 ξ(j)| ej〉〈ej |. Thus, Vh satisfies Assumption 3.4 with Vh = I and

PVJ
hP

∗ = PVhP
∗ = ‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

(
I ⊗

∑

j∈Z+

e−
1
2 ξ(j)| ej〉〈ej |

)
.

The eigenvalues of the operator PVhP∗ are simple and

(5.45) σ(PVhP
∗) =

{
‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

e−
1
2 ξ(j) : j ∈ Z+

}
,

with eigenvectors respectively given by the orthonormal basis (1 ⊗ ej)j∈Z+ of C ⊗ G. Therefore,
for r > 0 small enough, one has

Φ2(r) = Φ1(r) = Tr 1(r,+∞)(PVhP
∗)

= #
{
‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

e−
1
2 ξ(j) : j ∈ Z+ : r < ‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

e−
1
2 ξ(j)

}

= #
{
j ∈ Z+ : ξ(j) < 2 ln

(
‖〈(·)h−1〉−ν0/2‖2ℓ2(Zh)

r−1
)}

.

(5.46)

The claim follows from (5.46) and (5.41). �

6. Factorisation of the potential

The aim of this section is to prove the next lemma that gives a suitable factorisation of the
perturbation Vh satisfying Assumption 3.1. In particular, this justifies our choice of the generalized
Assumption 3.4.

Lemma 6.1. Let Assumption 3.1 holds. Consider the operators 〈(·)h−1〉−ν0/2 and pGβ0
defined by

(3.7) and (3.8). Then:

i) There exists Vh ∈ B(ℓ2(Zh,G)) such that

(6.1) Vh = (〈(·)h−1〉−ν0/2 ⊗ pGβ0
)Vh(〈(·)h−1〉−ν0/2 ⊗ pGβ0

).

ii) Vh ≥ 0 so that

(6.2) Vh = M
∗
0,hM0,h with M0,h := V

1/2
h (〈(·)h−1〉−ν0/2 ⊗ pGβ0

).

In particular Vh is trace class and

(6.3) ‖Vh‖S1 ≤ ‖M0,h‖2S2
.

iii) As a matrix, Vh = {ah(n,m)}(n,m)∈Z2 with

(6.4) ‖ah(n,m)‖B(G) ≤ Ch〈n〉−ν1+ν0/2〈m〉−ν2+ν0/2.
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Proof. i) Constants are generic, i.e. change from an estimate to another. One can write

(6.5) Vh = (〈(·)h−1〉−ν0/2 ⊗ I)Ṽh(〈(·)h−1〉−ν0/2 ⊗ I),

with Ṽh :=
{
〈n〉ν0/2vh(n,m)〈m〉ν0/2

}
(n,m)∈Z2 . Namely, one has

(6.6) Ṽh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ 〈n〉ν0/2vh(n,m)〈m〉ν0/2.

a) Firstly let us show that the operator Ṽh is bounded. To see this, note that Assumption 3.1
and (3.2) imply that there exits a constant Ch such that for each (n,m) ∈ Z2,

(6.7) ‖vh(n,m)‖B(G) ≤ Ch〈n〉−ν1〈m〉−ν2 .

Using (6.6) and the Cauchy-Schwartz inequality, one gets for any ϕ ∈ ℓ2(Zh,G)

‖Ṽhϕ‖2 =
∑

n∈Z

∥∥ ∑

m∈Z

〈n〉ν0/2vh(n,m)〈m〉ν0/2ϕ(hm)
∥∥2
G

≤
∑

n∈Z

∑

m∈Z

‖〈n〉ν0/2vh(n,m)〈m〉ν0/2‖2B(G)‖ϕ‖2.
(6.8)

It follows from (6.7) that

‖Ṽh‖2 ≤
∑

n∈Z

∑

m∈Z

‖〈n〉ν0/2vh(n,m)〈m〉ν0/2‖2B(G) ≤ Ch

∑

n∈Z

∑

m∈Z

〈n〉−2ν1+ν0〈m〉−2ν2+ν0 < ∞.

b) For (n,m) ∈ Z2, define in G the operator

(6.9) ṽh(n,m) =
∑

j∈Λ

∑

k∈Λ

〈j〉β0/2vhjk(n,m)〈k〉β0/2| ej〉〈ek |,

which is bounded. Indeed, using the Cauchy-Schwartz inequality one gets for each g ∈ G
‖ṽh(n,m)g‖2G =

∑

j∈Λ

∣∣〈ej , ṽh(n,m)g〉G
∣∣2 =

∑

j∈Λ

∣∣∑

k∈Λ

〈j〉β0/2vhjk(n,m)〈k〉β0/2〈ek, g〉G
∣∣2

≤
∑

j∈Λ

(∑

k∈Λ

|〈j〉β0/2vhjk(n,m)〈k〉β0/2|2
)∑

k∈Λ

|〈ek, g〉G |2 = ‖g‖2G
∑

j,k

〈j〉β0 |vhjk(n,m)|2〈k〉β0

≤ Ch〈n〉−2ν1〈m〉−2ν2‖g‖2G
∑

j∈Λ

∑

k∈Λ

〈j〉β0G2
1(i, j)〈k〉β0 ≤ Ch〈n〉−2ν1〈m〉−2ν2‖g‖2G.

It follows that

(6.10) ‖ṽh(n,m)‖B(G) ≤ Ch〈n〉−ν1〈m〉−ν2 .

Now, for every k∗ ∈ Λ, one has
(
pGβ0

ṽh(n,m)pGβ0

)
ek∗ =

∑

j∈Λ

〈j〉−β0/2| ej〉〈ej , ṽh(n,m)pGβ0
ek∗〉G

=
∑

j∈Λ

〈j〉−β0/2〈k∗〉−β0/2| ej〉〈ej , ṽh(n,m) ek∗〉G .

Since

〈ej , ṽh(n,m) ek∗〉G =
∑

j′∈Λ

∑

k∈Λ

〈j′〉β0/2vhj′k(n,m)〈k〉β0/2〈ej , ej′ 〉G〈ek, ek∗〉G

= 〈j〉β0/2vhjk∗(n,m)〈k∗〉β0/2,

then we have (
pGβ0

ṽh(n,m)pGβ0

)
ek∗ =

∑

j∈Λ

vhjk∗(n,m)| ej〉 = vh(n,m) ek∗ ,

Therefore, for each (n,m) ∈ Z2, one has

(6.11) pGβ0
ṽh(n,m)pGβ0

= vh(n,m).
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Together with (6.6), this implies that

(6.12) Ṽh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ 〈n〉ν0/2pGβ0
ṽh(n,m)pGβ0

〈m〉ν0/2 = (I ⊗ pGβ0
)Vh(I ⊗ pGβ0

),

where

(6.13) Vh =
∑

n∈Z

∑

m∈Z

|δhn〉〈δhm| ⊗ 〈n〉ν0/2ṽ(n,m)〈m〉ν0/2.

By putting together (6.5) and (6.12), one obtains (6.1). Using (6.10) and arguing as in (6.8), one
can show that Vh is a bounded operator.

ii) Let us show that Vh ≥ 0 if Vh ≥ 0. First, note that the vectors of the basis (δhn⊗ej)(n,j)∈Z×Λ

of ℓ2(Zh,G) are eigenvectors of the operator 〈(·)h−1〉−ν0/2 ⊗ pGβ0
. Indeed, one has

(〈(·)h−1〉−ν0/2 ⊗ pGβ0
)(δhn ⊗ ej) = 〈n〉−ν0/2〈j〉−ν0/2(δhn ⊗ ej), (n, j) ∈ Z× Λ.

This implies that the Range of 〈(·)h−1〉−ν0/2 ⊗ pGβ0
is dense in ℓ2(Zh,G). Then, for each ϕ ∈

ℓ2(Zh,G), there exists a sequence of vectors ϕq ∈ Range(〈(·)h−1〉−ν0/2 ⊗ pGβ0
), q ≥ 0, such that

(6.14) lim
q→+∞

‖ϕq − ϕ‖G = 0.

So, for each q ≥ 0, ϕq = (〈(·)h−1〉−ν0/2⊗pGβ0
)ϕ′

q for some ϕ′
q ∈ ℓ2(Zh,G). Noting that 〈(·)h−1〉−ν0/2⊗

pGβ0
is a positive operator and using (6.1), it follows that

〈Vhϕq, ϕq〉 = 〈Vh(〈(·)h−1〉−ν0/2 ⊗ pGβ0
)ϕ′

q, (〈(·)h−1〉−ν0/2 ⊗ pGβ0
)ϕ′

q〉
= 〈(〈(·)h−1〉−ν0/2 ⊗ pGβ0

)Vh(〈(·)h−1〉−ν0/2 ⊗ pGβ0
)ϕ′

q, ϕ
′
q〉 = 〈Vhϕ

′
q, ϕ

′
q〉 ≥ 0.

