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1. INTRODUCTION

1.1. General setting. This work aims to improve our understanding of the mechanisms involved
in the creation of eigenvalues clusters under (relatively) compact perturbations in the vicinity of
some special points of the spectrum, called here thresholds. So far, such mechanisms have mainly
been studied when a threshold coincides or is induced by an eigenvalue of infinite multiplicity.
This has been performed in the self-adjoint perturbation setting (see [25, 31, 13, 7, 8, 28, 21]
and references therein), as well as in the non-self-adjoint perturbation case (see [27, 29]). Such
phenomena are also related to long range perturbations at the threshold of the absolutely con-
tinuous component of the spectrum, as is the case of the hydrogen atom model [30]. Technically,
the formation of cluster of eigenvalues is somehow encoded in the behavior of the Spectral Shift
Function (SSF) [20, 18], a useful notion for spectral analysis and scattering theory of quantum
system, when it is well defined. However, in contrast to the scattering matrix, the spectral shift
function is meaningful both on the continuous and discrete spectra.

Our purpose here is to analyze the behavior of the SSF when the infinitely degenerated eigen-
value is replaced by a threshold of a highly degenerated absolutely continuous component. The
model introduced hereafter elaborates on previous results based on the discrete Laplace operator
on the 1D lattice. Fibered versions of the 1D discrete Laplacian are considered in [4, 5] and we
proved the finiteness of the discrete spectrum under (non)-self-adjoint exponential decay matrix-
valued perturbations. We have also exhibited some LAP properties that complete some previous
results obtained by [11, 12| for Jacobi matrices. Techniques developed and used in [4, 5] are based
on resonances theory and complex scaling arguments for non necessarily self-adjoint operators.
However, this approach is not adapted to study (matrix-valued) perturbations that decay poly-
nomially at infinity. For such perturbations, the spectral analysis can be done by means of the
SSF. Note also that there are few results showing spectral cluster phenomena near the essential
spectrum for discrete models. In particular, the present paper is an attempt to fill this gap among
the many results obtained so far.

Adapted to our context, let us recall briefly the abstract setting in which the SSF for a pair
(H,Ho) of self-adjoint operators occurs. We assume that the operators H and Hy act in the same
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Hilbert space and moreover that
(1.1) Ho —H € &y,

where &; denotes the trace class operators. Then, there exists (see [18] or e.g. [32, Theorem
8.3.3]) a unique function &(-;H, Ho) € L' (R) such that the Lifshits-Krein trace formula

(1.2) Te(f(H) — f(Hy)) = /R O H, Ho) f/(A)dA,

holds for every f € C§°(R). The function &(+;H, Ho) € L}(R) is called the Spectral Shift Function
(SSF) for the pair (H,Ho). If we assume that o(Ho) = dac(Ho) such that oess(H) = o(Ho),
then the SSF can be related to the eigenvalue counting function of the operator H outside the
essential spectrum. In scattering theory, it is related to the scattering matrix S(\; H, Ho) for the
pair (#H,Ho) through the Birman-Krein [3] formula

(1.3) det S(\;H, Ho) = e2mENHHo) = g0 X € .0 (Ho).

1.2. The model. We consider the lattice Zj, := {hn : n € Z} with mesh size h > 0 and let G be
a separable Hilbert space and ¢2(Z,, G) be the Hilbert space endowed with the scalar product

(p.0) = _(p(hn), 6(hn))g.
nez
Namely,

C(Zn,G) = {p € G% < lol> =D lp(hn)||g < o}

nez
For ¢ € (?(Zp,,G), we define the finite-difference bounded operator

(01) () = 15 (p(hn + 1)) — o(hm),

whose adjoint 0} is given by

(O50)(hn) = — (o(h(n — 1)) — p(hn)).

h2
We consider the bounded self-adjoint Laplacian type operator
(14) Hh:fahfa;'; on EQ(Zh,g>.

The spectral analysis of the operator Hy, is described in details in Section 2 where it is shown that
its spectrum is purely absolutely continuous and satisfies

(1-5) U(Hh) = UaC(Hh) = Uess(Hh) = [Oa %]
Here, the points {0, %} are the thresholds of this spectrum.

Let B(¢(*(Zn,G)) be the set of bounded linear operators in ¢?(Zj, G). We consider the perturbed
operators

(1.6) Hif = Hy, + Vi,
where Vj, € B((*(Z,G)) is a positive matrix-valued electric potential such that
(17) Vi = {vh(nam)}(n,m)GZza ’Uh(?’L, m) € B(g)a

where B(G) denotes the set of bounded linear operators in G. This perturbation V}, can be
interpreted as a summation kernel operator whose kernel is given by the operator-valued function
(n,m) € Z* — vp(n,m) € B(G). Namely, for any o € ¢*(Z,G), one has

(1.8) (Vi) (hn) = Z vp(n,m)p(hm), n€Z.
meEZ

We also assumes that ||vy(n, m)||g) decays more rapidly than ||(n,m)||™* as [(n,m)| — +oo
(see Assumption 3.1, (3) of Remark 3.5, (6.7) for more details) and we show that (1.1) holds for
the pair (H,Ho) = (H, ff, H},). Therefore, there exists a unique function

(1.9) E( HE, Hy) € LY(R),
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such that the Lifshits-Krein trace formula (1.2) holds. The function E(-;H,f,Hh) is the SSF
for the pair (Hhi,Hh). It can be related to the number of eigenvalues of the operators Hhi in
(—00,0) U (75, 400) (see formula (4.8)). By the Birman-Krein formula (1.3), it is also related to
the scattering matrix S(\; Hhi, Hyp,) for the pair (Hhi, Hy), for a.e. X €0, %]

1.3. Description of the main results. The main results of this article concern the asymptotic
behavior of £(A\; H ,jf, Hp) as A — z € {0, %} for matrix-valued perturbations V}, of definite sign.

We will first identify &(-; H ,jf, Hj,) with a representative of its equivalence class described ex-
plicitly in Section 4, assuming that the electric matrix-valued potential V}, has a definite sign.
Then, we prove the boundedness of §(~;Hhi,Hh) on compact subsets of R \ {0, %} (see The-
orem 5.1). In Theorem 5.2, we establish the asymptotic behavior of §(A;Hhi,Hh) as A — 20,
A€ (—00,0) U (%, +00), and in Theorems 5.4, 5.6, we determine the asymptotic behavior of
(N H,jf, Hyp) as A — 20, A € (0, %) Several consequences, described below, can be deduced from
Theorems 5.1, 5.2, 5.4, and 5.6.

In the finite-dimensional case where dim(G) < oo, Theorem 5.7 implies that the SSF £(+; Hhi, Hy)
is bounded in R~ {0, %} Notice that Theorem 5.7 is stronger than Theorem 5.1. In particular, if
G = C, then the operator H, = —Ay, is the 1D discrete Laplacian on the lattice hZ and Corollary
5.8 shows the finiteness of the discrete spectrum of —Ap +V}, for polynomial decay perturbations
at infinity. This extends results of [4, 5] where the finiteness of the discrete spectrum of —A; +V
has been proved for exponential decay perturbations.

On the other hand, if dim(G) = 400, then we show that the SSF can have singularities at
the spectral thresholds {0, %} under generic assumptions on Vj, (see Theorems 5.11, 5.15 and
Corollaries 5.12, 5.14, 5.16). More precisely, if the perturbation is positive, one has

. gt —
{g(A’H’I VHa)=O() as A0 e ENH Hy) — 400 as A — 2o

ENHYF L Hp) = +00 as A N0, e

If the perturbation is negative, we have

ENHy  Hy) =0(1) as A\ s,
&N H,  Hp) = —o00 as A %,
Actually, the singularities of the SSF at the spectral thresholds are described in terms of some
explicit effective "Berezin-Toeplitz" type operators (see (5.6) for a precise definition). Hence and
under suitable condition, we give the main terms of the asymptotics expansions of £(\; H ,jf, Hy)
as A — zg (see Corollary 5.12 and Theorem 5.15 for the general case, and Corollaries 5.14, 5.16

for power-like and exponential decay perturbations). In particular, if the perturbation is positive
then the limits

while £\ H, ,Hp) = —00 as A —0.

o SO H), Hy) i $Gz = A H Ha)
ANO E(=X; Hy , Hy) MO E(5 + A HF L Hy)'
exist and are equal to positive constants depending on the decay rate of V}, at infinity (see Theorem

5.18 and Corollary 5.19). This can be interpreted as generalized Levinson formulae (see the original
work [19] or the survey article [26]).

and

1.4. Comments on the literature. Our results extend to a class of discrete Laplacians the
results in [25, 31, 13] established for continuous models. More precisely, in [25, 31] the asymptotic
behavior of the SSF has been considered near the low ground energy and near +m for 2D Pauli
and 3D Dirac operators with non-constant magnetic fields. In [13] the asymptotic behavior of
the SSF has been considered near the Landau levels for 3D Schrodinger operators with constant
magnetic fields. Similar results can be also found in [7, 8]. However, in the discrete case, there are
few results concerning the asymptotics expansions of the SSF at spectral thresholds. We quote to
the recent paper [21] where similar asymptotics to ours are obtained at thresholds for a discrete
Dirac-type operator on Z2. It is important to highlight that in the above papers, the singularities
of the SSF near the spectral thresholds are produced by infinitely degenerated eigenvalues. This is
rather different compared to our situation where the singularities of the SSF near the thresholds
{0, %} are produced by a highly degenerated absolutely continuous component. In both situations,
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the singularities of the SSF are probably due to an accumulation of resonances near the spectral
thresholds. However, this aspect of the problem will not be treated here and will be consider
in a further work. Some trace formulas have been also obtained for periodic graphs in [14, 17].
Asymptotics expansions of resolvents at spectral thresholds of discrete Laplacians can be found in
[15, 16], see also references therein.

The article is organized as follows. In Section 2, we perform in details the spectral analysis of
the free operator Hj, and introduce some standard tools needed so far. In Section 3, we state and
discuss our main assumptions concerning the perturbed operators H ,f In Section 4, we recall
some abstract results due to A. Pushnitski on the representation of the spectral shift function
for a pair of self-adjoint operators. Section 5 is devoted to the formulation of our main results,
some corollaries of them, as well as examples of explicit eigenvalues asymptotics. In Section 6,
we compute a suitable factorisation of the perturbation V}, satisfying a main assumption given in
Section 3. Section 7 contains auxiliary material such as extensions of the convolution kernel of
— Ay, and estimates of appropriate sandwiched resolvents. Finally, in Section 8 we prove Theorems
5.2 and 5.4, while Section 9 establishes the one of the asymptotics identities (5.22) and (5.25).

2. THE FREE HAMILTONIAN

Consider an orthonormal basis (€;);ca of G where #A = dim(G) if dim(G) < +oo, and A = Z
if dim(G) = +o0. Let (6"),¢cz be the canonical orthonormal basis of

62(Zh) = £2(Zh, (C),

where 6" (kh) = 0nk, k € Z. Then, it is useful to identify the spaces (?(Z,G) and (*(Zy) ® G:
(*(Zn,G) = 0*(Z1,) ®G and it follows that (61 ®e;)(, j)ezxa is an orthonormal basis of £2(Z,) ®G.
For each j € A, one defines the subspace g]h = span{z ® e; : x € (*(Zy)}, together with its
corresponding orthogonal projection Pj := I @ |e;)(e; |, so that

(21, G) = 2(Z) ® G = P 3L
JEA
Hence, one observes that for every j € A, gj’? is Hp-invariant so that Hy rewrites
Hy, = @PthPj = EB —Ap®@ e e =A@,
JEA jen
where —A, is the 1D Schrédinger operator acting in ¢2(Zj,) by
1
(=Ang)(n) = 55 (26(hn) = $(h(n + 1)) = ¢(h(n —1))).
Let 7 > 0 such that hr = 27 and
T, = R/7Z ~ [, Z].
In view of the bijection between ¢?(Z;,) and L*(T,) := L?(T,, C), one defines the discrete Fourier

transform .7, : £2(Zy,) — L?(T,) by

(2.1) (Fro)(0) = Z(b(hn)e*ihne’ d(hn) = l/T (ngh(b)(@)eihnedo.

ne”Z

~—

The operator .%), is unitary. By using %, @ I acting in ¢?(Zj,) ® G, one shows that the operator
Hy, is unitarily equivalent to the operator —A, ® I acting in L%(T,,G) = L*(T,) ® G, where —A},
is the multiplication operator in L2(T,) by the function f}, defined by

2—2 ho 4 ho
_ 2-2cos(hb) _ 4 . o (_

(22) fh(e) : h2 - h2 9

Therefore

), 0cT,.

