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ABSTRACT

After the recent double revolutions in structural biology, which include the use of direct detectors for cryo-electron microscopy
resulting in a significant improvement in the expected resolution of large macromolecule structures, and the advent of AlphaFold
which allows for near-accurate prediction of any protein structures, the field of structural biology is now pursuing more ambi-
tious targets, including several MDa assemblies. But complex target systems cannot be tackled using a single biophysical tech-
nique. The field of integrative structural biology has emerged as a global solution. The aim is to integrate data from multiple
complementary techniques to produce a final three-dimensional model that cannot be obtained from any single technique. The
absence of atomic force microscopy data from integrative structural biology platforms is not necessarily due to its nm resolution,
as opposed to A resolution for x-ray crystallography, nuclear magnetic resonance, or electron microscopy. Rather a significant
issue was that the AFM topographic data lacked interpretability. Fortunately, with the introduction of the AFM-Assembly pipe-
line and other similar tools, it is now possible to integrate AFM topographic data into integrative modeling platforms. The advan-
tages of single molecule techniques, such as AFM, include the ability to confirm experimentally any assembled molecular models
or to produce alternative conformations that mimic the inherent flexibility of large proteins or complexes. The review begins with
a brief overview of the historical developments of AFM data in structural biology, followed by an examination of the strengths
and limitations of AFM imaging, which have hindered its integration into modern modeling platforms. This review discusses the
correction and improvement of AFM topographic images, as well as the principles behind the AFM-Assembly pipeline. It also
presents and discusses a series of challenges that need to be addressed in order to improve the incorporation of AFM data into
integrative modeling platform.

1 | Integrative Structural Biology

The study of molecular recognition has followed the second
and third precepts of Descartes [1], also known as the re-
ductionism approach. This approach assumes that under-
standing the three-dimensional (3D) structures of biological
macromolecules and complexes is a prerequisite for compre-
hending their assembly and subsequent function. Over the
past 30years, high-resolution molecular structures obtained

through x-ray diffraction or nuclear magnetic resonance
(NMR) techniques have provided a detailed understanding
of the molecular mechanisms of these macromolecules [2].
However, these techniques have mostly been successful in
studying small, globular, and soluble molecules. Despite the
successes achieved in the study of some large assemblies,
such as nucleosomes, ribosomes, or viruses, significant chal-
lenges remain when attempting to investigate membrane pro-
teins, large multivalent machineries, or large highly flexible
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systems. Recently, there has been a shift in scientific focus to-
ward challenging systems, such as macromolecular complexes
and dynamic networks [3]. Despite significant advances in
structure determination technology, particularly in the recent
context of advanced cryo-EM [4], many protein complexes
remain structurally elusive due to their unique biochemical
and biophysical properties. Therefore, a so-called integrative
(or hybrid) approach has become a practical alternative [5-7].
The aim is to combine information from different approaches,
hence the term hybrid, to analyze the structural architecture
of such complexes [8-11]. This involves interpreting data from
biophysical-biochemical experiments, extracting relevant
structural information, and generating structural models that
accurately explain the experimental data [12, 13]. Integrative
modeling platforms (IMPs) are becoming increasingly popu-
lar due to the availability of data repositories [14].

The field of integrative structural biology is expanding its list
of techniques [8]. However, atomic force microscopy (AFM)
remains poorly integrated [9], despite its growing influence on
structural biology [15] and its integration with super-resolution
optical microscopy [16]. The main reason for this oversight is
the challenge of translating topographic surfaces into structural
constraints. As previously noted, there exists a discrepancy be-
tween the stated physical resolution of AFM imaging (sub-nm)
and its practical translation into atomic information at the A
scale [17]. However, AFM boasts an exceptionally high signal-
to-noise ratio (SNR), such that a single image of a molecule
suffices to describe its exact contour [17]. Therefore, if all AFM
imaging conditions are optimal (sample quality, sample adsorp-
tion, ideally sharp tip, best imaging mode, etc...) a single topo-
graphic image of a single molecule is sufficient to provide for the
reconstruction of a complex macromolecule. Such reconstruc-
tion was presented for the first time with the AFM-Assembly
pipeline [18].

The term “AFM-Assembly” design a protocol used to assemble
three-dimensional units beneath a topographic surface provided
by an AFM image [18]. A reverse strategy is also developed
where multiple coarse-grain models of macromolecules are gen-
erated, followed by a conversion of atomic coordinates into den-
sity maps (or topographic images) [19]. A comparison between
experimental AFM and computed images then provides a fitting
score of the tested 3D model [19]. Several pipelines are currently
being developed for the rigid-body fitting of AFM data. These
developments have been reported in recent studies [20-22] in-
cluding attempts to integrate structural dynamics as flexible
three-dimensional coordinates using normal modes [23].