(6.15)

Now, since for q ≥ 0

|〈Vhϕq, ϕq〉 − 〈Vhϕ, ϕ〉| = |〈Vh(ϕq − ϕ), ϕq〉+ 〈Vhϕ, ϕq − ϕ〉|
≤ ‖Vh‖‖ϕq − ϕ‖‖ϕq‖+ ‖Vh‖‖ϕ‖‖ϕq − ϕ‖,

one deduces from (6.14) and (6.15) that

〈Vhϕ, ϕ〉 = lim
q→+∞

〈Vhϕq, ϕq〉 ≥ 0.

Moreover, since the operator 〈(·)h−1〉−ν0/2⊗pGβ0
is Hilbert-Schmidt according to Remark 3.2, then

Vh is trace class and (6.3) follows by (6.1) and the boundedness of Vh.

iii) As matrix Vh = {ah(n,m)}(n,m)∈Z2, one has from (6.13) that for each (n,m) ∈ Z2

ah(n,m) = 〈n〉ν0/2ṽh(n,m)〈m〉ν0/2.
Then, (6.4) follows immediately from (6.10). This concludes the proof. �

7. Preliminary results

7.1. Extensions of the kernel of (−∆h − z)−1 to the real axis. For further references, we
provide more details on our choice of analytic determinations of the complex logarithm and square-
root functions. First, it can be checked that the map exp : s ∈ C 7→ es ∈ C∗ is a surjective group
homomorphism with kernel ker(exp) = 2iπZ. It follows that its restriction exp : s ∈ {s ∈ C :
−π ≤ Im s < π} 7→ es ∈ C∗ is a bijective map. Since the image of the axis {s ∈ C : Im s = −π} is
the semi-axis (−∞, 0), then the one of the (open) domain {s ∈ C : −π < Im s < π} is the domain
Cr (−∞, 0] so that

exp : s ∈ {s ∈ C : −π < Im s < π} 7→ es ∈ C r (−∞, 0]

is a holomorphic bijective map with non-vanishing derivative. The corresponding inverse map

(7.1) Ln : s ∈ C r (−∞, 0] 7→ Ln(s) ∈ {s ∈ C : −π < Im s < π}
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is then holomorphic and will define our complex logarithm determination. It corresponds to the
principal value of the logarithm function. Hence, one can define the complex analytic square-root
determination using the analytic function Ln by

(7.2)
√
· = e

1
2Ln : s ∈ C r (−∞, 0] 7→ e

1
2Ln(s) ∈ {s ∈ C : Re s > 0}.

It corresponds to the principal value of the square-root function. Note that (7.1) and (7.2) cor-
responds to employ the principal value of the argument Arg which takes values in (−π, π] so
that

(7.3) Ln(s) = Ln|s|+ iArg(s).

Let z ∈ Cr [0, 4
h2 ] and Rh(z) := (−∆h − z)−1 be the resolvent of −∆h. One has

(7.4) Fh

(
Rh(z)φ

)
(θ) =

(Fhφ)(θ)

fh(θ)− z
,

where fh(θ) is given by (2.2). It can be checked that

(7.5) Fh(h
2eiα|·|)(θ) = − i

2h−2

sin(hα)

sin2(hθ/2)− sin2(hα/2)
, Imα > 0.

It follows from identities (7.4) and (7.5) that for Im z > 0, Rh(z) is an operator with convolution
kernel given by r(z, h(n−m)), where

(7.6) r(z, hk) =
ih2

2

eiαh(z)h|k|

sin(hαh(z))
=

ie2i|k|Arcsin(h
2

√
z)

√
z
√
4/h2 − z

:= rh(z, k), k ∈ Z.

Here, αh(z) =
2
hArcsin(

h
2

√
z) is the unique solution to the equation 2−2 cos(hα)

h2 = 4
h2 sin

2
(
hα
2

)
= z

lying in the region {α ∈ C : −π
h ≤ Reα ≤ π

h : Imα > 0}, where Arcsin is principal value of the
real arcsine (arcsin) function obtained by employing the above analytic determinations Ln and√· = e

1
2Ln. Namely, for s ∈ C r

(
(−∞,−1] ∪ [1,+∞)

)
, one has

(7.7) Arcsin s =
1

i
Ln
(
is+

√
1− s2

)
= w.

It can be easily checked that w given by (7.7) is solution to the equation sin(w) = eiw−e−iw

2i = s.
In particular, if s = x ∈ R with |x| < 1, then

Arcsinx = Arg
(
ix+

√
1− x2

)
∈ (−π

2 ,
π
2 )

coincides with the real classical arcsin inverse fonction, i.e. Arcsinx = arcsinx.
The next result follows immediately taking into account the above considerations.

Proposition 7.1. One has

(7.8) lim
εց0

rh(λ+ iε, n−m) =





e2i|n−m|Arcsin( ih
2

√−λ)

√
−λ

√
4/h2−λ

if λ < 0

ie2i|n−m|Arcsin( h
2

√
λ)

√
λ
√

4/h2−λ
if λ ∈ (0, 4/h2)

− e2i|n−m|Arcsin(h
2

√
λ)

√
λ
√

λ−4/h2
if λ > 4/h2.

For λ ∈ R r {0, 4
h2 }, one defines Rh(λ) as the operator acting in ℓ2(Zh) with the convolution

kernel rh(λ, n−m) where

(7.9) rh(λ, n−m) := lim
εց0

rh(λ+ iε, n−m).

7.2. Estimates of the weighted resolvents.
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7.2.1. Hilbert-Schmidt bounds. Let Th(z) be the weighted resolvent defined by (4.1). For
Im z > 0, thanks to (7.6), one defines Rh(z) as the operator acting in ℓ2(Zh) with convolution
kernel rh(z, n−m). So, according to (7.9), one extends Th(z) to Cr {0, 4

h2 } by setting

(7.10) Th(λ) := V
1/2
h (〈(·)h−1〉−ν0/2Rh(λ)〈(·)h−1〉−ν0/2 ⊗KK∗)V 1/2

h , λ ∈ (0, 4
h2 ).

Introduce C+ := {z ∈ C : Im z > 0} and C+ := {z ∈ C : Im z ≥ 0}.
Proposition 7.2. Let Vh satisfy Assumption 3.4. Then:

i) For any z ∈ C r {0, 4
h2 }, the operator Th(z) ∈ S2(ℓ

2(Zh,G)) with

‖Th(λ)‖S2 ≤
‖K‖2

S2

∑
n∈Z

〈n〉−ν0

λ1/2( 4
h2 − λ)1/2

‖Vh‖, λ ∈ (0, 4
h2 ).

ii) The operator-valued function z ∈ C+ r {0, 4
h2 } 7→ Th(z) ∈ S2 is continuous.

Proof. i) Let z ∈ Cr σ(Hh). Then, the resolvent (Hh − z)−1 of Hh is bounded with

‖(Hh − z)−1‖ ≤ 1

dist(z, [0, 4
h2 ])

,

by the spectral theorem. Thanks to Remark 3.2, the operator 〈(·)h−1〉−ν0/2 ∈ S2 and by Assump-
tion 3.4, K ∈ S2. It follows that Th(z) ∈ S2 with

‖Th(z)‖S2 ≤ ‖Mh‖2S2
‖(Hh − z)−1‖ ≤

‖〈(·)h−1〉−ν0/2‖2
S2

‖K‖2
S2

dist(z, [0, 4
h2 ])

‖Vh‖.

Let λ ∈ (0, 4
h2 ). The operator Rh(λ) admits the convolution kernel rh(λ, n−m) given by (7.9).

Using Proposition 7.1, we bound the S2-norm of 〈(·)h−1〉−ν0/2Rh(z)〈(·)h−1〉−ν0/2 by

‖〈(·)h−1〉−ν0/2Rh(λ)〈(·)h−1〉−ν0/2‖S2 ≤
∑

n∈Z
〈n〉−ν0

λ1/2( 4
h2 − λ)1/2

.

Therefore, it follows that

‖Th(λ)‖S2 ≤
‖K‖2

S2

∑
n∈Z

〈n〉−ν0

λ1/2( 4
h2 − λ)1/2

‖Vh‖.

ii) According to the point i), the map z ∈ C+r{0, 4
h2 } 7→ Th(z) ∈ S2 is well defined. Otherwise,

since the map z 7→ (Hh − z)−1 is holomorphic in C r σ(Hh), then the continuity of z ∈ C+ r

σ(Hh) 7→ Th(z) ∈ S2 follows immediately. Indeed, as |z − z0| → 0 with z, z0 ∈ C+ r σ(Hh),

‖Th(z)− Th(z0)‖S2 = ‖Mh(Hh − z)−1
M

∗
h − Mh(Hh − z0)

−1
M

∗
h‖S2

≤ ‖Mh‖2S2
‖(Hh − z)−1 − (Hh − z0)

−1‖ → 0.