[0, 7] = o(=An) = o(Hn),

and the operators —A}, and Hy, are purely absolutely continuous so that (1.5) holds.
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Remark 2.1. If G = C, then the operator Hy, corresponds to —Ay, the discrete Laplacian on the
lattice hZ.

3. THE PERTURBED HAMILTONIAN

Recall that the perturbation Vj is a bounded matrix-valued Vi, = {vn(n,m)} @ m)ezz with
coefficients vy, (n,m) € B(G). In the basis (e;)jea of G, for each (n,m) € Z?, the operator vy, (n, m)
has the matrix representation

(3.1) va(n,m) = {vj(n,m)}inen,  vjp(n,m) = (ej,vn(n,m)ex)g.
Hence, one has
(3.2) =3 wh(n,m)|ej) (e |-

JEA KEA

The operator vy, (n, m) viewed as a matrix {U;?k (n,m)}(j,kyea> belongs to My4(C) if d = dim(G) <
oo. In particular, if d =1 (i.e. G = C), {vn(n,m)}(n,m)ez> is the matrix representation of V, in
the canonical basis of ¢?(Zy). In ¢?(Zy,) ® G, V3 has a canonical representation given by

V=Y Y Il @uvan,m) = > Y [0k @ vl (nm)]e;) ek |-
neEZmeZ (n,m)€Z? (j,k)EN?

In the sequel, for y = (y1,...,yq4) € R?, one sets (y) := (1+ |y|?)'/2. Bearing in mind (1.7) and
(3.1), we introduce the following polynomial decay assumption on V.

Assumption 3.1. Vi = {vn(n,m)}(n,m)ez2 s of definite sign (Vi, > 0) such that
(3.3) |v;-lk(n,m)| < Consty - G1(j, k)(n) ™" (m)~"2, (n,m) € Z2,
for some vi,v5 > 1, where 0 < Gy defined in A? satisfies
{G1 €L®(A?) if dim(G) < oo,
G1(j, k) < Const.(5) (k)72 if dim(G) = +oo,
(4,k) € A2, for some constants 31, Bz > 1.

Let us make some comments about Assumption 3.1.
e If dim(G) < oo, then typical examples of potentials satisfying (3.3) are V}, such that
(3.4) |v?k(n,m)| < Const.((hn, hm))™",
(n,m) € Z2, (j,k) € A%, v > 2. Indeed (3.4) implies that for every (n,m) € Z2,
()= ()~
(min(1, h?))¥
e If dim(G) = +oo, then (3.3) holds for instance if for (j, k) € Z2,

|U;7k (n,m)| < Const.(hn)~"/2(hm)~*/? < Const.

(3.5) [0 (n,m)| < Consty, - ((j, k) =" ((n,m))~",

(n,m) € Z2, B > 2, v > 2. For example, (3.5) is satisfied if 3 > 2, v > 2 and the operators
vp(n, m) given by
vp(n,m) = ((hn, hm)) ZZ 3, k)7 ej)(ex |.
JEAN KEA

In the sequel, one sets
(3.6) vy :=min(vy, 1) >1 and [y := min(fy, f2) > 1.

Consider the function
(VR™1)70/2 hn € Zy = (n) ="/ € RY,
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and define in ¢?(Zj,) the multiplication operator by this function denoted again by ((-)h~1)~*0/2,
Namely, for ¢ € (2(Zy,), (((-)h=1)7"0/2¢)(hn) = (n)="°/2¢(hn) or

(3.7) (7172 =3 ()= 16m) (0]
ne”Z
Similarly, one defines pgo the operator acting in G by
(3.8) pg, =D ()P es) ey
JEA
Remark 3.2.
1) The matriz representations of {(-)h~1)="/2 and p%  are diagonal. Moreover, ((-)h=1)~0/2
Bo

and pgo belong to &y the Hilbert-Schmidt class, since ), ., (n)~"° < oo and Z]EA(jfﬁO <
00. So, they belong to S the class of compact linear operators.
(2) Of course, if dim(G) < oo, then pgo € 6.

In Lemma 6.1, one proves that if V}, satisfies Assumption 3.1, then there exists ¥, € B(¢*(Zp,G)),
¥, > 0, such that

(3.9) Vi = (R~ 72 @ pg )7 ({(OR™H) 2 @ pf ).
Moreover, Vi, = 4 1, 40,1, is trace class with .#0 , = ”//h1/2(<(-)h_1)_”°/2 ® pgo) and
Villes < o3,
Remark 3.3. Under Assumption 3.1, the factorisation (3.9) of V}, is not unique and other choices

can be more convenient.

(1) For instance, if dim(G) < oo, one can deal in our analysis with the factorisation (6.5)
introduced in the proof of Lemma 6.1.

(2) If dim(G) = +oo, suppose moreover that there exists N > 0 (fixred) such that for all
(n,m) € 72, U;?k(n,m) =0 for each j > N or k> N. That is, vy(n,m) is of the form

(3.10) on(n,m) = < Mf@(g’m) g >

Then, by arguing as in the the proof of Lemma 6.1 part b), one can replace the operator
pgo in (3.9) by the finite rank operator

(3.11) B, =D ()P leg) e |-

j=0
So, bearing in mind (3.9) and Remark 3.3, we will consider in the sequel the perturbed op-
erators H }jf with self-adjoint perturbations V}, satisfying the next assumption which generalizes
Assumption 3.1.
Assumption 3.4. V;, = ((()h~1)""/2 @ K% (()h~1) /2 @ K), vy > 1, where 0 < ¥, €
B((*(Zy,G)) and K acting in G satisfies K € &5(G).

In order to fix ideas, let us point out some important remarks on Assumption 3.4.
Remark 3.5.
(1) If dim(G) = 400, then Assumption 3.1 implies Assumption 3.4 with K = K* = pgo,
according to (3.9). Since pgo is of infinite rank, then Assumption 3.4 includes the class of

finite rank operators K in G.
(2) Under Assumption 3.4, one has

(3.12) Vi = M, A=V PO TR 9 K) € &,

(3) Our main results will be formulated under a more restrictive assumption, namely under
the condition vy > 3.
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Potentials V}, satisfying Assumption 3.4 belong to the trace class &, with
(3.13) Ville, < lallE, < I7AII(GORH T2 0 K|E,.
Then, (1.1) holds with (H,Ho) = (H;-, Hp). By (1.2), we know that there exists a unique function
& H,:lt, Hy) € LY(R) such that the Lifshits-Krein trace formula
(3.14) T (HE) = f(H) = [ €O0HE SN, Y £ € G ()
called the SSF for the pair (H;, Hy).

4. SPECTRAL SHIFT FUNCTION

In this section, one recalls some abstract results due to A. Pushnitski on the representation of
the spectral shift function for a pair of self-adjoint operators.
Let us define the sandwiched resolvent

(4.1) Tn(2) := My (Hy — 2)" ty, z€C~ o(Hy),
where .}, is given by (3.12). Denote by
(4.2) Ap(z) == ReTy(z) and Bp(z) :=ImTy(z),

respectively the real and the imaginary parts of the operator T} (z). Then, under (3.12), it is well
known that for a.e. A € R, the limit

(4.3) Ty (A +40) := lim Tj, (A + ie),
eN\0
exists in the Gy-norm (and even in the G,-norm for any p > 1). Moreover 0 < By (A +i0) € &;.
See [32, 2] and [22] for the case p > 1. Let T =T* € 6,,(G). Define
(4.4) Ne(r,T) == Rank 1, ) (£T), >0,

the counting functions of the positive eigenvalues of the operators +7". Therefore, by [24, Theorem
1.1], one has the following result:

Theorem 4.1. Let Assumption 3.4 holds. Then, for a.e. X € R, the SSF £(+; H}jf, Hy,) admits the
representation via the converging integral

dt
(1 +1¢2)

For further use, let us recall the following estimates, useful in the study of the convergence of
the r.h.s. of (4.5).

Lemma 4.2 (Lemma 2.1 of [24]). Let Th = T € G (G) and Ty = Ty € &1(G). Then, for any
0 <x <1, one has

(4.5) EN HE Hy) = // (1, Ap (X +40) + t By (X +40))

dt
/J@ (LT3 + 1T) o < Aa((1- ), T1>+—||T2Hel

In Corollary 7.9, one establishes that T}, (A+i0) belongs to &1 for every A € R~{0, 75 }. It follows
from Lemma 4.2 that the r.h.s. of (4 5) will turn out to be well-defined for each A € R~ {0, 7% }.

So, one can consider the function §(~, Hhi, H},) defined in R \ {0, ﬁ} by

dt
+ 12

(4.6) A eR~{0,4/h%} — E(\ HE Hy) = /w (1, Ap(A+10) + tB1(A +i0)) 1

By Theorem 4.1,
N HE Hy) = €O\ HE Hy), ae NER.
Then, in the sequel, we identify these two functions. If Assumption 3.4 is fulfilled, then the

potential Vj, is relatively compact w.r.t. Hp and by Weyl’s criterion on the invariance of the
essential spectrum, it follows that

(4.7) Uess(Hhi) = Uess(Hh) = [Oa }%]
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However in (—o0,0) U (%, +00), Hp, has no spectrum and the spectrum of H,f is purely discrete.
Let A1 < A2 with [A1, A2] C R\ [0, 5] and A1, Az ¢ o(Hit). Then, thanks to [23, Theorem 9.1],
the SSF &(-; H hi, Hy},) is related to the number of eigenvalues of H hi through the formula

(4.8) E\i; Hif, Hy) — €(N\o; Hi, Hy) = Rank ]1[A1,,\2)(H;‘;E>-

5. MAIN RESULTS

5.1. Statement of the main results. Our first theorem is the next simple result which is an
immediate by-product of (4.6), Lemma 4.2, ii) of Proposition 7.2, (8.3), (8.31), Lemma 7.6 and
Weyl’s inequality (8.2).

Theorem 5.1. Suppose that the potential Vi, satisfies Assumption 3.4. Then, on compact subsets
I c R~ {0,5}, one has

supf()\;H,jf,Hh) < 00.
el

That is, the SSF &(+; H,f, Hy}) is bounded on compact subsets of R ~\ {0, % .

This result will be useful in Section 5.2.

For further use in the next sections, one introduces some notations. Let p,, : £*(Z) — C be
the operator defined by

(5.1) Puo = (DR = s C€CrpC=C(()h) /% € £2(Zn).
Define the compact operator Lo, : £2(Zy) @ G — C® G by

(5.2) Lop = vy @ KW = Li, = %205, K) : C G — 3(Zn) ®G.

Let J be the self-adjoint unitary operator defined in ¢2(Z;,) by

(5.3) (Jo)(hn) := (=1)"@(hn).