2 | AFM Data and Integrative Structural Biology

Our seminal idea behind the introduction of AFM data in struc-
tural biology emerged as a result of our participation in CASP
experiments in the late 1990s [24], beginning with CASP4 [25].
At that time, comparative modeling had reached a performance
plateau where easy targets were modeled correctly on a global
level, while difficult targets were modeled poorly. The difficulty
level was determined by identifying a hit using PSI-BLAST [26]
with any known protein structure that had a significant E-value
(<0.02) [25]. Prior to the alpha-fold revolution [27], modeling

strategies required a series of tricks and personal experience. In
early 2000s, we aimed to implement a significant shift in our
strategy to enhance the effectiveness of our comparative models
by incorporating external experimental data into the prediction
pipeline. The ultimate goal of a model should not necessarily be
measured by a root-mean-square metric [28], but mostly by its
usefulness [29].

Although electron microscopy was initially preferred in our
strategy (even before the direct detector revolution) AFM to-
pography data was ultimately chosen, for multiple reasons,
some scientific and some financial. In the 1990s and 2000s,
AFM demonstrated considerable potential with the produc-
tion of very high-resolution topography images by the group
of Andreas Engel in Basel on two-dimensional crystal systems
[30]. Inspired by these results, the concept of AFM-Assembly
was announced in 2005 [31] and fully developed to construct
large macromolecular systems (from large proteins to viruses)
by assembling their structural components [18]. The develop-
ment of AFM-Assembly was motivated by two other reasons.
First, the CATH statistics on the Research Collaboratory for
Structural Bioinformatics (RCSB) showed a decrease in the dis-
covery of new folds in the Protein Data Bank (PDB) (Figure 1A),
leading to the conclusion of an adequate structural coverage of
small proteins [32, 33]. Second, there was an obvious discrep-
ancy between the sequence length coverage of proteins in the
PDB and the nonredundant protein sequence world (Figure 1B)
[34]. Then, it was postulated that, in the event that fewer
novel folds were discovered, the assembly of most folded pro-
tein structures could be achieved through the combination of
known folds. It is important to note that this idea excludes com-
pletely disordered proteins or protein regions [35]. Additionally,
these considerations were also made prior to the AlphaFold
revolution [27], which now further enhances the potential ap-
plications of the AFM-Assembly pipeline by providing access to
nearly all possible protein unit structures.

AFM-Assembly is not a strictly comparative modeling approach
focused on generating three-dimensional coordinates for all res-
idues of a protein. Instead, it is a 3D jigsaw puzzle assembly. The
tool has two faces: a pipeline that can reconstruct large, flexible
macromolecules and a technique that can be used as a filter to
validate 3D structures of large systems using topographic data
as a discriminant function (Figure 2A,B). Accordingly, AFM
data can be integrated into a modeling pipeline either at its be-
ginning or at its end. Additionally, this pipeline can address the
overall fit of a large and flexible macromolecule conformation
by identifying multiple alternative conformations that are com-
patible with single isolated molecular topographies [36, 37]. It
is important to note that the same strategy can be used to de-
termine the most likely interaction between macromolecules
that bind to each other when the AFM topographic image of the
complex is available.

With regard to epistemology, the AFM-Assembly pipeline of-
fers anovel outcome in the use of single molecule imaging with
scanning probe microscopy. Despite the nanometer resolution
data, structural interpretation of AFM topographic images
was primarily limited to qualitative comparisons or hand-
made overlaps [38-50]. Not surprisingly, previous studies of
high-resolution AFM topography were biased toward flat 2D
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FIGURE 1 | Evolution of the distribution of protein sequence and
structure databases. (A) The distribution of the growth of new folds as
defined by the CATH method [138]. The plot was extracted from the
statistical data section of the RCSB website, which is no longer available.
The x-axis corresponds to years starting from 1972 (far right) to 2011
(far left). The distribution of observed folds in the Protein Data Bank
(PDB) shows a plateau in the cumulative distribution in the most recent
years of the graph (2009-2011), indicating that no new folds have been
observed in the PDB. (B) Overlay distribution of the length of protein
sequences found in a nonredundant PDB list (server Pisces [176] and
the nonredundant Swiss-Prot database [177]) in function of years.
Histograms were built using a bin size of 35 residues by extracting protein
lengths from downloaded data files For example, in 2024, the files
cullpdb_pc90.0_res0.0-3.0_len40-10000_R0.3_Xray_d2024_03_18_
chains46162 and the “ID” field of uniprot_sprot.dat were used for the
Pisces and Swiss-Prot databases, respectively. While there has been a
notable expansion in the number of protein structures, the discrepancy
in the distribution of protein sizes in sequence and structure databases
is indicative of a bias in three-dimensional structures.