Now, let z0 = λ0 ∈ (0, 4
h2 ) and 0 < δ ≪ 1. Then, for

z ∈ Dδ(λ0) := {s ∈ C+ r {0, 4
h2 } : |z − λ0| ≤ δ},

one has

(7.11) ‖Th(z)− Th(λ0)‖S2 ≤ ‖Vh‖‖K‖2S2
‖〈(·)h−1〉−ν0/2

[
Rh(z)−Rh(λ0)

]
〈(·)h−1〉−ν0/2‖S2 .

The operator 〈(·)h−1〉−ν0/2
[
Rh(z)−Rh(λ0)

]
〈(·)h−1〉−ν0/2 admits the convolution kernel

〈n〉−ν0/2
(
rh(z, n−m)− rh(λ0, n−m)

)
〈m〉−ν0/2,

so that

‖〈(·)h−1〉−ν0/2
[
Rh(z)−Rh(λ0)

]
〈(·)h−1〉−ν0/2‖2

S2

≤
∑

n∈Z

∑

m∈Z

〈n〉−ν0〈m〉−ν0 |rh(z, n−m)− rh(λ0, n−m)|2.(7.12)
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The map z ∈ Dδ(λ0) 7→ 1
|z|1/2| 4

h2 −z|1/2 ∈ R is continuous. Since Dδ(λ0) is compact, then there

exists s0 ∈ Dδ(λ0) such that

sup
z∈Dδ(λ0)

(n,m)∈Z2

|rh(z, n−m)− rh(λ0, n−m)| ≤ 1

|s0|1/2| 4
h2 − s0|1/2

+
1

λ
1/2
0 ( 4

h2 − λ0)1/2
=: Ch(s0, λ0).

That is the map (n,m) ∈ Z2 7→ 〈n〉−ν0〈m〉−ν0 |rh(z, n−m)−rh(λ0, n−m)| is uniformly dominated
w.r.t z ∈ Dδ(λ0) by the map (n,m) ∈ Z2 7→ Ch(s0, λ0)〈n〉−ν0〈m〉−ν0 . Now, using

∑

n∈Z

∑

m∈Z

〈n〉−ν0〈m〉−ν0 =
(∑

n∈Z

〈n〉−ν0
)2

< ∞,

(7.12), Lebesgue’s dominated convergence theorem and (7.11), one gets

‖Th(z)− Th(λ0)‖S2 → 0 as |z − λ0| → 0,

which ends the proof. �

The next corollary is a direct consequence of Proposition 7.2.

Corollary 7.3. Let Vh satisfy Assumption 3.4 and λ ∈ R r {0, 4
h2 }. Then, the limit Th(λ + i0)

exists in S2 with Th(λ+ i0) = Th(λ).

7.2.2. Trace class bounds. In what follows below, we want to establish the existence of Th(λ+
i0), λ ∈ Rr{0, 4

h2 }, in the trace class S1. However, the proof is less evident to the one of Corollary
7.3 obtained directly from Proposition 7.2. To do this, the first step consists of establishing the
following simple result, whose proof is similar to the one of Proposition 7.2 in several points.

Proposition 7.4. Let Vh satisfy Assumption 3.4. Then:

i) For any z ∈ C r σ(Hh), the operator Th(z) ∈ S1(ℓ
2(Zh,G)) with

‖Th(z)‖S1 ≤
‖〈(·)h−1〉−ν0/2‖2

S2
‖K‖2

S2

dist(z, [0, 4
h2 ])

‖Vh‖.

ii) The operator-valued function z ∈ Cr σ(Hh) 7→ Th(z) ∈ S1 is holomorphic.

Proof. i) Let z ∈ C r σ(Hh). Since the operators 〈(·)h−1〉−ν0/2, K are Hilbert-Schmidt and
(Hh − z)−1 is bounded, then Th(z) ∈ S1 with

‖Th(z)‖S1 ≤ ‖Mh‖2S2
‖(Hh − z)−1‖ ≤

‖〈(·)h−1〉−ν0/2‖2
S2

‖K‖2
S2

dist(z, [0, 4
h2 ])

‖Vh‖.

ii) Thanks to the point i), the map z ∈ Cr σ(Hh) 7→ Th(z) ∈ S1 is well defined. Moreover,

‖T ′
h(z)‖S1 = ‖Mh(Hh − z)−2

M
∗
h‖S1 ≤ ‖Mh(Hh − z)−1‖S2‖(Hh − z)−1

M
∗
h‖S2 ,

and as |z − z0| → 0 with z, z0 ∈ Cr σ(Hh), one has
∥∥∥
Th(z)− Th(z0)

z − z0
− T ′

h(z0)
∥∥∥
S1

≤ ‖Mh‖2S2

∥∥∥
(Hh − z)−1 − (Hh − z0)

−1

z − z0
− (Hh − z0)

−2
∥∥∥→ 0.

Thus the claim follows and this ends the proof. �

The second step consists of treating the case λ ∈ (0, 4
h2 ) which is more delicate. We first need

to find a suitable integral decomposition of

(7.13) Th(z) = V
1/2
h (〈(·)h−1〉−ν0/2Rh(z)〈(·)h−1〉−ν0/2 ⊗KK∗)V 1/2

h , z ∈ C+,

in the spirit of [6, Section 4.1]. This is the object of the next result. In order to simplify the
notations, let us introduce the operators ah(θ) : ℓ

2(Zh) → C defined by

(7.14) ah(θ) :=
1√
τ

〈
e−i(·)θ〈(·)h−1〉−ν0/2|, τ =

2π

h
,

and a(θ)∗ : C → ℓ2(Zh) the rank one operator given by

(7.15) ah(θ)
∗ζ =

ζ√
τ
e−i(·)θ〈(·)h−1〉−ν0/2.
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Proposition 7.5. Let Vh satisfy Assumption 3.4. Then, for z ∈ C+, one has

(7.16) Th(z) =

∫ π/h

0

uh(θ)
∗uh(θ)

dθ

fh(θ) − z
,

where fh(θ) is given by (2.2) and uh(θ) : ℓ
2(Zh,G) → C2 ⊗ G is the operator defined by

(7.17) uh(θ) := (Ah(θ)⊗K∗)V 1/2
h , θ ∈ Tτ .

Here, Ah(θ) : ℓ
2(Zh) → C2 is the operator defined by

(7.18) Ah(θ)φ =

(
1√
τ

〈
e−i(·)θ〈(·)h−1〉−ν0/2, φ

〉
ℓ2(Zh)

1√
τ

〈
ei(·)θ〈(·)h−1〉−ν0/2, φ

〉
ℓ2(Zh)

)
=

(
ah(θ)φ
ah(−θ)φ

)
,

where the operator ah(θ) is given by (7.14).

Proof. Consider Fh : ℓ2(Zh) → L2(Tτ ) the discrete Fourier transform defined by (2.1). To simplify
the notations, set W := 〈(·)h−1〉−ν0/2 as an operator. For any ϕ, Φ ∈ ℓ2(Zh) and z ∈ C+, one has

〈Φ,WRh(z)Wϕ〉ℓ2(Zh) = 〈WΦ, Rh(z)Wϕ〉ℓ2(Zh)

= 〈Fh(WΦ),FhRh(z)F
−1
h Fh(Wϕ)〉L2(Tτ )

=
1

τ

∫ π/h

−π/h

1

fh(θ)− z
Fh(Wϕ)(θ)Fh(WΦ)(θ)dθ

=
1

τ

∫ π/h

0

1

fh(θ)− z

(
Fh(Wϕ)(−θ)Fh(WΦ)(−θ) + Fh(Wϕ)(θ)Fh(WΦ)(θ)

)
dθ.

(7.19)

For θ ∈ Tτ , one has

(7.20) Fh(Wϕ)(−θ) =
∑

n∈Z

eihnθ〈n〉−ν0/2ϕ(hn) =
〈
e−i(·)θ〈(·)h−1〉−ν0/2, ϕ

〉
ℓ2(Zh)

,

and then

(7.21) Fh(WΦ)(−θ) =
〈
e−i(·)θ〈(·)h−1〉−ν0/2,Φ

〉
ℓ2(Zh)

.