Note that J commutes with any multiplication operator. Moreover, it relates both thresholds
through the relation J(—Ap)J* = —Ap + %. As above, one introduces the compact operators
(5.4) Lanen = (pooJ* @ K*)¥?  2(2) ©G - C® G,

and

Lipeg, = 1 Ik, @ K) : C® G — (2(Z) ® G.

Finally, for two real-valued functionals Fi (V, \) and F(V, A) of V depending on A € R~ {0, 75},
one writes

Fi(V,A) ~ Fa(V,N), A=z € {0, 5},
if for every € € (0,1), one has
B((1=e)'V,A) + 0:(1) < Fy(V,N) < B((L+6) 7'V, A) + O:(1),

as A — zg.

5.1.1. The case A € (—o0,0)U (%, +00). Our second theorem concerns the asymptotic behavior
of the SSF £(\; H,jf, Hp) as A — 0 from below and as A — % from above. Define the operators

P =1y, @1 :03(7Z,)®G -+ C®G,
Py, being defined by (5.1), and
(5.5) Vi =1 K% ®K).
Our results are closely related to the trace class operators
(5.6) PV, P* =LopLy;, and PVy§P* = Ly w Ly e,
acting from C ® G — C ® G, where
(5.7) Vi = (JoD)*Viy(J 1),
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and J is given by (5.3). Therefore, Vi is unitarily equivalent to V. Next, one sets
h PV ), P h PV, P*
(5.8) whX) == —ZhE S —
2 VIN 2 VA=A
The following result holds true:

and Wiz (A) == — AeRN {0, 5]

Theorem 5.2. Let V), satisfy Assumption 3.4 with vy > 3. Then:

o AsA 0,
(5.9) §O\ Hy Hy) = O(1),
(5.10) €O Hy s Hi) ~ —Tr Loy (V).
o As AN, b,
(5.11) —ENH, Hy) ~ =Tr L o) (—whp2 (V)
(5.12) §(\ Hy , Hy) = O(1).

Remark 5.3. Inequalities (5.9) and (4.8) imply that the discrete eigenvalues of Hp + Vi do
not accumulate at O from the left. Otherwise, the inequalities (5.10) tell us that the number of
eigenvalues of Hy, — Vi, in (—00,0), as A 70, scales up to O(1) terms, as

Trll(ac,-l—oo)(wg(/\)) =Tr ]1(2%\/—7/\,4-00)(‘@\/}1‘@*)7 T~ 1.

So, the problem of counting the number of eigenvalues of the operator Hy — Vi, near O from the
left, is reduced to the problem of counting the number of eigenvalues of the positive trace class
operator PN P* near 0. The inequalities (5.11) and (5.12) lead to similar conclusions on the
number of eigenvalues of the operators Hyp + V}, in (%, +00) near %. In particular, the number
of eigenvalues of Hy + Vj, in (%, +00), as AN\ hi;, scales up to O(1) terms, as

h J op* ~
TY]I(I7+OO)(_W4/h2(A)) :T‘I']I(ZTE /—)\_4/h27+oo)(egzvh1@ ), r~ 1.
Similarly, the problem of counting the number of eigenvalues of the operator Hy, + Vy, near hi; from
the right, is reduced to the problem of counting the number of eigenvalues of the positive trace class
operator @V,{@* near 0.

5.1.2. The case A € (0, %) Our third theorem concerns the asymptotic behavior of the SSF
(N Hhi, Hp) as A — 0 from above and as A — % from below. One needs first to introduce some
notations. Set

(5.13) gn(A) = arcsin (gﬁ) Ae (0, 4).

Introduce the operators cos,, n, sin, n : £2(Zy) — C defined by

(5.14) cosy n(A) = ((()A™1) 72 cos2(-)h ™~ gn (V)]

and

(5.15) singg,n(A) == (A1) 77/ sin[2()h ™ gn(V)]].

The adjoints cos}, ;. sin; ,: C — (?(Zy,) are the rank one operators given by
(5.16) €080, (X) "¢ = C{()h ™) 772 cos[2(-)h ™ gn (M),

and

(5.17) siny, n (V)¢ = C((R™) T2 sinf2()h ™ gn (V).

Define Y3, () : £3(Zp,) — C? the operator given by

(5.18) Ya(Me = (Zi)j:::((i))z) ’
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so that the adjoint operator Y, (A\)* : C2 — ¢%(Zy,) is given by

(5.19) Y (\)* (2) = COSyy 1 (A)"C1 + sing,, n(N) " Co.
The next result is closely related to the trace class positive operator
1
(5.20) Q(\) = YN @DV, \)*@I):C?*2¢ - C*4,

NONVZVI 2D

where V), is given by (5.5).

Theorem 5.4. Let V}, satisfy Assumption 3.4 with vy > 3. Then,

(5.21) FEN HiE Hy) ~ —%Trarctan(ﬂh()\)),

as AN\ 0 and)\/‘%.

Remark 5.5. Under the conditions of Theorem 5.4 and for x > 0, the operator Qi (\) satisfies

(5.22) Trarctan(z ™' Q()\)) = Trarctan(z Qo 1(N)) + On(1), AN O,
where for X > 0, the operator Qo p(N\) is given

h * v
(5.23) Qo.n(A) == m(YO,VU RNVi(Yy,, ®1I), You = <p00> 02(Zy) — C?,

with py, defined by (5.1). The estimate (5.22) follows by using the Lifshits-Krein trace formula
(1.2). The details of the proof are given in Section 9 and the argument is analogous to the one of
[13, Corollary 2.2]. Now, using (8.36), one gets

(5.24) Trarctan(z Qo ,(\)) = Trarctan(z ™~ wh(N)),

the operator wl(\) being defined by (5.8). In particular, it follows from (5.22) and (5.24) that
Theorem 5.4 can be expressed as X\ \, 0 in terms of the operator w(}}()\), as in Theorem 5.2. In a

similar way, one has for x >0
4
(5.25) Trarctan(z™'Qp(N)) = Trarctan(z ™' Qq/p2 4 (N)) + Op(1), A 72

where the operator Qy p2 1, (N) is given

h * % J*
Q4/h2,h()‘) = m(y‘l/]ﬂ#o ® I)V}L(Y4/h271,0 ® I), Y;l/hZJJU = (p (6 ) . 62(Zh) — (CQ,
with J defined by (5.3). By using (8.36), one obtains
(5.26) Trarctan(z™'Qy p2 4(N) = Trarctan(—x_lwff/hz()\)),

wff/hz (A) being defined by (5.8). In particular, it follows from (5.25) and (5.26) that Theorem 5.4

can be expressed as X % in terms of the operator wZ/W(/\), as in Theorem 5.2.
It follows from Theorem 5.4 and Remark 5.5 the following result:
Theorem 5.6. Let V}, satisfy Assumption 3.4 with vy > 3. Then,

1
FEN HiE Hy) ~ —;Trarctan(wg()\)), AN 0,

and
1 4
FEON Hyy, Hy) ~ ——Trarctan(—wj2(V), A/ 55
™

5.2. Corollaries. In this section, one presents some consequences of the above results gathered in
two parts. The first one concerns the case dim(G) < oo and the second one the case dim(G) = +oo.
We will see that in the first situation, the SSF is bounded at the spectral thresholds {0, hi; while
it may have singularities in the second one.
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5.2.1. Boundedness of the SSF at the spectral thresholds. Here, one assumes that dim(G) <
00. Then, the operators PV, P* et QZV,{QZ* acting from C ® G — C ® G are of finite rank.
Otherwise, for x > 0 we have

(527) Trarctan(a ")) = [ A (oI (/2 2V )
Ry

8 Trarctan(—2~'wjpa (V) = / A/ TR = ATt (h2) 2V 7)o
Ry

Together with Theorems 5.2, 5.6, 5.1, this implies the following result:
Theorem 5.7. Let V}, satisfy Assumption 3.4 with vy > 3 and dim(G) < co. Then,

(5.29) sup £\ HiE Hy) < .
/\ER\{O,%}
Corollary 5.8. If V}, satisfies Assumption 3.4 with vy > 3 and dim(G) < oo, then:
L Uess(Hh + Vh) = Uess(Hh) == [07 %]
e The discrete eigenvalues of the operators Hp, + V3, do not accumulate to {0, %} In par-

ticular, it follows that
#Udisc(Hh + Vh) < 0oQ.

Remark 5.9. Thanks to Lemma 6.1, it follows from Corollary 5.8 that the discrete eigenvalues of
the perturbed operators Hy = Vi, do not accumulate to {0, %}, under Assumption 8.1 with v; > 3,
i =1, 2. In particular, according to Remark 2.1, the perturbed Laplacians —Ay, + Vi, satisfy
(5.30) #Udisc(_Ah + Vh) < 00.

One can compare Corollary 5.8 and (5.30) with [4, Corollary 2.1] where we prove, for h = 1,
the finiteness of oaisc(—Ap £ V) under a more restrictive assumption, namely V exponentially
decaying at infinity.

5.2.2. Thresholds singularities and asymptotics behaviors of the SSF. In this part, we
assume that dim(G) = 400 and we start with by the following comments:

Remark 5.10. If the positive trace class operators PV, P* and f@ViBZ* acting from C® G —
C® G are of finite rank, then Theorem 5.7 and Corollary 5.8 remain valid. For instance this holds
when the operator K acting in G 1is finite rank. A non-trivial example is given in point (2) of
Remark 3.3. In order to shorten the paper, one omits the statements of the corresponding results.

Then, one focuses on the case where 2V, 2* and 2V; P* are of infinite rank.
— Case \ € (—00,0) U (45, +00): A direct consequence of Theorem 5.2 is the following result:

Theorem 5.11. Let V}, satisfy Assumption 3.4 with vy > 3, and suppose that Rank ZV, 2* = oo
and Rank PV 2* = co. Then:

e H; has infinitely many discrete eigenvalues below 0. They accumulate to 0 with
f()\;H}:,Hh) =-Tr 11(_00,/\)(1;[;) ~ —Tr 11(%\/—7/\,4-00)(‘@\[}1‘@*)7 A /( 0.

° H,J{ has infinitely many discrete eigenvalues above %. They accumulate to % with

. 4
—CONH Hy) = =T Ly o) (H]) ~ =Tr L e | (PVRPT), AN 45

Notice that it is not difficult to construct potentials V' such that Rank £V, Z* = o and
Rank @Vi@* = 00. But, it is more interesting to investigate cases where we can obtain a more
precise description of the asymptotic behavior of £(\; H, ,J[ , Hp,) near the spectral thresholds. So,
in what follows below, one sets for r > 0

(5.31) D1(r) == Tr Ly 1oo) (PVRP*) and  ®o(r) :=Tr L, 4 o0) (PV) P%).

Actually, under additional conditions on the functions ®;, i = 1,2, Theorems 5.11 and 5.2
produce the next more precise result giving the main terms of the asymptotics of {(\; H, ,jf, Hy),
A€ (—o0,0)U (%, +00), near the spectral thresholds.
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Corollary 5.12. Under the assumptions of Theorem 5.11, suppose in addition that for any e €
(0,1) small, ®;(r(1+e)) =V (r)(1+0(1)+0(e)) asr 0, i =1, 2, with U;(r) — +o0 asr — 0.
Then, one has the asymptotics

UL (/RN +0(1))  as A0,

§(A;H,:,Hh):—Tr]l(foo,A)(th)Z {(9(1) as AN\ &
hz,

and
o(1) as A0,
Uo((2/h)\/A=4/R2)(1+0(1))  as A\ 15.