molecular systems [51-55]. This observation may be explained
by the stability of the biological system on the AFM substrate,
the low roughness of the sample, and by the possible molec-
ular averaging provided by cross-correlation. Nevertheless,
AFM can also investigate the structural features of single
isolated molecules with nanometer resolution, as demon-
strated by various studies [45, 50, 56-63]. The advent of AFM-
Assembly has enabled the connection of nanometer-resolution

AFM topographic images to the atomic resolution of protein
structures [18].

In this review, we will briefly describe AFM topography data
and its processing, a key step for interpreting structural biology.
We then describe the AFM-Assembly pipeline to understand the
critical steps of the process. Finally, we outline a development
path to further integrate AFM data into integrative structural
biology.

3 | AFM Imaging

Atomic force microscopy is a near-field microscopy that enables
a wide range of physical measurements [64]. Initially developed
for surface imaging [65], AFM evolved from the earlier inven-
tion of scanning tunneling microscopy [66]. The fundamental
aspect of AFM imaging is the recording of interactions between
a scanning sensor and a sample deposited on a flat substrate.
The most common type of sensor is a silicon/silicon-nitride
nanotip placed under a micro-sized cantilever [67]. Other ma-
terials that can be used for the tip include colloidal particles
[68], carbon nanotubes [69]. The most commonly used flat sub-
strate is a phyllosilicate mineral of aluminum and potassium,
known as the muscovite mica sheet, which is atomically flat
and cleavable [67]. Other substrates exist such as silicon wafers
[70], highly-oriented pyrolytic graphite [71], and glass [72]. Most
of these surfaces can be chemically modified to allow for the
grafting of various molecular systems, such as DNA, proteins,
bacteria, and cells [73].

The optical lever detection system is the most commonly used
method for biological samples in AFM. A laser beam reflects
off the back of the cantilever onto a split photodiode [67], and
reviewed in detail by Allison et al. [74]. The piezoelectric tubes
control the displacement of either the stage or the cantilever,
depending on the AFM instrument, allowing for the surface
scanning with near-angstrom resolution [75]. An additional
piezoelectric tube often operates in the z-direction, providing
sub-angstrom vertical displacement [76]. To obtain a topo-
graphic image of a sample, a feedback loop usually connects the
photodiode detector to the z-piezo. The control of AFM imag-
ing consists in keeping the interaction force between the sample
and the cantilever constant. Therefore, if the photodiode signal
increases, it indicates that the cantilever is climbing over the
sample. To maintain a constant interaction force, the sample
stage must lower itself proportionally. As a result, tracking the
z-piezo, which controls the tip/sample movement, directly pro-
vides a sample height signal. The AFM records multiple lines to
provide a topographic surface of the sample. It is important to
note that the results are the same whether the z-piezo moves the
sample stage or the cantilever. Recent reviews have illustrated
the use of AFM for topographic surface imaging of biological
samples [77, 78]. It is important to emphasize that the major ad-
vantage of AFM imaging for structural biology is the ability to
perform AFM experiments in a liquid environment at ambient
temperature [79].

The quality of a sample has a significant impact on the per-
formance of the biophysical techniques to which it is sub-
jected, including AFM. At the nanometer resolution, it can be
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FIGURE2 | Dual usage of the AFM-Assembly pipeline. (A) An AFM topograph of a single complete Immunoglobulin G (IgG) molecule is used to
fit a complete 3D structure of an IgG (1IGT), thereby providing a best-fitting score between the atomic structure and the experimentally determined
protein topography. (B) The same AFM topograph can be used to assemble the three structural units (two Fabs, 1AY1, and one Fc, 1H3T) that
collectively define a complete IgG structure [18]. In this case, individual structural units are fitted first and a brute force combinatorial assembly is
used to generate a list of full IgG structures. The AFM topograph is shown in 3D perspective (Nanoscope software), while the protein structures are
drawn in van der Waals spheres and colored according to classical atom types. Structures are drawn using VMD [178] and rendered using Raster3D

[179].