By putting together (7.19)-(7.21) and using (7.18), one gets

〈Φ,WRh(z)Wϕ〉ℓ2(Zh)

=

∫ π/h

0

1

fh(θ)− z

(
ah(θ)ϕ · ah(θ)Φ + ah(−θ)ϕ · ah(−θ)Φ

)
dθ

=

∫ π/h

0

〈Ah(θ)Φ,Ah(θ)ϕ〉C2

dθ

fh(θ) − z

=

∫ π/h

0

〈Φ,Ah(θ)
∗
Ah(θ)ϕ〉ℓ2(Zh)

dθ

fh(θ) − z
.

(7.22)

It follows that WRh(z)W admits the integral representation

(7.23) WRh(z)W =

∫ π/h

0

Ah(θ)
∗
Ah(θ)

dθ

fh(θ)− z
,

where the operator Ah(θ)
∗ : C2 → ℓ2(Zh) is given by

(7.24) Ah(θ)
∗
(
ζ1
ζ2

)
= ah(θ)

∗ζ1 + ah(−θ)∗ζ2,

so that Ah(θ)
∗Ah(θ) : ℓ

2(Zh) → ℓ2(Zh) is the rank two operator

Ah(θ)
∗
Ah(θ) = ah(θ)

∗ah(θ) + ah(−θ)∗ah(−θ)

=
1

τ

(∣∣e−i(·)θ〈(·)h−1〉−ν0/2
〉〈
e−i(·)θ〈(·)h−1〉−ν0/2

∣∣+
∣∣ei(·)θ〈(·)h−1〉−ν0/2

〉〈
ei(·)θ〈(·)h−1〉−ν0/2

∣∣
)
.

(7.25)
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Then, by combining (7.13) and (7.23), the integral representation (7.16) of the operator Th(z)
holds. This ends the proof. �

By performing the change of variable ζ = fh(θ) =
4
h2 sin

2( θh2 ) in (7.16), one gets

Th(z) =

∫ π/h

0

uh(θ)
∗uh(θ)

dθ
4
h2 sin

2( θh2 )− z

=

∫ 4/h2

0

u( 2h arcsin(h2
√
ζ))∗u( 2h arcsin(h2

√
ζ))

h
√
ζ
√
4/h2 − ζ

dζ

ζ − z

=

∫ 4/h2

0

Uh(ζ)dζ

ζ − z
=

∫ 2/h2

−2/h2

Uh(ζ +
2
h2 )dζ

ζ + 2
h2 − z

,

(7.26)

where

(7.27) Uh(ζ) := Uh(ζ)
∗Uh(ζ),

and

(7.28) Uh(ζ) :=
uh(

2
h arcsin(h2

√
ζ))

h1/2ζ1/4( 4
h2 − ζ)1/4

.

Now in the spirit of [21, Proposition 3.3], one establishes Proposition 7.8 below. Firstly, the
following lemma holds:

Lemma 7.6. Let Vh satisfy Assumption 3.4 with ν0 > 3. Then, the map ζ ∈ (0, 4
h2 ) 7→ Uh(ζ) is

locally α-Hölder in the S1-norm with α = 1.

Proof. For ζ ∈ (0, 4
h2 ), thanks to (7.27) and (7.28), one has

Uh(ζ) =
uh(

2
hgh(ζ))

∗uh(
2
hgh(ζ))

hζ1/2( 4
h2 − ζ)1/2

,

where gh is the function defined by (5.13). Fix ζ0 ∈ (0, 4
h2 ) and consider (ζ0 − δ, ζ0 + δ) ⊂ (0, 4

h2 )
a neighborhood of ζ0, δ > 0. For every ζ1, ζ2 ∈ (ζ0 − δ, ζ0 + δ), one has

∥∥∥Uh(ζ1)− Uh(ζ2)
∥∥∥
S1

≤
∥∥∥
uh(

2
hgh(ζ1))

∗uh(
2
hgh(ζ1))− uh(

2
hgh(ζ2))

∗uh(
2
hgh(ζ2))

hζ
1/2
1 ( 4

h2 − ζ1)1/2

∥∥∥
S1

+
∣∣∣

1

hζ
1/2
1 ( 4

h2 − ζ1)1/2
− 1

hζ
1/2
2 ( 4

h2 − ζ2)1/2

∣∣∣
∥∥∥uh

( 2
h
gh(ζ2)

)∗
uh

( 2
h
gh(ζ2)

)∥∥∥
S1

.

(7.29)

a) Let us treat the first term of the r.h.s. of (7.29). We have

∥∥∥
uh(

2
hgh(ζ1))

∗uh(
2
hgh(ζ1))− uh(

2
hgh(ζ2))

∗uh(
2
hgh(ζ2))

hζ
1/2
1 ( 4

h2 − ζ1)1/2

∥∥∥
S1

≤ 1

hζ
1/2
1 ( 4

h2 − ζ1)1/2

∫ max(ζ1,ζ2)

min(ζ1,ζ2)

∥∥∥∂ζ
[
uh

( 2
h
gh(ζ)

)∗
uh

( 2
h
gh(ζ)

)]∥∥∥
S1

dζ.

(7.30)

From (7.17), one gets for ζ ∈ (0, 4
h2 )

uh

( 2
h
gh(ζ)

)∗
uh

(2
h
gh(ζ)

)
= V

1/2
h

[
Ah

(2
h
gh(ζ)

)∗
Ah

( 2
h
gh(ζ)

)
⊗KK∗

]
V

1/2
h ,(7.31)

so that

(7.32)
∥∥∥∂ζ
[
uh

(2
h
gh(ζ)

)∗
uh

( 2
h
gh(ζ)

)]∥∥∥
S1

≤ ‖Vh‖‖K‖2S2

∥∥∥∂ζ
[
Ah

( 2
h
gh(ζ)

)∗
Ah

( 2
h
gh(ζ)

)]∥∥∥
S1

.
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By using (7.25), one obtains for φ ∈ ℓ2(Zh)

π

h
Ah

( 2
h
gh(ζ)

)∗
Ah

( 2
h
gh(ζ)

)
φ(hn)

=
1

2

(
e−2ingh(ζ)〈(hn)h−1〉−ν0/2

∑

m∈Z

e2imgh(ζ)〈(hm)h−1〉−ν0/2φ(hm)

+ e2ingh(ζ)〈(hn)h−1〉−ν0/2
∑

m∈Z

e−2imgh(ζ)〈(hm)h−1〉−ν0/2φ(hm)
)

=
∑

m∈Z

cos[2h(n+m)h−1gh(ζ)]〈(hn)h−1〉−ν0/2〈(hm)h−1〉−ν0/2φ(hm).

(7.33)

Consequently, for any φ ∈ ℓ2(Zh), by setting C(ζ) := − 1√
ζ
√

4/h2−ζ
, one gets

π

h
∂ζ

[
Ah

( 2
h
gh(ζ)

)∗
Ah

(2
h
gh(ζ)

)]
φ(hn) = C(ζ)〈(hn)h−1〉−ν0/2

×
∑

m∈Z

h(n+m)h−1 sin[2h(n+m)h−1gh(ζ)]〈(hm)h−1〉−ν0/2φ(hm)

= C(ζ)
(
〈(hn)h−1〉−ν0/2(hn)h−1 sin[2(hn)h−1gh(ζ)]

×
∑

m∈Z

cos[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2φ(hm)

+ 〈(hn)h−1〉−ν0/2(hn)h−1 cos[2(hn)h−1gh(ζ)]

×
∑

m∈Z

sin[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2φ(hm)

+ 〈(hn)h−1〉−ν0/2 sin[2(hn)h−1gh(ζ)]

×
∑

m∈Z

cos[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2(hm)h−1φ(hm)

+ 〈(hn)h−1〉−ν0/2 cos[2(hn)h−1gh(ζ)]

×
∑

m∈Z

sin[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2(hm)h−1φ(hm)
)
.