Remark 5.13. Ezxamples of such ¥;, i = 1,2 of Corollary 5.12 are given by

ENHS Hy) = Tr Loy ooy (H}D) = {

Cor=®, a>0
Co|Inr|®, >0

(5.32) Wy(r) = W(r) = § Collmrl®s o . >0,
Co(In|Inr))*, a>0

Co|In7|(In |Inr])~1,

where Cy > 0 is a constant (see |9, Proof of Corollary 3.11]). For more details, one gives examples
of explicit computations of P1(r), Po(r) and ¥(r) in Section 5.3, including polynomial and (super)-
exponential decay potentials along the component G of *(Zy,G) (see Propositions 5.20 and 5.21).

Taking into account the previous remark, the next result holds.
Corollary 5.14. Let A € (—00,0) U (75, 400), z— =0, 21 = 75. Suppose that V}, satisfies:
(1) The assumptions of Proposition 5.20 with vy > 3. Then, one has respectively

s £ X HE H) = (T 0) 7 /) (VR (1 4 o(1)), AN 0,
nez
(2) The assumptions of Proposition 5.21 with vy > 3. Then, one has w.r.t. +,
i) If €(j) = 13°, 1 >0 and B >0,
E(ze £ X\ HE Hy) = +(2/m)Y P In VAP (14 0(1)), AN 0.
il) If £(j) = e”jﬂ, n >0 and >0,
(ze £ X Hy Hy) = 407 VP (In | In VAP (14 0(1), A N\0.
iit) If £(j) = x;, ' (4), n > 0,
E(z4 £ N HE Hy) = 220 In VA|(In [ In V) 7H(1 4 0(1)), AN\, 0.

— Case X € (0, 7%): For A € (0, 7%), formulas (5.27) and (5.28) can be rewritten as

(5.33) Trarctan(x_lwg()\)) = /]R @1((2/h)$ﬁt)%a
(5.34) Tr arctan(fxflwff/w()\)) = /}R Dy ((2/h)x\/4/h% = At) 1 j_ttQ'

As above, if the functions ®;, i = 1, 2 verify some asymptotics behaviors near 0, then Theorem
5.6 together with (5.33) ans (5.34) produces the next more precise result giving the main terms of
the asymptotics of £(\; Hff, Hyp), A € (0, %), near the spectral thresholds.

Theorem 5.15. Let V}, satisfy Assumption 3.4 with vy > 3. Suppose in addition that ®;(r) =
Ui(r)(1+0(1)) asr N\ 0, i =1, 2, with U;(r) given by (5.32). Set 21 = 0 and 2z = 75. Then,
one has the following asymptotics for X € (0, %)

1) If Oi(r) = Cor—®, 0 < a < 1, then

€0\ HE, Hy) = iﬁs(ﬁ)%(@/h) D)L+ o(1)), A 2
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i) If W;(r) = Co|In7|¥, or Co(ln|Inr))¥, or Co|Inr|(In|Inr|)~t, then

EOv HE Hy) = (/)T ) (1 +0(1), A 2

Corollary 5.16.
(1) Let Vi, satisfy the assumptions of Proposition 5.20 with vy > 3. Then, as A — z € {0, %},

A€e (0, 75),

§N HiE Hy) = (Sotm=) "™ /= (VW) (4 o).

b -
2 cos(mfp) =

(2) Suppose that Vi, satisfies the assumptions of Proposition 5.21 with vy > 3. Then, as
A= 2z€{0,75}, A€ (0,7%), one has:

i) If €() =nj®, 1 >0 and 5 > 0,
§O: i Hy) = %5.2/m) Y2 /T X[V2(1 4+ o(1))
i) If €(j) = e’ , > 0 and B > 0,
EOv HiE H) = %507 ([ V2= )71+ o(1))
iii) If £(j) = x;, " (4), n >0,
EO\ HE Hy) = 40| In /]2 = N||(In | In /]2 = X)) (1 4 0(1

Remark 5.17. By (1.3), Corollary 5.15 as well as Theorem 5.15, Theorem 5.6 and Theorem 5.4
concern the asymptotics of the scattering phase argdet S(\; Hhi, Hy,) near the spectral thresholds

{Oa nZ

5.2.3. Levinson type formulas. By putting together Corollary 5.12 and Theorem 5.15, one
obtains the next result which can be interpreted as generalized Levinson formulae.

Theorem 5.18. Under the assumptions of Theorem 5.15, i), one has

X H;  H 1 iz~ NH L H
(5.35) lim 2 = R _ oy = lim 5(’22 = h)’
ANO 6(_)‘;Hh ;Hh) 2COS(E) ANO §(ﬁ + )\;Hh aHh)

while under the assumptions of Theorem 5.15, ii), one has

\NH. H 1 -\ H H
(5.36) lim 5(,—}1:}1) — - — lim £z noHn)
MO E(=N Hy  Hy) 20 N0E(A + N H L Hy)

In particular, the results of Corollaries 5.14 and 5.16 give the following result:
Corollary 5.19.
(1) Let Vi, satisfy the assumptions of Proposition 5.20 with vo > 3. Then,

im ENHy  Hy) 1 — lim &(55 — N Hif Hy)
MO E(=X; Hy  Hy)  2cos(mBy)  aNo0 ‘f(m + X H;,Hh)

(5.37)

(2) Let Vi, satisfy the assumptions of Proposition 5.21 with vo > 3. Then,

N H, L H, 1 -\ H H
(5.38) lim 5(’—}1,’}1) — - — lim 5( ;jr 3]
ANGO E(_)\QHhaHh) 2 ANGO E(hz + HhaHh)

5.3. Examples of explicit eigenvalues asymptotics. One gives in this section examples of
computations of the quantities ®1(r), Pa(r) and U(r) defined by (5.31) and (5.32).
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5.3.1. Polynomial decay potentials.

Proposition 5.20. Let vy > 1, Sy > 1, V), = Z Z |68 (6" | @ vy, (n, m) such that vy, (n,m) =0
neEZ meZ

if n #m and vy (n,n) = (n)~"° Z (j)7P0|e;)(ej |. Then,
JELy
‘1)1(7“) = @2(7‘) =Tr 1(T1+m)(yvhf@*),
and

(5.39) Tr (s, 4oo) (P VR PT) = (Z<n>‘”“)1/ﬁ°r‘1/ﬂ°(1 +o(1)),  r\0.

nez

Proof. Clearly, Vj, satisfies Assumption 3.1 if vy > 2, By > 2. Moreover, recalling that ((-)h~1)=%0/2
and pgo are respectively given by (3.7) and (3.8), one obtains

v, 2
V=Y > ()l P @e)oh @e;| = ()2 @pf)"
nEL jELy
Then, V}, fulfills Assumption 3.4 with K* = K = pg and ¥, = I. It follows that
Vi=Vi=(Iop])> =12 Y () ™e)e|
JEL
so that 2V, Z* . C® G — C® G is given by
PVLP" =iy © 0 )Pl es | = 1O Py (T8 3 G) ) ey ).
JEL JEL4+
One can see that the eigenvalues of the operator PV, P* are simple and
(5.40) o(PVRP) ={[{OD™) P |fa(z, ()77 G € 2y},
with eigenvectors respectively given by the orthonormal basis (1®e;) ez, of C®G. So, for r >0
small enough, one has
(I)Q(T) = (1)1(7") = TI']l (r,400) (QZV}V@*)
= OB P gy () G € Zy i r < IR T Bz, ()R}
. ) vy /24 _ 1/2
= € 215 < (MO 2N 2 - 1)),
By denoting |x] the integer part of z € R, one obtains finally

a(r) = D1(r) = T Loy (PVAPY) ~ (OB 200 1))

(||<( >*V0/2||4/50 T*?/ﬁo_l)l/Q ~ H(()hi >7Vo/2H2/ﬁ0 r—1/Po_

+30 £2(Zn) r—0 02(Zn)

The claim follows by noting that [[((-)h=1)=0/?[2/% = (3, 5 (m) =)™ O

5.3.2. (Super)-exponential decay potentials along the component G of ¢*(Z;,G). Con-
sider £ an increasing unbounded real-valued function of the form
n¥?, n>0, >0
(5.41) fa)y=Rem" >0, B>0 , x>0,
-1
X, (), n>0

where x; ! is the inverse of the function y — x,(y) = F(ZI?F_Z)’ y > 0.

Proposition 5.21. Let vy > 1 and consider the potential Vj, = Z Z 16 (6" | @ vp(n, m) such
neEZ meZ
that vp(n,m) =0 if n #m and vy(n,n) = (n)~"° Z e W |e;)(e;|. Then, one has
JELy
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Q1(r) = @a(r) = Tr Ly 4oo) (P V), P¥).

Moreover:
e If&(j) =nj”, n>0and >0,

(5.42) Tr Ly 4oy (PVa2*) = (2/n)YP|lnr| P (1 +0(1)), 7,0
o IfE(4) = e"jﬂ, n>0and g >0,

(5.43) Tr 1y 4 00) (PVp D7) = VP (In | Inr|)YP (1 + o(1)), 7\ 0.
o If&(5) = x;, ' (4), n >0,

(5.44) Tr Ly 100)(PVp2*) = 2p|Inr|(In|Inr|) " (1 + o(1)), N\ 0.

Proof. Tt can be checked, making the change of variable z = x(y), that
X @) 1

oo rln(z) n’

Hence, V), satisfies Assumption 3.1 if vy > 2 and one has
V=D > ()™ e Dt @ ej) (ol @ ej [ = ((Hh ™) ™2 @ K)°,
NnEZL jELy
where K =3, e’%g(mej)(ej |. Thus, V4, satisfies Assumption 3.4 with ¥}, = I and
PV} = PP = ()P g, (T8 30 e e51).
JEL
The eigenvalues of the operator 2V, 2" are simple and

(5.45) o(PVLP) ={[{(Oh™1) 2|y e 2D G € 2, ),

with eigenvectors respectively given by the orthonormal basis (1 ® e;);ez, of C® G. Therefore,
for 7 > 0 small enough, one has

Qo(r) = <I)1(r) =Tr ll(T +oo) (P VL, P77)

(5.46) = #{OR) T B ze” 20 jeZiir< XSO ST [ —2¢0)}
=#{je Z+ () <2 ()R T2 g,y -
The claim follows from (5.46) and (5.41). O

6. FACTORISATION OF THE POTENTIAL

The aim of this section is to prove the next lemma that gives a suitable factorisation of the
perturbation V}, satisfying Assumption 3.1. In particular, this justifies our choice of the generalized
Assumption 3.4.