difficult to distinguish between different globular proteins.
Although purity is not a physical requirement for AFM, as it
does for crystallization for instance, a sample that is as free of
impurities as possible is preferable. It is important to note, and
too seldom mentioned in the literature, that obtaining a per-
fect AFM topographic image is rare. AFM imaging requires a
particular alignment of parameters, including but not limited
to: imaging mode (contact, tapping, or force-based), the imag-
ing setup (feedback setpoint, scanning rate, scanning gains,
and scan size), the imaging tip (large, thin, or ultrathin), and
tip durability over time, as well as sample deposition on a flat
substrate [80]. The operator's resilience is often tested during
AFM imaging, but the effort usually pays off. It would be er-
roneous to assume that the infrequency of obtaining a per-
fect AFM image is indicative of a lack of performance or the
rarity of the observed molecular system configuration. It is
crucial to reiterate that AFM images capture the structural
details of individual molecules. It is well established that the
specific configurations of individual molecules may not align
precisely with the average configuration [81]. Although the
high degree of certainty displayed by the reference x-ray dif-
fraction technique can make a dynamical view of single mole-
cule conformations seem somewhat disturbing, it is important
to note that considering multiple alternative conformations
of proteins is actually a major benefit in protein engineering
[82]. It should be emphasized that while the molecular confor-
mation may vary, the short-range atomic coordinates remain
relatively well conserved, even in distantly related protein
structures [83]. A modeling technique should be capable of
validating multiple model conformations, instead of selecting
a single ‘ideal’ model. AFM data can contribute to this valida-
tion process in the field of integrative structural biology.

4 | Topographic Image Corrections
Scanning atomic force microscopes acquire data line by line.

Each line consists of a set of data points that correspond to phys-
ical measurements such as height, phase, and signal error. These

data points are often referred to as pixels in everyday language,
but this term can be confusing for unfamiliar users as it suggests
that AFM topographic data are images, when in fact they are true
measurements represented by a series of 32-bit float data. Early
on, it was recognized that the scanning direction in the raw data
may not be normal to the sample surface, often requiring several
corrections [84]. One of the most common issues observed is the
presence of tilt and/or bow. Most instrument systems and classi-
cal free processing software such as Gwyddion [85], now include
standard corrections (Figure 3A-H). This task should not be
underestimated as it has consequences in image interpretation,
specifically in determining height and volume. It is important to
note that flattening can only be applied when the background
surface is visible in the AFM image. It is not appropriate to cor-
rect the flatness of objects, such as cells or layers of nanopar-
ticles. Only a visible background can be corrected. Automated
systems have been developed to improve the task of making opti-
mal corrections [86, 87]. Another permanent artifact in AFM im-
ages is known as the tip effect, which causes the thickening of all
imaged particles due to the finite size of the AFM tip. Corrective
methods have been developed for estimating the “true” size of
sample images by AFM, such as for protein-DNA samples [88]
or nanoparticles deposited on flat or rough substrates [89]. An
optional step in reducing the scanning tip effect is to use ero-
sion as an image-processing step of the AFM topography. A suc-
cessful erosion depends on various parameters, including data
resolution, tip radius, biological samples (single protein or large
virus), and the structural biology question to be answered. To
erode a dilated AFM image, it is essential to have an accurate un-
derstanding of the shape of the AFM tip. A number of methods
can be used to determine the shape of an AFM tip, including the
use of rod-shaped virus of known dimensions [90], the creation
of artificial nanostructures of specified shapes [91], or the utili-
zation of an AFM image of the tip [92]. Another methodology
involves deconvolution using the localization of the true contact
point between the AFM tip and the sample [93]. A shrewd imple-
mentation of this idea simultaneously increased the local sample
resolution of the imaged object and reduced its apparent dilation
[94]. If information about the AFM tip used to image the sample
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FIGURE3 | Legend on nextpage

is unavailable, a model tip can be defined based on the manu- important to note that an overestimation of the tip radius is pref-
facturer's specifications. The tip can be modeled as a cone with erable to an underestimation. The Villarrubia algorithm [95] is
a sidewall angle and a tangent sphere with a given radius. It is used to perform dilation and erosion operations on topographic
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FIGURE 4 | Molecular effect of dilation/erosion on a simulated
topography surface. The antibody molecule is represented in red
spheres. The simulated AFM topography of the antibody molecule is
represented by cyan spheres. The corresponding eroded surface is
shown in green spheres/dots surface. Dilation/Erosion calculations are
performed using the routines developed by Villarubia [95].

images represented as 2D matrices (Figure 4) while recent devel-
opments include the reconstruction of reentrant surfaces or un-
dercut features [96]. More recently, neural networks have been
trained using deep learning on tip-convoluted and deconvoluted
image pairs [97].