Il follows, using the inequality ‖A1A2‖S1 ≤ ‖A1‖S2‖A2‖S2 for A1, A2 ∈ S2, that

π

h

∥∥∥∂ζ
[
Ah

( 2
h
gh(ζ)

)∗
Ah

(2
h
gh(ζ)

)]∥∥∥
S1

≤ |C(ζ)|
[(∑

n∈Z

sin2[2ngh(ζ)]n
2〈n〉−ν0

)1/2(∑

n∈Z

cos2[2ngh(ζ)]〈n〉−ν0
)1/2

+
(∑

n∈Z

cos2[2ngh(ζ)]n
2〈n〉−ν0

)1/2(∑

n∈Z

sin2[2ngh(ζ)]〈n〉−ν0
)1/2

+
(∑

n∈Z

sin2[2ngh(ζ)]〈n〉−ν0
)1/2(∑

n∈Z

cos2[2ngh(ζ)]n
2〈n〉−ν0

)1/2

+
(∑

n∈Z

cos2[2ngh(ζ)]〈n〉−ν0
)1/2(∑

n∈Z

sin2[2ngh(ζ)]n
2〈n〉−ν0

)1/2]
,

so that

(7.34)
π

h

∥∥∥∂ζ
[
Ah

(2
h
gh(ζ)

)∗
Ah

( 2
h
gh(ζ)

)]∥∥∥
S1

≤ 4|C(ζ)|
∑

n∈Z

n2〈n〉−ν0 .
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Putting together (7.30), (7.32) and (7.34), one gets finally
∥∥∥
uh(

2
hgh(ζ1))

∗uh(
2
hgh(ζ1))− uh(

2
hgh(ζ2))

∗uh(
2
hgh(ζ2))

hζ
1/2
1 ( 4

h2 − ζ1)1/2

∥∥∥
S1

≤ 4

π
( max
ζ∈(ζ0−δ,ζ0+δ)

)2
‖Vh‖‖K‖2

S2

∑
n∈Z

n2〈n〉−ν0

ζ1/2( 4
h2 − ζ)1/2

|ζ1 − ζ2|.
(7.35)

b) Now, one treats the second term of the r.h.s. of (7.29). We have
∣∣∣

1

hζ
1/2
1 ( 4

h2 − ζ1)1/2
− 1

hζ
1/2
2 ( 4

h2 − ζ2)1/2

∣∣∣
∥∥∥uh

( 2
h
gh(ζ2)

)∗
uh

(2
h
gh(ζ2)

)∥∥∥
S1

≤ 1

h
max

ζ∈(ζ0−δ,ζ0+δ)

∣∣∣∂ζ
1

ζ1/2( 4
h2 − ζ)1/2

∣∣∣
∥∥∥uh

( 2
h
gh(ζ2)

)∗
uh

( 2
h
gh(ζ2)

)∥∥∥
S1

|ζ1 − ζ2|.
(7.36)

From (7.31), it follows that for ζ ∈ (0, 4
h2 ),

(7.37)
∥∥∥uh

( 2
h
gh(ζ)

)∗
uh

( 2
h
gh(ζ)

)∥∥∥
S1

≤ ‖Vh‖‖K‖2
S2

∥∥∥Ah

(2
h
gh(ζ)

)∗
Ah

( 2
h
gh(ζ)

)∥∥∥
S1

.

Using (7.33), one obtains that for φ ∈ ℓ2(Zh)

π

h
Ah

( 2
h
gh(ζ)

)∗
Ah

(2
h
gh(ζ)

)
φ(hn)

= cos[2(hn)h−1gh(ζ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

cos[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2φ(hm)

+ sin[2(hn)h−1gh(ζ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

sin[2(hm)h−1gh(ζ)]〈(hm)h−1〉−ν0/2φ(hm).

This gives that

π

h

∥∥∥Ah

(2
h
gh(λ)

)∗
Ah

( 2
h
gh(λ)

)∥∥∥
S1

≤
∑

n∈Z

cos2[2ngh(λ)]〈n〉−ν0 +
∑

n∈Z

sin2[2ngh(λ)]〈n〉−ν0 =
∑

n∈Z

〈n〉−ν0 .
(7.38)

Using (7.36), (7.37) and (7.38), we finally get
∣∣∣

1

hζ
1/2
1 ( 4

h2 − ζ1)1/2
− 1

hζ
1/2
2 ( 4

h2 − ζ2)1/2

∣∣∣
∥∥∥uh

( 2
h
gh(ζ2)

)∗
uh

( 2
h
gh(ζ2)

)∥∥∥
S1

≤ 1

π
‖Vh‖‖K‖2

S2

∑

n∈Z

〈n〉−ν0 max
ζ∈(ζ0−δ,ζ0+δ)

∣∣∣∂ζ
1

ζ1/2( 4
h2 − ζ)1/2

∣∣∣|ζ1 − ζ2|.
(7.39)

Now, the lemma follows by putting together (7.29), (7.35) and (7.39). �

As a direct consequence, by applying Sokhotski-Plemelj formula [1], the following corollary
holds.

Corollary 7.7. Let z = λ+ iε with λ ∈ (0, 4
h2 ). Then,

(7.40)
∥∥∥
∫ 4/h2

0

Uh(ζ)dζ

ζ − λ− iε
− p.v.

∫ 4/h2

0

Uh(ζ)dζ

ζ − λ
− iπUh(λ)

∥∥∥
S1

= Oh(ε), ε ց 0.

One can now state the next result showing the existence of Th(λ + i0) in S1 for λ ∈ (0, 4
h2 ).

Notations are those introduced above. It follows from Corollary 7.7 and (7.26) the following:

Proposition 7.8. Let z = λ+ iε with λ ∈ (0, 4
h2 ). Then, as ε ց 0,

(7.41) Th(λ+ iε) =

∫ 4/h2

0

Uh(ζ)dζ

ζ − λ− iε
−→ p.v.

∫ 4/h2

0

Uh(ζ)dζ

ζ − λ
+ iπUh(λ),

in the S1-norm.

The next corollary is a direct consequence of Corollary 7.3, Propositions 7.4 and 7.8.
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Corollary 7.9. Let Vh satisfy Assumption 3.4 and λ ∈ R r {0, 4
h2 }. Then, the limit Th(λ + i0)

exists in S1 with Th(λ+ i0) = Th(λ).

For further references in the proof of the main results, let us point out the following remarks.

Remark 7.10. For λ ∈ (0, 4
h2 ), one knows by definition that Th(λ) is given by (7.10), where

Rh(λ) admits the convolution kernel

(7.42) rh(λ, n−m) =
ie2i|n−m|Arcsin(h

2

√
λ)

√
λ
√
4/h2 − λ

.

Remark 7.11. In the case λ < 0, by the uniqueness of the limit and arguing as in the proof of
ii) of Proposition 7.2, on can show that the formula (7.10) for Th(λ) remains valid with Rh(λ)
admitting the convolution kernel

(7.43) rh(λ, n−m) =
e2i|n−m|Arcsin( ih

2

√
−λ)

√
−λ
√
4/h2 − λ

.

Remark 7.12. For λ > 4
h2 , similarly to Remark 7.11, one has

(7.44) Th(λ) = V
1/2
h (〈(·)h−1〉−ν0/2Rh(λ)〈(·)h−1〉−ν0/2 ⊗KK∗)V 1/2

h ,

with Rh(λ) admitting the convolution kernel

(7.45) rh(λ, n−m) = −e2i|n−m|Arcsin(h
2

√
λ)

√
λ
√
λ− 4/h2

.

8. Proof of the main results

It is useful to recall the following standard properties of the counting functions N± defined by
(4.4). If T1 = T ∗

1 and T2 = T ∗
2 belong to S∞(G), then one has the Weyl inequalities

(8.1) N±(x1 + x2, T1 + T2) ≤ N±(x1, T1) + N±(x2, T2), x1, x2 > 0.

If T ∈ Sp(G) for some p ≥ 1, then

(8.2) N±(x, T ) ≤ x−p‖T ‖−p
Sp

, x > 0.

The following preliminary result holds:

Proposition 8.1. Let Vh satisfy Assumption 3.4. Then, one has the estimates
∫

R

N±(1 + ε,ReTh(λ) + tImTh(λ))
dt

π(1 + t2)

≤ ∓ξ(λ;H∓
h , Hh)

≤
∫

R

N±(1− ε,ReTh(λ) + tImTh(λ))
dt

π(1 + t2)
,

for any ε ∈ (0, 1).

Proof. It is a direct consequence of the Weyl inequalities (8.1) and Corollary 7.9. Indeed, for any
ε ∈ (0, 1), it follows that

∫

R

N±(1 + ε,ReTh(λ) + tImTh(λ))
dt

π(1 + t2)

≤
∫

R

N±(1, Ah(λ+ i0) + tBh(λ+ i0))
dt

π(1 + t2)

≤
∫

R

N±(1− ε,ReTh(λ) + tImTh(λ))
dt

π(1 + t2)
.

This implies the proposition and ends the proof. �



ENGINEERING SSF WITH SINGULARITIES FOR SELF-ADJOINT OPERATORS ON THE LATTICE 27

8.1. Proof of Theorem 5.2. One assumes that the potential Vh satisfies Assumption 3.4 through-
out this section. First, note that

(8.3) ReTh(λ) = Th(λ) and ImTh(λ) = 0, λ ∈ (−∞, 0) ∪ (4/h2,+∞).