Lemma 6.1. Let Assumption 3.1 holds. Consider the operators ((-)h=1)="0/2 and pgo defined by
(3.7) and (3.8). Then:
i) There exists Vi, € B((*(Zn,G)) such that

(6.1) Vi = (O )72 @ pf ) 1O ) ™ @ pf, ).
i) ¥, >0 so that
(6.2) Vi = M ptlop with Moy =1 2O @ pf).
In particular Vi, is trace class and
(6.3) Valle, < [l-#onllE,-

iii) As a matriz, ¥, = {an(n,m)}n,m)ezz with

(6.4) lan(n,m)||g) < Chn) =" T+0/2(m)—v2tvo/2,
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Proof. 1) Constants are generic, i.e. change from an estimate to another. One can write

(6:5) Vi = (O )™ @ DV )™ 1),

with Vj, := {{n)o/?vy,(n,m)(m ”"/2}( \myezz- Namely, one has
(6.6) V=30 D0 800] @ () 2on(n, m) m)*/2.
neEZ meZ

a) Firstly let us show that the operator \7h is bounded. To see this, note that Assumption 3.1
and (3.2) imply that there exits a constant C}, such that for each (n,m) € Z2,

(6.7) [[on(n, m)||sg) < Ch(n)="" (m)~".
Using (6.6) and the Cauchy-Schwartz inequality, one gets for any ¢ € (2(Zy,,G)

Vil =31 S tn)e 2o (n, m) (m) o 2o (him) |

nerZ meL

< Z Z [{n)*o/2 vy (n, m)(m >V°/2H%(g)”@”2.

nezZ mez

(6.8)

It follows from (6.7) that
HVh||2 < Z Z ” 1/0/2,Uh n m)< >u0/2HB < Chz Z 2u1+uo > watro g
nEZmEZL nEZmMEL
b) For (n,m) € Z?, define in G the operator
(69) Bl m) = 32 STl ()R ) e |
JEAKEA

which is bounded. Indeed, using the Cauchy—Schwartz inequality one gets for each g € G

2
[on(n,m)gllg = [(ej, tn(n,m)g)g]” =D | D ()20 (n,m) (k)" (ex, g)g|
JEA JEAN kEA
(X |<j>50/2v?k<n,m><k>50/2|2) S len 9)gl? = lgl3 Do) ol (n,m) (k)%
JEA kEA keA ik

< Cr(n) =2 (m) "2 Ngllg > Y )P GR G, §) (R)PO < Chn) =2 (m) 2 g]|
jEA kEA

It follows that
(6.10) |0n(n,m)|[5g) < Crin) ™" (m)~">.
Now, for every k, € A, one has

(PG, o (n,m)p ) e, =Y ()72  ej)(es, o (n, m)pd, ex.)g

JEA
= DG ) T2 ) ey, B (mym) e -
JEA
Since
(e tn(nm)e,)g = > Y (NP 20l (n,m)(k)*/? (e, ;) g(ex, ex. )g
J'ENKEN
= ()2l (n,m) (k)72

then we have

(pﬁ Op(n,m pﬁ Zvﬂk n,m) = vp(n,m)e,,
JEA

Therefore, for each (n,m) € Z2, one has

(6.11) pgoﬁh(n,m)pgo = vp(n, m).
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Together with (6.6), this implies that

(6.12) Vi =03 [0l (k| @ (n)o/2pG, n(n, m)pg, (m)*/* = (I @ pg ) (I @ p, ),
nEZ meZ
where
(6.13) Y= > (VO @ (n)"/20(n, m) (m) "o/,
nEZ meZ

By putting together (6.5) and (6.12), one obtains (6.1). Using (6.10) and arguing as in (6.8), one
can show that 7}, is a bounded operator.

ii) Let us show that 5, > 0if V; > 0. First, note that the vectors of the basis (6% ®€;)(n.j)ezxa
of £?(Zy,,G) are eigenvectors of the operator ((-)h~1)~%0/2 ®pg0. Indeed, one has
(R @ pg ) (0 ©eg) = ()0 2() ™2 (G ©eg),  (n,j) €Z XA
This implies that the Range of ((-)h~1)~*0/2 @)pg0 is dense in ¢?(Zy,G). Then, for each ¢ €
(*(Z1,,G), there exists a sequence of vectors ¢, € Range(((-)h~1) "0/ ®pg0), g > 0, such that
(6.14) lim {lpg —¢llg =0

q——+o0
So, foreach g > 0, ¢, = (((-)h’1>”’0/2®pg0)<p; for some ¢/, € (*(Zy,G). Noting that ((Hh~ 1y~ /2
pgo is a positive operator and using (6.1), it follows that
(T pa) = (U7 @ 0 el (OB ™% @ 5, )e)

6.15
(619) ({1702 @ p )RR "2 @ pf, )l ) = (Vagy, @) > 0.

Now, since for ¢ > 0

[(Phpas Pa) = (Thos )| = [{(Vh(@q = 9)s a) + (Vhps 0q = ¢)]
< 17alllleqg = ellllegll + 172l llleg = el
one deduces from (6.14) and (6.15) that

(Fhep, ) = qginoow/h@qv@ﬁ > 0.

Moreover, since the operator {(-)h~1)~*0/2 @ pgo is Hilbert-Schmidt according to Remark 3.2, then
V}, is trace class and (6.3) follows by (6.1) and the boundedness of ¥4.

iii) As matrix %, = {an(n,m)}(n,m)ezz, one has from (6.13) that for each (n,m) € Z*

vo /2~

vh(n,m)<m>”°/2.

ap(n,m) = (n)

Then, (6.4) follows immediately from (6.10). This concludes the proof. O

7. PRELIMINARY RESULTS

7.1. Extensions of the kernel of (—A;, — 2)~! to the real axis. For further references, we
provide more details on our choice of analytic determinations of the complex logarithm and square-
root functions. First, it can be checked that the map exp : s € C +— e® € C* is a surjective group
homomorphism with kernel ker(exp) = 2inZ. It follows that its restriction exp : s € {s € C :
—m <Ims < 7} e® € C*is a bijective map. Since the image of the axis {s € C:Ims = —7} is
the semi-axis (—o00,0), then the one of the (open) domain {s € C: —7 < Im s < 7} is the domain
C \ (—00,0] so that

exp:se{seC:—nm<Ims<n}—e’€C~\(—00,0]
is a holomorphic bijective map with non-vanishing derivative. The corresponding inverse map

(7.1) In:s€C~N (—00,0] ~In(s) e {seC: —r <Ims < 7}
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is then holomorphic and will define our complex logarithm determination. It corresponds to the
principal value of the logarithm function. Hence, one can define the complex analytic square-root
determination using the analytic function Ln by

(7.2) Vi=erm:seC~ (—00,0] — ez2ln(s) ¢ {s € C:Res > 0}.

It corresponds to the principal value of the square-root function. Note that (7.1) and (7.2) cor-
responds to employ the principal value of the argument Arg which takes values in (—m, 7] so
that

(7.3) Ln(s) = Lnls| + iArg(s).
Let z € C\ [0, 7%] and Ry, (2) := (—Ap — 2)~! be the resolvent of —Aj. One has
_ (Fne)(9)
(7.4) Tn(Rn(2)9)(0) = ) -2

where f3,(0) is given by (2.2). It can be checked that

i sin(ha)

_ . Ima > 0.
202 sin®(h0)2) — si2(haj2)’

(7.5) Fn(he)(0) =

It follows from identities (7.4) and (7.5) that for Im z > 0, Ry, (z) is an operator with convolution
kernel given by r(z, h(n —m)), where

(7 6) ( hk) ih2 eian(2)hlk] ie2i|k|Arcsin(%\/E) ( k) ez
. r(z, = —— = =rplz, k), € L.
2 sin(hap(2)) Vz\/4/h? — 2 "
Here, o, (z) = 2Arcsin(2/z) is the unique solution to the equation %ﬁ(ha) = Lsin® (42) =2

lying in the region {a € C: =7 < Rea < T : Ima > 0}, where Arcsin is principal value of the
real arcsine (arcsin) function obtained by employing the above analytic determinations Ln and
V- = e2™ Namely, for s € C ~ ((—o00, —1] U [1,400)), one has

1
(7.7) Arcsins = —Ln(is + V1 — s?) = w.
i

W _g—iw

It can be easily checked that w given by (7.7) is solution to the equation sin(w) = 5 = s.

In particular, if s = 2 € R with |z| < 1, then
Arcsinz = Arg(iz + /1 —22) € (-%,%)

coincides with the real classical arcsin inverse fonction, i.e. Arcsinx = arcsin z.
The next result follows immediately taking into account the above considerations.

Proposition 7.1. One has

eZ'L\nfm,\Arcsin(%\/_—)\)

V=A\/4/RZ=X if A<0
. . ie2i\n7m\Arcsin(h\/X) .
(7.8) 811\1‘1(1) rn(A+ie,n—m) = \/X\/4/h27§\ if M€ (0,4/h%)
iln—m|Arcsin(
in e 3D f A > 4/K2.

T VW42

For A € R~ {0, %}, one defines Rj,()) as the operator acting in ¢*(Z;,) with the convolution
kernel r, (A, n —m) where

(7.9) rn(A,n —m) = limrp(\ 4+ ie,n — m).
eN\0

7.2. Estimates of the weighted resolvents.
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7.2.1. Hilbert-Schmidt bounds. Let T,(z) be the weighted resolvent defined by (4.1). For
Imz > 0, thanks to (7.6), one defines Ry (z) as the operator acting in ¢?(Zj;) with convolution
kernel 71,(z,n — m). So, according to (7.9), one extends T}, (z) to C \ {0, 75 } by setting

(710) TN =% PUORTD) T PRAONORT) R @ KK, X e (0,55).
Introduce C* := {z € C:Tmz > 0} and C+ := {z € C: Tmz > 0}.

Proposition 7.2. Let V}, satisfy Assumption 3.4. Then:
i) For any z € C~ {0, 75}, the operator Ty (z) € S2(0*(Zn,G)) with

KIS, Znez{n)
< T
1Th(Nlls. < N72( L — )2

ii) The operator-valued function z € C+ ~\ {0, 7%} — T)(2) € &2 is continuous.

173ll, A€ (0, 57)-

Proof. i) Let z € C \ o(Hy). Then, the resolvent (Hj, — z)~! of Hj is bounded with

) 1
I =271 < G 0,27

by the spectral theorem. Thanks to Remark 3.2, the operator ((-)h~')~*0/? € &, and by Assump-
tion 3.4, K € &,. It follows that T} (z) € &2 with

()R Pl K G,
. 1 [ 74]]-
dist(z, [0, 7=])

ITh(2) e, < 4011, 1 (Hr — 2) 71 <

Let A € (0, 7%). The operator R, () admits the convolution kernel 7y, (X, n —m) given by (7.9).

Using Proposition 7.1, we bound the Gg-norm of ((-)h=1)=*/2 Ry, (2)((-)h=')~*/2 by

[(R=Y /2Ry (W) (DB~ | —%

Therefore, it follows that

IK1I&, nezin) ™"
)\1/2(% _ )\)1/2

ITh(Mlle, < [ 74]]-

ii) According to the point i), the map z € CT~\{0, 75} + Th(z) € &2 is well defined. Otherwise,
since the map z — (Hj — z)~! is holomorphic in C \ o(Hp), then the continuity of 2z € C+ ~
o(Hp) — Th(z) € G4 follows immediately. Indeed, as |z — zg| — 0 with z, zo € Ct \ o(Hp,),

IT0(2) = Th(z0) e, = | Mn(Hy — 2) 7" My — M (Hy, — 20) "' A} |,
< N atnllS, N (Hp = 2)™" = (Hp — 20) 7| = 0.
Now, let zg = Ag € (0, 77) and 0 < 6 < 1. Then, for
z € Ds(Xo) == {s € CT ~ {0, 5} : |2 — Xo| < 6},
one has
(7.11)  T(2) = Ta(o) e < IPAMIIEIE (R T2 [Ra(2) = Ba(Mo) ()R~ T le,
The operator ((-)h=1)7"/2[Ry(2) — Rp(Ao)]{(-)h )70/ admits the convolution kernel
(n)="/2(rp,(z,m —m) — rp(Ao,n — m)) (m)~"0/2,
so that
KR 72 [Ra(2) = Ra(Xo) (R~ /2|,
(7.12) <y Z =0 ()0 | (2,1 — m) — R (Aoy 1 — m)[2.

neEZmeL
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The map z € Ds(A\g) — € R is continuous. Since Dg()g) is compact, then there

(P v
exists so € Ds(A\p) such that
1 1
sup |rn(z,m—m) —rp(Xo,n —

m)| < +
1/2| 4 _ 1/2 1/2
2€2500) [sol'/?|55 — sol"/ /\o/ (77 — Ao)t/?

= Ch(SO, )\0).