This together with Proposition 8.1 and the identity∫

R

dt

π(1 + t2)
= 1,

implies immediately the next result:

Corollary 8.2. Let λ ∈ (−∞, 0) ∪ ( 4
h2 ,+∞). Then,

N±(1 + ε, Th(λ)) ≤ ∓ξ(λ;H∓
h , Hh) ≤ N±(1− ε, Th(λ)),

for any ε ∈ (0, 1).

One shows in the following result that N±(x, Th(λ)) can be bounded as λ → 0, from below and
from above by expressions involving Lh

0 (λ), up to O(1). Here, Lh
0 (λ) : ℓ

2(Zh)⊗G → ℓ2(Zh)⊗G is
the trace class operator defined by

(8.4) Lh
0 (λ) =

h

2

L∗
0,hL0,h√
−λ

, λ ∈ (−∞, 0),

where L0,h is defined by (5.2).

Proposition 8.3. Let ν0 > 3 in Assumption 3.4. Then, as λ ր 0,

N+((1 + ε)x,Lh
0 (λ)) +O(1) ≤ N+(x, Th(λ)) ≤ N+((1 − ε)x,Lh

0 (λ)) +O(1),

and

O(1) ≤ N−(x, Th(λ)) ≤ O(1),

for any ε ∈ (0, 1) and x > 0.

Proof. The main idea of the proof is to approximate the operator Th(λ)−Lh
0 (λ) in Hilbert-Shmidt

norm, as λ ր 0, by a compact operator independent of λ.
a) Let λ < 0. The convolution kernel rh(λ, n−m) given by (7.43) can be decomposed as

(8.5) rh(λ, n−m) =
h

2
√
−λ

+
( 1√

−λ
√
4/h2 − λ

− h

2
√
−λ

)
+

e2i|n−m|Arcsin( ih
2

√
−λ) − 1√

−λ
√
4/h2 − λ

.

Together with Remark 7.11, this implies that

(8.6) Th(λ)− Lh
0 (λ) = V

1/2
h (S

(λ)
h,ν0

⊗KK∗)V 1/2
h + Ih

0 (λ),

where S
(λ)
h,ν0

: ℓ2(Zh) → ℓ2(Zh) is the summation kernel operator defined by

(S
(λ)
h,ν0

ϕ)(hn) :=
∑

m∈Z

〈n〉−ν0/2
e2i|n−m|Arcsin( ih

2

√
−λ) − 1√

−λ
√
4/h2 − λ

〈m〉−ν0/2ϕ(hm),

ϕ ∈ ℓ2(Zh), and

Ih
0 (λ) :=

( 1√
−λ
√
4/h2 − λ

− h

2
√
−λ

)
L∗
0,hL0,h,

with the operator L0,h given by (5.2). Since 1√
−λ

√
4/h2−λ

− h
2
√
−λ

= Oh(
√
−λ) as λ ր 0, and the

operator L0,h is independent of λ, it follows that

(8.7) lim
λր0

‖Ih
0 (λ)‖S2 = lim

λր0
Oh(

√
−λ)‖L∗

0,hL0,h‖S2 = 0.

Define the operator

(8.8) T h
0 = V

1/2
h (S

(0)
h,ν0

⊗KK∗)V 1/2
h ,
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where S
(0)
h,ν0

: ℓ2(Zh) → ℓ2(Zh) is the summation kernel operator given by

(8.9) (S
(0)
h,ν0

φ)(hn) := −h2

2

∑

m∈Z

〈n〉−ν0/2|n−m|〈m〉−ν0/2φ(hm), ϕ ∈ ℓ2(Zh).

Since ν0 > 3, then
∑

n,m |〈n〉−ν0/2|n − m|〈m〉−ν0/2|2 < ∞ and S
(0)
h,ν0

belongs to S2(ℓ
2(Zh)). In

particular, the operator T0 is compact in ℓ2(Zh,G). By using the Lebesgue dominated convergence

theorem and the convolution kernels of the operators S
(λ)
h,ν0

and S
(0)
h,ν0

, one gets

(8.10) lim
λր0

‖S(λ)
h,ν0

− S
(0)
h,ν0

‖2S2
= 0.

Putting this together with (8.6), (8.7) and (8.10), one obtains

(8.11) lim
λր0

‖Th(λ)− Lh
0 (λ) − T h

0 ‖S2 = 0.

b) Now, consider λ < 0, ε ∈ (0, 1) and x > 0. Using Weyl’s inequalities (8.1), one gets

N±((1 + ε)x,Lh
0 (λ))− N∓(εx,Th(λ) − Lh

0 (λ)) ≤ N±(x, Th(λ))

≤ N±((1 − ε)x,Lh
0 (λ)) + N±(εx, Th(λ) − Lh

0 (λ)),

Since Lh
0 (λ) is a positive operator, then one has

N−(s,Lh
0 (λ)) = 0, ∀ s > 0.

Therefore, to get the proposition, it suffices to prove that for every ε ∈ (0, 1) and x > 0,

(8.12) N±(εx, Th(λ)− Lh
0 (λ)) = O(1), λ ր 0

To this end, let us fix s > 0. From (8.11), it follows that there exists λ0 < 0 small enough such
that

‖Th(λ)− Lh
0 (λ) − T h

0 ‖S2 <
s
√

N±(s/2, T h
0 )

2
, ∀λ0 < λ < 0.

This together with the Weyl inequalities implies that for all λ0 < λ < 0,

N±(s, Th(λ)−Lh
0 (λ)) ≤ N±(s/2, Th(λ) − Lh

0 (λ) − T h
0 ) + N±(s/2, T

h
0 )

≤ (s/2)−2‖Th(λ)− Lh
0 (λ)− T h

0 ‖2S2
+ N±(s/2, T

h
0 ) ≤ 2N±(s/2, T

h
0 ) = O(1),

uniformly w.r.t. λ0 < λ < 0, which gives (8.12). This ends the proof. �

In the next result, Lh
4/h2(λ) : ℓ2(Zh)⊗ G → ℓ2(Zh)⊗ G is the trace class operator defined by

(8.13) Lh
4/h2(λ) = −h

2

L∗
4/h2,hL4/h2,h√
λ− 4/h2

, λ ∈ ( 4
h2 ,+∞),

where L4/h2,h is defined by (5.4). The proof is similar to that of Proposition 8.3 and then will be
shortened. Only the main quantities will be specified.

Proposition 8.4. Suppose ν0 > 3 in Assumption 3.4. Then, as λ ց 4
h2 ,

O(1) ≤ N+(x, Th(λ)) ≤ O(1),

and

N−((1 + ε)x,Lh
4/h2(λ)) +O(1) ≤ N−(x, Th(λ)) ≤ N−((1− ε)x,Lh

4/h2(λ)) +O(1),

for any ε ∈ (0, 1) and x > 0.

Proof. Let λ > 4
h2 . Consider the operator J given by (5.3). Using (7.44) and (7.45), one can write

(8.14) Th(λ) = V
1/2
h (J〈(·)h−1〉−ν0/2J∗Rh(λ)J〈(·)h−1〉−ν0/2J∗ ⊗KK∗)V 1/2

h ,

with J∗Rh(λ)J admitting the convolution kernel

(8.15) rJh (λ, n−m) = −eiπ(n+m)+2i|n−m|Arcsin(h
2

√
λ)

√
λ
√
λ− 4/h2

.
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The kernel rJh (λ, n−m) can be decomposed as

rJh (λ, n−m) = − h

2
√
λ− 4/h2

−
( 1√

λ
√
λ− 4/h2

− h

2
√
λ− 4/h2

)
− eiπ(n+m)+2i|n−m|Arcsin(h

2

√
λ) − 1√

λ
√
λ− 4/h2

.

(8.16)

This together with (8.14) and (8.15) gives

(8.17) Th(λ)− Lh
4/h2(λ) = V

1/2
h (JX

(λ)
h,ν0

J∗ ⊗KK∗)V 1/2
h + Ih

4/h2(λ),

where X
(λ)
h,ν0

: ℓ2(Zh) → ℓ2(Zh) is the summation kernel operator defined by

(X
(λ)
h,ν0

ϕ)(hn) := −
∑

m∈Z

〈n〉−ν0/2
eiπ(n+m)+2i|n−m|Arcsin(h

2

√
λ) − 1√

λ
√
λ− 4/h2

〈m〉−ν0/2ϕ(hm),

ϕ ∈ ℓ2(Zh) and

Ih
4/h2(λ) := −

( 1√
λ
√
λ− 4/h2

− h

2
√
λ− 4/h2

)
L∗
4/h2,hL4/h2,h,

the operator L4/h2,h being given by (5.4). Since 1√
λ
√

λ−4/h2
− h

2
√

λ−4/h2
= Oh(

√
λ− 4/h2) as

λ ց 4
h2 , and the operator L4/h2,h is independent of λ, it follows that

(8.18) lim
λց 4

h2

‖Ih
4/h2(λ)‖S2 = lim

λց 4
h2

Oh(
√
λ− 4/h2)‖L∗

4/h2,hL4/h2,h‖S2 = 0.

Consider the operator

(8.19) T h
4/h2 = V

1/2
h (JS

(0)
h,ν0

J∗ ⊗KK∗)V 1/2
h ,

where S
(0)
h,ν0

is the operator defined by (8.9). Using Lebesgue’s dominated convergence theorem,
one shows that

(8.20) lim
λց 4

h2

‖X(λ)
h,ν0

− S
(0)
h,ν0

‖2
S2

= 0,

So, it follows from (8.17), (8.18) and (8.20) that

lim
λց 4

h2

‖Th(λ)− Lh
4/h2(λ)− T h

4/h2‖S2 = 0.

Now, the claim follows by arguing as in part b) of the proof of Proposition 8.3, noting that Lh
4/h2(λ)

is a negative operator. This ends the proof. �

For x > 0 and λ < 0, one has

N+(x,Lh
0 (λ)) = N+

(
x,

hL∗
0,hL0,h

2
√
−λ

)
= N+

(
x,

hL0,hL
∗
0,h

2
√
−λ

)

= N+

(
x,

h(pν0 ⊗K∗)Vh(p
∗
ν0 ⊗K)

2
√
−λ

)
= N+(x, ω

h
0 (λ)),

(8.21)

where the operator ωh
0 (λ) is given by (5.8). Similarly, one shows that for any x > 0 and λ > 4

h2 ,

(8.22) N−(x,Lh
4/h2(λ)) = N−

(
x,−

hL∗
4/h2L4/h2

2
√
λ− 4/h2

)
= N−(x, ω

h
4/h2(λ)),

where the operator ωh
4/h2(λ) is given by (5.8). Now, Theorem 5.2 follows directly from Corollary

8.2, Propositions 8.3 and 8.4, identities (8.21) and (8.22).
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8.2. Proof of Theorem 5.4. This section concerns the case λ ∈ (0, 4
h2 ). We assume that Vh

satisfies Assumption 3.4. In the next result, one shows the boundedness of N±(x,ReTh(λ)) as
λ → λ0 ∈ {0, 4

h2 }.
Proposition 8.5. Suppose ν0 > 3 in Assumption 3.4. Then, for any x > 0,

N±(x,Re Th(λ)) = O(1),

as λ ց 0 and λ ր 4
h2 .

Proof. a) First, let us focus on the case λ ց 0. Thanks to (7.42), the operator ReRh(λ) admits
the convolution kernel

Re rh(λ, n−m) = − sin(2|n−m|Arcsin(h2
√
λ))√

λ
√
4/h2 − λ

.

Putting this together with Remark 7.10, one obtains

(8.23) ReTh(λ) = V
1/2
h (E

(λ)
h,ν0

⊗KK∗)V 1/2
h ,

where E
(λ)
h,ν0

: ℓ2(Zh) → ℓ2(Zh) is the convolution kernel operator given by

(E
(λ)
h,ν0

φ)(hn) :=
∑

m∈Z

〈n〉−ν0/2Re rh(λ, n−m)〈m〉−ν0/2φ(hm), φ ∈ ℓ2(Zh).

By using Lebesgue’s dominated convergence theorem, one gets

(8.24) lim
λց0

‖E(λ)
h,ν0

− S
(0)
h,ν0

‖2
S2

= 0,

where S
(0)
h,ν0

is the operator given by (8.9). It follows from (8.23) and (8.24) that

lim
λց0

‖ReTh(λ)− T h
0 ‖S2 = 0,

where T h
0 is the operator given by (8.8). Now, the claim follows by arguing as in part b) of the

proof of Proposition 8.3.
b) The case λ ր 4

h2 can be proved as follows. Thanks to Remark 7.10, one can write

(8.25) Th(λ) = V
1/2
h (J〈(·)h−1〉−ν0/2RJ

h(λ)〈(·)h−1〉−ν0/2J∗ ⊗KK∗)V 1/2
h ,

with RJ
h := J∗Rh(λ)J admitting the convolution kernel

(8.26) rJh (λ, n−m) =
ieiπ(n+m)+2i|n−m|Arcsin(h

2

√
λ)

√
λ
√
4/h2 − λ

.

It follows that

(8.27) ReTh(λ) = V
1/2
h (J〈(·)h−1〉−ν0/2ReRJ

h(λ)〈(·)h−1〉−ν0/2J∗ ⊗KK∗)V 1/2
h ,

with ReRJ
h(λ) := J∗Rh(λ)J admitting the convolution kernel

(8.28) Re rJh (λ, n−m) = − sin(π(n+m) + 2|n−m|Arcsin(h2
√
λ))√

λ
√
4/h2 − λ

.

Now, the rest of the proof follows as in a) above replacing Re rh(λ, n−m) by Re rJh (λ, n−m) and
T h
0 by T h

4/h2 given by (8.19). This ends the proof. �

To prove the next result, one will exploit Proposition 7.8 and Corollary 7.9. Nevertheless, it is
important to note that it can be also obtained by using the fact that for λ ∈ (0, 4

h2 ),

ImTh(λ) = V
1/2
h (〈(·)h−1〉−ν0/2ImRh(λ)〈(·)h−1〉−ν0/2 ⊗KK∗)V 1/2

h ,

where ImRh(λ) admits the convolution kernel

Im rh(λ, n−m) =
cos(2(n−m)Arcsin(h2

√
λ))√

λ
√
4/h2 − λ

.
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Proposition 8.6. Let Vh satisfy Assumption 3.4. Then, for λ ∈ (0, 4
h2 ), 0 ≤ ImTh(λ) ∈ S1.

Moreover, one has

(8.29) ImTh(λ) =
1√

λ
√
4/h2 − λ

bh(λ)
∗bh(λ),

where bh(λ) : ℓ
2(Zh,G) → C2 ⊗ G is the operator defined by

(8.30) bh(λ) := (Yh(λ) ⊗K∗)V
1/2
h ,

with Yh(λ) : ℓ
2(Zh) → C2 defined by (5.18).

Proof. Thanks to Proposition 7.8 and Corollary 7.9,

(8.31) ImTh(λ) = πUh(λ) ∈ S1, λ ∈ (0, 4/h2).

where w.r.t. the notations of Proposition 7.5,

(8.32) Uh(λ) = Uh(λ)
∗Uh(λ), Uh(λ) =

uh(
2
hgh(λ))

h1/2λ1/4( 4
h2 − λ)1/4

.

It follows that ImTh(λ) ≥ 0. From (7.17), one gets

ImTh(λ) =
π

h
√
λ
√
4/h2 − λ

uh

( 2
h
gh(λ)

)∗
uh

(2
h
gh(λ)

)

=
π

h
√
λ
√
4/h2 − λ

V
1/2
h

[
Ah

( 2
h
gh(λ)

)∗
Ah

( 2
h
gh(λ)

)
⊗KK∗

]
V

1/2
h .

(8.33)

Thanks to (7.33), one has for φ ∈ ℓ2(Zh)

π

h
Ah

( 2
h
gh(λ)

)∗
Ah

(2
h
gh(λ)

)
φ(hn)

= cos[2(hn)h−1gh(λ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

cos[2(hm)h−1gh(λ)]〈(hm)h−1〉−ν0/2φ(hm)

+ sin[2(hn)h−1gh(λ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

sin[2(hm)h−1gh(λ)]〈(hm)h−1〉−ν0/2φ(hm)

= Yh(λ)
∗Yh(λ)φ(hn),

(8.34)

where the operator Yh(λ)
∗ is given by (5.19). Putting together (8.33) and (8.34), one gets

(8.35) ImTh(λ) =
1√

λ
√
4/h2 − λ

V
1/2
h

[
Yh(λ)

∗Yh(λ)⊗KK∗]
V

1/2
h = (8.29).

This ends the proof. �

The next result uses in particular the identities (see e.g. [13, Section 5.4])

(8.36)

∫

R

N±(s, tT )
dt

π(1 + t2)
=

1

π
Tr arctan(s−1T ), s > 0,

where 0 ≤ T = T ∗ ∈ S1.