That is the map (n,m) € Z? — (n)="°(m) =" |r,(z,n—m)—7r4(Ao, n—m)| is uniformly dominated
w.r.t 2 € Ds(\o) by the map (n,m) € Z* — Cy(s0, Ao){(n)~*°(m)~"°. Now, using

S im e my = () < oo,

n€Z mez nez
(7.12), Lebesgue’s dominated convergence theorem and (7.11), one gets
1Th(2) = Th(Xo)|ls, — 0 as |z — Ag| = 0,
which ends the proof. O
The next corollary is a direct consequence of Proposition 7.2.
Corollary 7.3. Let V}, satisfy Assumption 3.4 and X € R\ {0, %} Then, the limit Tp(\ + i0)
exists in &g with T (X +i0) = Tr(A).

7.2.2. Trace class bounds. In what follows below, we want to establish the existence of T}, (A +
10), A € R~{0, % , in the trace class G;. However, the proof is less evident to the one of Corollary
7.3 obtained directly from Proposition 7.2. To do this, the first step consists of establishing the
following simple result, whose proof is similar to the one of Proposition 7.2 in several points.
Proposition 7.4. Let V}, satisfy Assumption 3.4. Then:

i) For any z € C ~\ o(Hy), the operator Ty(z) € &1(0*(Zn,G)) with
(ORI IKIE,

dist(z, [0, 75])

ii) The operator-valued function z € C~\ o(Hp) — Th(z) € &1 is holomorphic.
Proof. i) Let z € C ~ o(Hy). Since the operators ((-)h~1)~"0/2 K are Hilbert-Schmidt and
(Hy, — z)~! is bounded, then T} (z) € &; with

|
1Tn(2)lle, < 172l

KOR—H) 2 )1E, 1K,

T < | A% N(Hy, — 2)7H| <
H h(Z)H61 = H h”@z”( h Z) || = dlSt(Z, [0, %])

74l

ii) Thanks to the point i), the map z € C\ o(Hp) — Th(z) € &1 is well defined. Moreover,
ITh (e, = ltn(Hy — 2) 2ty |6, < ||t (Hy — 2)" ool (Hn — 2) 7' A |,
and as |z — z9| = 0 with z, zo € C \ o(Hp), one has
HTh(z)*Th(zo) (Hp —2)"' = (Hp —20)""
Z—Zo 2 =20
Thus the claim follows and this ends the proof. O

~Th(o)||, < Il

— (Hh — 20)72H — 0.

The second step consists of treating the case A € (0, %) which is more delicate. We first need

to find a suitable integral decomposition of

(713)  Tu(s) = H2UOR )P RA (R @ KR, e,

in the spirit of [6, Section 4.1]. This is the object of the next result. In order to simplify the
notations, let us introduce the operators ay () : £2(Z) — C defined by

(7.14) an(f) = %<e—i(')9<(,)h—l>—uo/2|, S 2777’

and a(0)* : C — ¢%(Zy,) the rank one operator given by

(7.15) an(0)*¢ = %e—i('w«.)h—l)—ue/z
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Proposition 7.5. Let V}, satisfy Assumption 8.4. Then, for z € Ct, one has

w/h . do

(7.16) () = /O 0 0)"un0) T —.
where f,(0) is given by (2.2) and up(0) : (?(Zn,G) — C2 @ G is the operator defined by
(7.17) un(0) = (,(0) @ K*) 9?6 €T,
Here, o;,(0) : (?(Zy) — C? is the operator defined by

L mi()0 (N =1y —v0/2

o ﬁ<e <( )h > ’¢>€2(Zh) o ( ah(é’)qﬁ )

7 0= < e om0z, 6) " | = an-0)s)

where the operator ap(0) is given by (7.14).
Proof. Consider %y, : £?(Zy,) — L*(T,) the discrete Fourier transform defined by (2.1). To simplify
the notations, set W := ((-)h~1)7%/2 as an operator. For any ¢, ® € ¢£3(Z;,) and z € C*, one has
(@, WRi(2)Wp)e2(z,,) = (WP, R (2)W )2z,
= (Fu(W®), FRi(2) F Fr(We))12(r,)
1

(7.19) 1 T
e B LG A0

1 o/ 1 T T (WD —0) I T, (/D)0
== / 7= (P VO OFTVR0) + Za(W ) (O) Zu (T R)0) ) do.
For 6 € T, one has

(7.20) Fn(We)(=0) = Y " n) ™ p(hn) = (e OU()RT) T2 0) i
nez

and then
(7.21) W = <e*i(')9<(.)h71>*uo/27(1)>

02(Zn)"
By putting together (7.19)-(7.21) and using (7.18), one gets
(@, WRp(2)W )2 (Z1)

7/h [
- / m(ahw)w-ah<e>¢>+ah<—e>w-ah<—9>¢)d9

7.22 /i
(7.22) /0 (4 (0)®, 4 (8)p)

_w
fn(0) — 2

7/h db
/ (@, h(0)" A (O)P)e ) g

It follows that W R}, (2)W admits the integral representation

(=}

7/h
(7.23) W Ry ()W = /o ﬂfhw)*ﬂh(é’)ﬁfza

where the operator «7,(0)* : C — (?(Zj,) is given by

G2
so that @, (0)* e, (0) : (2(Zy) — (*(Zy) is the rank two operator
(7.25)
A, (0)* ,(0) = an(0) an(0) + an(—0)*an(—0)
_ 1 (’e—i(»)@<(.)h—1>—uo/2><e—i(‘)9<(.)h—1>—1/0/2‘ i ’ei(‘)é<(.)h—1>—uo/2><ei(‘)9<(.)h—1>—1/0/2’)_

T

(7.24) o (0)* (Cl) = ap(0)* G + an(—0)" (o,
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Then, by combining (7.13) and (7.23), the integral representation (7.16) of the operator T (2)
holds. This ends the proof. O

By performing the change of variable ( = f,(0) = 7% sin?(%) in (7.16), one gets

do

7/h
14e) = [ 0 0
h? 2

- 4/h? (harcsm(g\/Z))*u(%arcsin(%\/@) dc
(726) - PN VYT =
- // Un(Q)dS _ // Un(C + )¢
0

¢(—z _ame (+E -z
where
(7.27) Un(C) = Un(Q)"Un(C),
and
(7.28) Un(0) = up(2 arcsm(g\/f))

h1/2§1/4(— _ 01/4

Now in the spirit of [21, Proposition 3.3], one establishes Proposition 7.8 below. Firstly, the
following lemma holds:

Lemma 7.6. Let V), satisfy Assumption 3.4 with vg > 3. Then, the map ¢ € (0, %) — U (C) is
locally a-Holder in the &1-norm with o = 1.

Proof. For ¢ € (0, 7%), thanks to (7.27) and (7.28), one has

un (301(Q)" s (300 (0)
W — Q)12

where gy, is the function defined by (5.13). Fix ¢y € (0, ;%) and consider (¢ — 6, (o +6) C (0, %)
a neighborhood of {y, 6 > 0. For every (1, (2 € ({o — 6,¢p + 0), one has

un(2gn(C)) un(29n(¢1)) — un(39n(C2))*u (gh(§2))‘
G2

Un(C) =

)

|t -, <

h 1/2 %7 S,

(7.29) 1 1 G 2( 9

’MJ/Q( 4 )1/2 N hC1/2( 4 @)1/2’”%(%%(@)) n (hgh(@))‘ G

a) Let us treat the first term of the r.h.s. of (7.29). We have
HUh(%gh(ﬁ))*%(%gh(ﬁ)) —un(2gn(G2)) un(Zgn(¢2)) ’
he? (il = )12 o
(7.30) 1 . , L,
< s [ I ) G
From (7.17), one gets for ¢ € (0, %)
2 * 2 2 * 2

(7.31) %(ﬁgh(C)) Uh(ﬁ!]h(@) =,/ [ﬂh(ﬁgh(C)) ﬂh(ﬁgh(C)) ®KK*}7/;11/2,

so that

2

(.32) [oc[un (on (@) wn(30©)] [ = IWaNIKIZ, |0 [ (29n(©)) " (39n())]

S
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By using (7.25), one obtains for ¢ € ¢2(Zy,)

Z o (2on(©)) o (F90(0)) 6(hm)

- %(emngh@)((hn)hl}”“/QmZEZe%mgh(C)<(hm)hl>UO/ 2p(hm)
7.33

(739 +2mon (O (p)p=1)ro/2 3 e*”’”gh(o<(hm)h*1>*”°/2¢(hm))

meZ

= 3 cosf2h(n+ m)h gn(Q(Am)h )7 ()b ) ).

meZ

Consequently, for any ¢ € (?(Zy), by setting C(¢) := —

1
, one gets
VC/4/h?—¢ &

20 [ (201(0)) " (F9n(0)) | olim) = CCO (im0
X Z h(n +m)h~ sin[2h(n +m)h " gn (O] ((hm)h ™) 0/ 2¢(hm)

meZ

= C(O(((rn)h=1) =2 (hm)h~ " sinf2(hn)h ™ g1 (€)]
% 3 cos[2(hm)h =g ()] ((hm)h =)0/ (hm)

meZ

+ ((hn)h ™)™/ (hn)h ™" cos[2(hn)h g1 (C)]
xS sinf2(hm)h =" g (O ((hm)h ")/ ¢(hm)

meZ

+ ((hn)h 1) ™0/2 sin[2(hn)h ™ g5 (C)]
xS cos[2(hm)h gu ()] ((ham)h ™)™/ (am)h =" (hm)

meZ

()2 cosf2(hn)h g (O)]
37 sinf2(hm)h g (C)(hm)h )~ 2 () o (him) ).

meZ

11 follows, using the inequality |41 4s||s, < ||A1]le,||Az2]ls, for A;, As € Sa, that

%HaC[ﬂh(zgh(o)*ﬂh(zgh(o)} o
<|C(¢) [(Zsm [2ngn(C ) (ZCOS [2ngn(Q)]{n)~ ”0)1/2

nez » nez »
+ (Z cos?[2ngn (¢)]n? (n) ) ( Z sin?[2ngx (¢)](n)~ ”")
nez nez
+ ( Z sin?[2ngy (¢ ) ( Z cos?[2ngn (¢ <n>_”°) i
nez nez
+ ( Z cos?[2ngn (¢ ) ( Z sin®[2ngx (¢ <n>_”°) 1/2} ,
nez nez
so that
w0 Hadenlimo) G, <@ S e

ne”Z
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Putting together (7.30), (7.32) and (7.34), one gets finally
HUh(%gh(él))*w(%gh(@)) —up(2gn () un(2yg (Cz))‘

(7.35) hey? (s — 1)1 s,
| <A e pIAIIEIS, Seg i)™
T T CE(Go—0,Co+D) CU2(% — )12 1 G2l
b) Now, one treats the second term of the r.h.s. of (7.29). We have
1/2 )2 ’Huh —gn(C2) ) un{ +9gn(¢2) ’
(7.36) WG G = QY2 DG %%‘fcalﬂ (794(@) wn(F91(@) -

= %g‘e(Co 560+0) ’ cm’H“h(%gh(ﬁz))*m(%gh(@))
%

From (7.31), it follows that for ¢ € (0, %),
(7.37) Huh(%gh(C))*uh(%gh(C))‘ .
Using (7.33), one obtains that for ¢ € ¢?(Zy)

2o (290(0)) (3 91(C)) o (hm)

= cos[2(hn)h ™ gn(QN{(hn)h =) /2 Y 7 cos[2(hm)h ™" g ()] ((hm)h ™) ="/ 2¢(hm)

meZ

+sin2(hn)h ™ gn (O ((hn)h™") /2 3 7 sinf2(hm)h ™ gn(ON(hm)h ™)~/ 2¢(hn).

mEeZ

61|C1 — Cal-

o, (%gh(C)) *«!th (%gh(C)) ’ o

< Il K I,

1

This gives that

(S5

(7.38) B ) B B
<D cos2ngn(N}n) 0 + D sin® 2nga (N} n) 70 = (n) 7
nez nez nez
Using (7.36), (7.37) and (7.38), we finally get
1 1 ‘H 2 * 2
- un{79n(C2) ) un(79n(C2) ‘
h 11/2(}1;42 _ C1)1/2 h§21/2(% 7(2)1/2 (h ) (h ) &,
(7.39) 1
< | ll|IK]2 o 0 161 - al.
O S N s OBt
Now, the lemma follows by putting together (7.29), (7.35) and (7.39). O

As a direct consequence, by applying Sokhotski-Plemelj formula [1], the following corollary
holds.