Proposition 8.7. Let ν0 > 3 in Assumption 3.4. As λ ց 0 and λ ր 4
h2 , the following bounds

hold:

1

π
Tr arctan((x(1 + ε))−1ImTh(λ)) +O(1)

≤
∫

R

N±(x,Re Th(λ) + tImTh(λ))
dt

π(1 + t2)

≤ 1

π
Tr arctan((x(1 − ε))−1ImTh(λ)) +O(1),

for any ε ∈ (0, 1) and x > 0.
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Proof. It follows from the Weyl inequalities (8.1) that for any ε ∈ (0, 1) and x > 0,

N±((1 + ε)x, tImTh(λ)) − N∓(εx,ReTh(λ))

≤ N±(x,Re Th(λ) + tImTh(λ))

≤ N±((1− ε)x, tIm Th(λ)) + N±(εx,ReTh(λ)).

This together with Proposition 8.5, (8.36) and Proposition 8.6 gives the claim, and ends the
proof. �

Applying Proposition 8.7 with x = 1, one obtains immediately the following result:

Corollary 8.8. Let ν0 > 3 in Assumption 3.4. Then, for any ε ∈ (0, 1),

1

π
Tr arctan((1 + ε)−1ImTh(λ)) +O(1)

≤ ∓ξ(λ;H∓
h , Hh)

≤ 1

π
Tr arctan((1− ε)−1ImTh(λ)) +O(1),

as λ ց 0 and λ ր 4
h2 .

Now, for s > 0 and λ ∈ (0, 4
h2 ), one has

(8.37) N±(s, tIm Th(λ)) = N±
(
s,

tbh(λ)
∗bh(λ)√

λ
√
4/h2 − λ

)
= N±

(
s,

tbh(λ)bh(λ)
∗

√
λ
√
4/h2 − λ

)
= N±(s, tΩh(λ)).

This together with (8.36) and Corollary 8.8 gives Theorem 5.4.

9. Proof of the asymptotics (5.22) and (5.25)

The aim of this section is to prove identities (5.22) and (5.25). The operators Ωh(λ) and Ω•,h(λ),
• ∈ {0, 4

h2 } are respectively given by (5.20) and Remark 5.5.

Proposition 9.1. Let Vh satisfy Assumption 3.4 with ν0 > 3. Then, for any x > 0 one has

(9.1) Tr
(
arctan(x−1Ωh(λ)) − arctan(x−1Ω0,h(λ))

)
= Oh(1), λ ց 0,

and

(9.2) Tr
(
arctan(x−1Ωh(λ)) − arctan(x−1Ω4/h2,h(λ))

)
= Oh(1), λ ր 4

h2
.

Proof. We only give the proof of (9.1) since the one of (9.2) follows in a similar way.
Using (8.36) and (8.37) one gets for x > 0 and λ ∈ (0, 4

h2 ),

(9.3) Tr
(
arctan(x−1Ωh(λ))

)
= Tr

(
arctan(x−1Ω̃h(λ))

)
,

where, according to (8.35), one has

(9.4) Ω̃h(λ) = ImTh(λ) =
1√

λ
√
4/h2 − λ

V
1/2
h

[
Yh(λ)

∗Yh(λ)⊗KK∗]
V

1/2
h ,

with the operator Yh(λ) : ℓ
2(Zh) → C2 defined by (5.18). Similarly, one shows that

(9.5) Tr
(
arctan(x−1Ω0,h(λ))

)
= Tr

(
arctan(x−1Ω̃0,h(λ))

)
,

where

(9.6) Ω̃0,h(λ) =
h

2
√
λ

V
1/2
h

[
Y ∗
0,ν0Y0,ν0 ⊗KK∗]

V
1/2
h ,

with the operator Y0,ν0 : ℓ2(Zh) → C2 defined by (5.23). It follows from the Lifshits-Krein trace
formula (1.2) and identities (9.3)-(9.6) that

∣∣Tr
(
arctan(x−1Ωh(λ)) − arctan(x−1Ω0,h(λ))

)∣∣

≤
∫

R

|ξ(s;x−1Ω̃h(λ), x
−1Ω̃0,h(λ))|ds ≤ 1

x
‖Ω̃h(λ)− Ω̃0,h(λ)‖S1 ,

(9.7)
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(see [32, Theorem 8.2.1]). Thanks to (9.4) and (9.6), one has

‖Ω̃h(λ)− Ω̃0,h(λ)‖S1 ≤ ‖Vh‖‖KK∗‖S1

∥∥∥
1√

λ
√
4/h2 − λ

Yh(λ)
∗Yh(λ)−

h

2
√
λ
Y ∗
0,ν0Y0,ν0

∥∥∥
S1

.(9.8)

Then, to conclude, it suffices to show that

(9.9)
∥∥∥

1√
λ
√
4/h2 − λ

Yh(λ)
∗Yh(λ)−

h

2
√
λ
Y ∗
0,ν0Y0,ν0

∥∥∥
S1

= O(
√
λ), λ ց 0,

as follows. Firstly, one can observe that for λ ∈ (0, 4
h2 ),

∥∥∥
1√

λ
√
4/h2 − λ

Yh(λ)
∗Yh(λ) −

h

2
√
λ
Y ∗
0,ν0Y0,ν0

∥∥∥
S1

≤
∣∣∣

1√
λ
√
4/h2 − λ

− h

2
√
λ

∣∣∣‖Yh(λ)
∗Yh(λ)‖S1 +

h

2
√
λ
‖Yh(λ)

∗Yh(λ) − Y ∗
0,ν0Y0,ν0‖S1 .

(9.10)

a) Let us treat the first term of the r.h.s. of (9.10). It can be checked that 1√
λ
√

4/h2−λ
− h

2
√
λ
=

Oh(
√
λ) as λ ց 0. Furthermore, it follows from (8.34) that

‖Yh(λ)
∗Yh(λ)‖S1 ≤

∑

n∈Z

cos2[2ngh(λ)]〈n〉−ν0 +
∑

n∈Z

sin2[2ngh(λ)]〈n〉−ν0 =
∑

n∈Z

〈n〉−ν0 .

Consequently, one gets

(9.11)
∣∣∣

1√
λ
√
4/h2 − λ

− h

2
√
λ

∣∣∣‖Yh(λ)
∗Yh(λ)‖S1 = Oh(

√
λ), λ ց 0.

b) Now, let us treat the second term of the r.h.s. of (9.10). A direct computation shows that
for any φ ∈ ℓ2(Zh) and n ∈ Z,

Y ∗
0,ν0Y0,ν0φ(hn) = 〈(hn)h−1〉−ν0/2

∑

m∈Z

〈(hm)h−1〉−ν0/2φ(hm).

This together with (8.34) gives

(Yh(λ)
∗Yh(λ) − Y ∗

0,ν0Y0,ν0)φ(hn)

= −2 sin2[(hn)h−1gh(λ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

〈(hm)h−1〉−ν0/2φ(hm)

− 〈(hn)h−1〉−ν0/2
∑

m∈Z

2 sin2[(hm)h−1gh(λ)]〈(hm)h−1〉−ν0/2φ(hm)

+ 2 sin2[(hn)h−1gh(λ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

2 sin2[(hm)h−1gh(λ)]〈(hm)h−1〉−ν0/2φ(hm)

+ sin[2(hn)h−1gh(λ)]〈(hn)h−1〉−ν0/2
∑

m∈Z

sin[2(hm)h−1gh(λ)]〈(hm)h−1〉−ν0/2φ(hm).

It follows that

‖Yh(λ)
∗Yh(λ) − Y ∗

0,ν0Y0,ν0‖S1

≤ 4
(∑

n∈Z

sin4[ngh(λ)]〈n〉−ν0
)1/2(∑

n∈Z

〈n〉−ν0
)1/2

+ 4
∑

n∈Z

sin4[ngh(λ)]〈n〉−ν0 +
∑

n∈Z

sin2[2ngh(λ)]〈n〉−ν0

≤
(
4|gh(λ)| + 8g2h(λ)

)∑

n∈Z

n2〈n〉−ν0 ∼
λց0

2h
√
λ
∑

n∈Z

n2〈n〉−ν0 .

Therefore,

(9.12)
h

2
√
λ
‖Yh(λ)

∗Yh(λ) − Y ∗
0,ν0Y0,ν0‖S1 = Oh(1), λ ց 0.

One obtains immediately the claim by putting together (9.10), (9.11) and (9.12). �
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Remark 9.2. If ν0 > 5, then we see from the proof that more precise estimates in Proposition
9.1 may be obtained so that

(9.13) Tr
(
arctan(x−1Ωh(λ)) − arctan(x−1Ω0,h(λ))

)
= Oh(

√
λ) = oh(1), λ ց 0,

and

(9.14) Tr
(
arctan(x−1Ωh(λ)) − arctan(x−1Ω4/h2,h(λ))

)
= Oh(

√
4/h2 − λ) = oh(1), λ ր 4

h2
.
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