Corollary 7.7. Let z = X\ +ic with A € (0, ,fQ) Then,

v Y Q)¢
7.40 H/ / L—'%AH — On(e), 0.
One can now state the next result showing the existence of Ty (A + i0) in &; for A € (0, 7%).
Notations are those introduced above. It follows from Corollary 7.7 and (7.26) the following;:

Proposition 7.8. Let z = A + ie with A € (0, ,32) Then, as € \, 0,

4/h? 4/h?
(7.41) Th(A +ie) = /0 % — p.V./O % +im U (),

mn the &1-norm.

The next corollary is a direct consequence of Corollary 7.3, Propositions 7.4 and 7.8.
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Corollary 7.9. Let V}, satisfy Assumption 3.4 and X € R~ {0, %} Then, the limit Tp(\ + i0)
exists in &1 with Ty (X +i0) = Tr(A).

For further references in the proof of the main results, let us point out the following remarks.

Remark 7.10. For A € (0, %), one knows by definition that Ty () is given by (7.10), where
Ry (X) admits the convolution kernel

je2iln—m]|Arcsin( LX)

V4[R2 =X
Remark 7.11. In the case A < 0, by the uniqueness of the limit and arquing as in the proof of

ii) of Proposition 7.2, on can show that the formula (7.10) for Tp(\) remains valid with Rp(\)
admitting the convolution kernel

(7.42) rh(An —m) =

e2i\n—m\Arcsin( CVEDN)

V=A/4/h2 — )

Remark 7.12. For A > %, simalarly to Remark 7.11, one has

(7.43) rh(An —m) =

(7.44) () = 52RO PRI AR 7 @ KK,
with Ry (X) admitting the convolution kernel

e?i\nfm\Arcsin(% V)
VAV —4/h?

8. PROOF OF THE MAIN RESULTS

(7.45) (A, n —m) = —

It is useful to recall the following standard properties of the counting functions .44 defined by
(4.4). If Ty = T7 and Ty = Ty belong to G (G), then one has the Weyl inequalities

(8.1) Ny + xo, Ty + To) < No(w1,T1) + Ao (22, To), x1,22 > 0.
If T € 6,(G) for some p > 1, then
(8.2) N, T) 2T, o> 0.

The following preliminary result holds:

Proposition 8.1. Let V}, satisfy Assumption 3.4. Then, one has the estimates

dt
/}R/@(l +e&,ReTh(N) + tImTh()\))m

dt
< — I
< /R,/Vi(l g,ReTh(N) + 1&ImTh()\))7T(1 77’

for any e € (0,1).

Proof. Tt is a direct consequence of the Weyl inequalities (8.1) and Corollary 7.9. Indeed, for any
e € (0,1), it follows that

/]R(/Vi(l + E,ReTh()\) + tImTh(A))ﬁ

dt
- . .
< A%(l,Ah(A +140) + tBp(\ + ’0))7741 ey

dt
< /}RJ@(I —&,ReTh(N) + tImTh(A))m-

This implies the proposition and ends the proof. 0
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8.1. Proof of Theorem 5.2. One assumes that the potential V}, satisfies Assumption 3.4 through-
out this section. First, note that

(8.3) ReTi(\) = Ti(\) and ImT,(A) =0, X€ (—00,0)U (4/h? +00).
This together with Proposition 8.1 and the identity

/ dt
EELLE—
R 77(1 +t2)

Corollary 8.2. Let A € (—00,0) U (75, 400). Then,
Ne(1+e,Th(N) < FEN HF  Hy) < A (1 — e, Th(N),

implies immediately the next result:

for any e € (0,1).

One shows in the following result that .44 (z, T} (X)) can be bounded as A — 0, from below and
from above by expressions involving L&()), up to O(1). Here, LE(N) : (2(Zp) @ G — 02(Zy) @ G is
the trace class operator defined by

(8.4) Li(\) =

where L, is defined by (5.2).

g%’%h A € (—o0,0),
Proposition 8.3. Let vy > 3 in Assumption 8.4. Then, as X /0,
(L4 )z, L(N) + O(1) < A (2, Tw(N) < A4 ((1 =€)z, L(N) + O(1),
and
O(1) < A(x, Th(N)) < O(1),
for any e € (0,1) and = > 0.

Proof. The main idea of the proof is to approximate the operator T,(\) — £ () in Hilbert-Shmidt
norm, as A 0, by a compact operator independent of \.
a) Let A < 0. The convolution kernel r,(\,n — m) given by (7.43) can be decomposed as

e2i|n7m|Arcsin(%\/7/\) -1

h
¢— (\/_\/4/1127 2\/—_)\)+ /AR -\

Together with Remark 7.11, this implies that
(8.6) Th(N) = L) = %,72(S,, © KK 1% + T8 (),

(8.5) rp(A,n—m) =

where S,(:‘V)O : 02(Zp,) — (%(Zy,) is the summation kernel operator defined by

2i|n—m|Arcsin %\/TA _
(Sl(z/,\ng(p)(hn) — Z<n>—uo/2€ | | Arcsin( ) -1

= V=AV/4/h? — X

(m) =2 p(hm),

@ € (2(Zy), and

h(\) = L§ 1w Lo,

1 h
(\/—_A\/mﬁx/—_)

2\/7 = Op(v/=X\) as A 0, and the

. . . 1
with the operator Ly j, given by (5.2). Since T

operator Lo j is independent of A, it follows that

(8.7) lim 175 (Mlls. = lim On(V=N)ILGnloslls: = 0.
Define the operator

(8.8) T = 9,}% (5"

h,vo

® KK*)9,'/?,
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where S,(Iolo : 02(Zp,) — (%(Zy,) is the summation kernel operator given by

h2
0 — —
(89) (S0, 8)(hn) == = 3~ ()7 —ml(m) " 2o(hm), o € C(Za).
meZ
Since vy > 3, then 3 |(n)~%/2|n — m|(m)~"/2]? < oo and S,(l?l),o belongs to G2(¢*(Zy)). In
particular, the operator Tp is compact in £2(Zy, G). By using the Lebesgue dominated convergence

n,m

theorem and the convolution kernels of the operators S ,(1/\30 and S ,(10,)10, one gets

2
hovo hoolls, = 0.

(8.10) lim [EH A
Putting this together with (8.6), (8.7) and (8.10), one obtains
(s.11) tim 74(3) — £ — T . = 0.
b) Now, consider A < 0, € € (0,1) and = > 0. Using Wey!’s inequalities (8.1), one gets
Na((L+e)a, L§(N) = A5 (ex,Th(N) — L5 (V) < Ao (@, Th(N))
< A((L = e)a, L§(N) + A (ez, Tu(N) — L§(N),
Since L(\) is a positive operator, then one has
N (5, LE(N) =0, Vs>0.
Therefore, to get the proposition, it suffices to prove that for every ¢ € (0,1) and > 0,
(8.12) Ne(ea, T(N) — Lg(V) = O(1), A0
To this end, let us fix s > 0. From (8.11), it follows that there exists Ao < 0 small enough such
that
IT0(N) — LGN = Tg' s, < S—V’/@(Q‘S/Qm Yo <A <0,
This together with the Weyl inequalities implies that for all Ay < A < 0,

(s, Tn(N)=L5 (V) < A (s/2,Th(N) = L5 (N) = To') + A (5/2,T7')
< (s/2)Th(N) = L5 ) = TG, + A (s/2,T5) < 244(5/2,T7) = O(1),
uniformly w.r.t. Ao < A < 0, which gives (8.12). This ends the proof. O
In the next result, EZ/hZ (A) : 02(Zp) @ G — (3(Zy,) ® G is the trace class operator defined by
h LZ/hZ,hL4/h2,h
2 /X _4/h?

where Ly/p2 p, is defined by (5.4). The proof is similar to that of Proposition 8.3 and then will be
shortened. Only the main quantities will be specified.

(8.13) L () = , AE (55, +00),

Proposition 8.4. Suppose vy > 3 in Assumption 3.4. Then, as X\, %,
O(1) < Ay (2, Tr(N)) < O(1),

and

A+ )2, L2 (V) + O(1) < A (2, Ti(N) < A= ((1 = &)z, L] 2 (V) + O(1),
for any e € (0,1) and = > 0.
Proof. Let A > 7%. Consider the operator J given by (5.3). Using (7.44) and (7.45), one can write
(8.14) Th(\) = 7,2 (D) T2 Ry (N J (R~ ™0 20 @ KK 9,2,
with J*Rp,(\)J admitting the convolution kernel

n+m)+2i|n—m|Arcsin( £ v/X)

VA —4/n?

elﬂ"(

(815) Ti()x,nfm) I
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The kernel 77 (A\,n — m) can be decomposed as
h
N
im(n+m)+2i[n—m|Arcsin(4 VX)) _ 1

1 h e
(e ) - VWA= A/hE

This together with (8.14) and (8.15) gives

(A n—m)=—

(8.16)

1/2 A vy 1/2
(8.17) Ti(A) = L (N) = 1P IX0) T 0 KK + T (V),
where X }(LAV)O : 02(Zy) — (*3(Zy,) is the summation kernel operator defined by
/2 eiﬂ(n+m)+2i|n—m|Arcsin(%\/X) -1

(X}(L:\IZO‘P)(h”) = Z (n)—"° \/X\/m

meZ

(m) =2 p(hm),

¢ € (?(Zy,) and
1 h
VAN =4/R2 2\/X—4/h?
. . . 1 - h _ — 2
the operator L2, being given by (5.4). Since oWyl ey On(\/\—4/h?) as
ANy %, and the operator Ly 2 5, is independent of A, it follows that

(8.18) Alini IZ8/2(Mls, = Agni On(VA = 4/h?) L] p2 pLasnz nlle, = 0.
3 a4

h2

ij/h? (A) = —( )LZ/hQ,hLél/hz,ha

Consider the operator
(8.19) Tl = 2SI @ KK*) 72,

where S ,(LOI),O is the operator defined by (8.9). Using Lebesgue’s dominated convergence theorem,
one shows that

. A 0
(8.20) Jim 1G5, = S0 E, =0,
h2

So, it follows from (8.17), (8.18) and (8.20) that
Alimi ITh(X) = L2 (N) = Tiype s, = 0

h2
Now, the claim follows by arguing as in part b) of the proof of Proposition 8.3, noting that EZ/,LQ N
is a negative operator. This ends the proof. ]

For > 0 and A\ < 0, one has

A, L) = A (1, DAY _ Ly (g, 2000

(8.21) 2=\ 2¢/=\
= (o PO LB < )

where the operator wf()) is given by (5.8). Similarly, one shows that for any = > 0 and A > %,

hLZ/hZ L4/h2

(8.22) N (@, Lppa (V) = A~ (w 20 /h— a2

) = Al (),

where the operator wff/hz()\) is given by (5.8). Now, Theorem 5.2 follows directly from Corollary
8.2, Propositions 8.3 and 8.4, identities (8.21) and (8.22).
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8.2. Proof of Theorem 5.4. This section concerns the case A € (0, %) We assume that V},
satisfies Assumption 3.4. In the next result, one shows the boundedness of A4 (x,ReT}(N)) as
A= Xo € {0,751}
Proposition 8.5. Suppose vy > 3 in Assumption 3.4. Then, for any x > 0,

Ny (z,Re Th(N)) = O(1),
as A N\ 0 and)\/‘%.

Proof. a) First, let us focus on the case A \, 0. Thanks to (7.42), the operator Re Rj(\) admits
the convolution kernel

sin(2|n — m|Arcsin(%\/X))
NN

Putting this together with Remark 7.10, one obtains

(8.23) ReT(\) = %, (BY) @ KK*)9,!?,

Rerp(A,n—m) = —

where E,(I)‘) : 02(Zy,) — (%(Zy,) is the convolution kernel operator given by

(B 9)(hn) = (n) ="/ *Rery, (A, n —m){m) "/ 2¢(hm), ¢ € £2(Zy).
meZ

By using Lebesgue’s dominated convergence theorem, one gets

A) (0
(8.24) lin 157, — 530, s, =0,

where S,(fl),o is the operator given by (8.9). It follows from (8.23) and (8.24) that
lim |[ReTh(\) — T¢||ls, = 0
lim [|Re Th(}) — Ty'lle, =0,
where Té‘ is the operator given by (8.8). Now, the claim follows by arguing as in part b) of the

proof of Proposition 8.3.
b) The case A % can be proved as follows. Thanks to Remark 7.10, one can write

(8.25) Ti(A) = 732 (HOR) 2RI (OB 72T @ KK %2,
with Rj := J*R;()\)J admitting the convolution kernel

ieiﬂ'(n—i—m)-ﬁ-%\n—m\Arcsin( LX)

NOXVZVIZ =D

(8.26) (A n—m)=

It follows that

(8.27) ReTh(A) = %2 (J((-)h™ 1) "/ *Re Ry (A ()R~ )~0/21* @ KK*)¥%;!?,

with Re Rj/(\) := J*Rj,(\)J admitting the convolution kernel

sin(m(n +m) + 2|n — m|Arcsin(2v/\))
VONVZVIXI=DY '

Now, the rest of the proof follows as in a) above replacing Rery, (A, n —m) by Rerj (A\,n —m) and
T by T /h2 given by (8.19). This ends the proof. O

(8.28) Reri (\,n—m) = —

To prove the next result, one will exploit Proposition 7.8 and Corollary 7.9. Nevertheless, it is
important to note that it can be also obtained by using the fact that for A € (0, %),
Im Ty (M) = 7,2 ()b~ 1)~ 2Im Ry (A ()R~ /2 @ KK*) %) /?,
where Im Ry, (\) admits the convolution kernel
cos(2(n — m)Arcsin(2/N))

VAV/A/RZ =X

Imrp (A, n—m)=
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Proposition 8.6. Let V}, satisfy Assumption 3.4. Then, for X\ € (0, %), 0 <ImT,(\) € &;.
Moreover, one has

1

(8:29) Im Th(A) = WﬁbhO‘)*bhO‘)a
where by (X) : 02(Zp,,G) — C* @G is the operator defined by
(8.30) ba(A) = (Yi(N) @ K*) 7,72,
with Y () : €2(Zy) — C? defined by (5.18).
Proof. Thanks to Proposition 7.8 and Corollary 7.9,
(8.31) Im Ty (\) = 7% (N) € &1, A€ (0,4/h%).
where w.r.t. the notations of Proposition 7.5,
un(Fgn(N))

(8.32) ‘OZ/h()\) = Uh()‘)*Uh()‘)a Uh()‘) = h1/2)\1/4(i 7 )\)1/4'
h2

It follows that Im T3 () > 0. From (7.17), one gets
2

T 2 *
)= T \/muh(ﬁghm) un (59 (0))
T 1/2 2 * 2 % 1/2
= WW [ (90 0) o (Gon ) @ KB
Thanks to (7.33), one has for ¢ € ¢?(Zy,)
Eh(0n0) o (Fan () 6(hm)
= cos[2(hn)h ™ gn(N)J((hn)h =) 7072 Y~ cos[2(hm)h ™ gn (N ((hm)h =)~/ ¢(hm)

Im Th(>\
(8.33)

(834) meEZ
+sinf2(hn)h ™ gn(W){(hn)h ™) 702 Y~ sin[2(hm)h ™ gn (W) (hm)h ™) 7/ 2¢(him)
meZ
= Yu(A)" Yi(N)p(hn),

where the operator Y, (\)* is given by (5.19). Putting together (8.33) and (8.34), one gets

(8.35) Im 7}, (\) 72 V(A V() @ KK*] %)% = (8.29).

1
T VANARE A

This ends the proof. O

The next result uses in particular the identities (see e.g. [13, Section 5.4])

dt 1
(836) /RJV:‘:(S,tT)m = ;TI' arctan(silT), s > 0,
where 0 < T =T* € 6;.

Proposition 8.7. Let vy > 3 in Assumption 3.4. As A \ 0 and A ~ hi;, the following bounds
hold:

%Tr arctan((z(1 + £))~ T Th(\)) + O(1)

dt
SAJ@(x,ReTh(A)+tImTh(A))m

< %Tr arctan((z(1 — ¢)) "' Im T3, (\)) + O(1),

for any e € (0,1) and = > 0.
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Proof. Tt follows from the Weyl inequalities (8.1) that for any ¢ € (0,1) and = > 0,
N (1 + &)z, tIm Ty (X)) — A5 (e, Re T (X))
< AN (z,Re Th(N) + tIm Tr(N))
< A((1 —e)x, tIm Th(N)) + Ao (ez, Re Th(N)).

This together with Proposition 8.5, (8.36) and Proposition 8.6 gives the claim, and ends the
proof. O

Applying Proposition 8.7 with = 1, one obtains immediately the following result:
Corollary 8.8. Let vy > 3 in Assumption 3.4. Then, for any e € (0,1),
%Trarctan((l + o) Mm Th(\) + O(1)
< FEN HyY Hy)
< %Tr arctan((1 — &) 'Im T}, (\)) + O(1),
as AN\ 0 and)\/‘%.

Now, for s > 0 and A € (0, 73), one has

thp(N)*bp(N) thn (N)bp,(N)*
8.37) Ni(s,tImThp(N)) = N8, ——=) = A N (8,1 (N
(837) Aot D) = A2 (5 A 2] = M (532 7y ) = ALl 1 3)
This together with (8.36) and Corollary 8.8 gives Theorem 5.4.
9. PROOF OF THE ASYMPTOTICS (5.22) AND (5.25)

The aim of this section is to prove identities (5.22) and (5.25). The operators 2, () and Qq 5 (A),
e € {0, %} are respectively given by (5.20) and Remark 5.5.

Proposition 9.1. Let V}, satisfy Assumption 3.4 with vo > 3. Then, for any x > 0 one has

(9.1) Tr(arctan(z~'Q) (X)) — arctan(z ™' Qo.»(N))) = Op(1), ANO,
and
(9.2) Tr(arctan(z~ ' (X)) — arctan(z ™' Qy 52 ,(N))) = On(1), A %

Proof. We only give the proof of (9.1) since the one of (9.2) follows in a similar way.
Using (8.36) and (8.37) one gets for z > 0 and X € (0, 75),

(9.3) Tr(arctan(z ™1y, (N))) = Tr(arctan(z 105 (\))),

where, according to (8.35), one has

9.4 Qn(A) = Im Ty, (A 12 V(A Y () @ KK*] 92,
with the operator Yy () : £2(Zy,) — C? defined by (5.18). Similarly, one shows that
(9.5) Tr(arctan(z™'Qon(N))) = Tr(arctan(x_lﬁoﬁ()\))),
where

~ h
(9.6) Qon(N) = —=7"2 [V Youo ® KK*] 9,2,

2V
with the operator Yy ,, : £?(Zy) — C? defined by (5.23). It follows from the Lifshits-Krein trace
formula (1.2) and identities (9.3)-(9.6) that

| Tr(arctan(z™' (X)) — arctan(z ™' Qo n(N)))|

9.7) < [ €710, 27 B0 (Dlds < 21900 ~ s (Ve
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(see [32, Theorem 8.2.1]). Thanks to (9.4) and (9.6), one has

1
AvaE—x

9.8) 1210 = QopNlle, < ITIIEE" e,

) Yi(A) -

h
—Y Yo,
2\/X 0,104 0,v0 -

Then, to conclude, it suffices to show that

1 h
9.9 H—Y N YR\ — —=YE Yool =0OGN),  ANO,
(9.9) \/X4/h2—)\h()h() /oo Yo | o (VA) N
as follows. Firstly, one can observe that for A € (0, 75),
1 h

—— Y, ()Y (\) — —=Y5, Yoo
(9.10) Voo SO SO

< ’fﬂ/T S IR Wlles + 5=V V) = Vi Vool

-1  _ _h _
a) Let us treat the first term of the r.h.s. of (9.10). It can be checked that e WIS

On(v/A) as A\, 0. Furthermore, it follows from (8.34) that
Y2 () Ya(W e, <D cos®2rgn(N)](n) ™ + D sin® 2ngn(N)](n) ™ = Y (n) ™"

nez nez nez
Consequently, one gets

‘WW AL

b) Now, let us treat the second term of the r.h.s. of (9.10). A direct computation shows that
for any ¢ € (?(Zy) and n € 7Z,

Yoo Yoo #(hn) = ((hn)h ™) 70/2 N " ((hm)h™") =0/ ?¢(hm).

meZ

(9.11) Me, = On(VA), AN\,

This together with (8.34) gives
(Y (A" Yn(A) — Yo*UOYo,uo)qﬁ(hn)

= —2sin®[(hn)h ™" gn (V)] ((hn)h~")~70/2 ZZ ((hm)h=1) =24 (hm)

— ((hn)p 1)/ Zz2sin2[(hm)h1gh(7;)e]<(hm)h1>”“/2¢(hm)

+ 2sinQ[(hn)h’lg:(i)]((hn)h71>”’“/2 ZZ2sinQ[(hm)hflgh(A)]<(hm)h*1>*”“/2¢(hm)
+sinf2(hn)h " gn(\)]{(hn)a~1) 7/ gsm[?(hm)h‘lgh(k)]<(hm)h‘1>‘”°/2¢(hm)-

It follows that
||Yh()‘)*yh()‘) YO*Uo%aVUHGl

< 4( > sin* [ngh()\)]<n>—vO) 1/2 ( Z(n)"/o) s

nez nez
+43 sin g ()] () ™ + 3 sin® [2ng (V)] (n) ™
ne”Z nez
—V 2 —V
< (4]gn(N)| + 8gx (A Zn 0 o QhﬁZn (n)="o.
nez nez

Therefore,
(9'12) 2\/—HY}L( ) ()‘) Yb V0Y07V0||61 = Oh(l)’ A \l 0.

One obtains immediately the claim by putting together (9.10), (9.11) and (9.12). O



34

M. ASSAL!, O. BOURGET?, D. SAMBOU?, A. TAARABT?

Remark 9.2. If vy > 5, then we see from the proof that more precise estimates in Proposition
9.1 may be obtained so that

(9.13) Tr(arctan(z™ ' (X)) — arctan(z™'Qqn(N))) = On(VA) = o (1), AN\ 0,

and

(9.14) Tr(arctan(z™'Qx(N)) — arctan(z ™" Qq/p2 4 (N))) = On(\/4/h% — X) = ox(1), AN %
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