Microscopy data can be degraded by the presence of streaks,
scratches, stripes, or curtain artifacts [98]. For instance, the
origin of stripe noise can be attributed to the inadequate cal-
ibration of the relative gain, including the offset between for-
ward and backward scans [99], environmental factors such as
temperature, hygrometry, vibration, and acoustic noise, all of
which are amplified when the scanning process is accelerated
[100], and the truncation of the high-frequency signal [101],
not to mention the ubiquitous random noise. A detailed de-
scription of common artifacts in AFM images has been pro-
vided elsewhere [75, 102]. To correct noise or artifacts from
an image, filters are not always effective in completely remov-
ing noise and may also damage some important quantitative
information [103]. For example, classical destriping methods

identify “noisy” pixels and replace them with spatially inter-
polated values. However, this approach raises a data integrity
issue [104]. The periodicity in stripe noise suggests that it can
be removed through spectral analysis, followed by the removal
of specific frequency components [99, 105]. The frequency-
based method is similar to low-pass filters, which are not a
perfect solution because they also eliminate some structural
details that are only partially described by the removed fre-
quencies, resulting in blurring, or ringing artifacts [99].
Furthermore, frequency domain processing may not be effec-
tive for a low density of stripes due to the absence of a strong
peak in the signal data [106]. However, a recent comparison
of different methods for filtering out the stripe noise shows
that frequency-based methods (such as DeStripe) can perform
well on conductive atomic force microscopy data [107]. Stripe
noise is not the only processing available for AFM topographic
images. Advanced filtering methods have also been developed
to improve the visibility of images.

Because of the numerical complexity of AFM data, which is
expressed as a matrix of float values, it is common to visualize
such data using a color spectrum that translates the physical
measurements into shades of gray/color. It is important to
note that while the physical data is present, human perception
fails to recognize all the quantitative information present in
AFM data. This was the rationale behind the development of
a set of advanced processing filters that aim to improve the
visibility of an AFM topographic image [108]. The first filter
combines stripe noise reduction with histogram equalization
and computation of the mixed partial derivative of pixel in-
tensity Dﬁyl(x,y)sazI(x,y) /oxdy, where I(x, y) is the intensity
at pixel (x, y). In short, the chy operation was used to reveal
the magnitude of the intensity change. The visualization of
protuberances of individual coat proteins of tobacco mosaic
virus was made possible through this process [109]. Other
image processing methods, such as the Bayesian-based itera-
tive method for reconstructing fuzzy images, have also been
utilized [110]. The compress sensing method's reconstruction
capability has been tested with AFM data. This is a new type
of sampling theory that allows the signal to be reconstructed
from significantly fewer measurements [111] than required
by the Nyquist-Shannon sampling theorem. Further develop-
ment involves applying the Laplacian function of image in-
tensity to enhance image contrast using either an additive or
multiplicative factor (Figure 3G,H [108]). The effectiveness of
the L-weight filter can be observed in the case of small, iso-
lated single DNA-binding proteins [63] or helical assembly of
partially disordered proteins into fibers [112]. However, this

FIGURE 3 | Various steps of AFM data correction and advanced processing with a scan of 1 um? of 1024 pixels?. (A) Raw AFM height image of
a linear DNA segment of 2364 base pairs. A slope is observed in the imaged sample, with a notable variation in the color scale from the bottom to
the top of the image. (B) The initial correction step is to flatten the raw data using a mean plane subtraction in Gwyddion [85]. Given that the DNA
sample is deposited on a highly flat mica surface, it is evident that the image correction is not yet complete. (C) The final correction is achieved by
adding a line flattening step (row alignment) using the median method. The image is fully corrected. (D) The same processing steps as in (B and C)
were performed, but in a different orders. Step C was performed before Step B. The correction result is different from previous Step C. It highlights
the important of the order of the processing steps. (E) In certain instances, it is possible to enhance the correction steps by excluding the sample
pixels (highlighted in blue) and running another row alignment through a polynomial method (order 3) while excluding the sample pixels. (F) Final
corrected AFM data where the color scale is adjusted to enhance the visibility of the DNA molecule. It should be noted that the color scale does not
start at Onm. Advanced image processing may be employed using either the Laplacian mask filter (G) or the Laplacian weight filter (H), as described
by Chen et al. [108].
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filter has the disadvantage of losing the height scale, which
is then expressed in arbitrary units. For optimal results, this
gradient-based method should be applied to images with a
large number of pixels. It was observed that a minimum of
512 or 1024 pixels gave the best results. A notable side effect
of the L-weight filter is the reduction of the tip effect in AFM
topography images, which opens the door to advanced fitting
capabilities of AFM data in integrative structural biology, pro-
vided that the vertical data scaling is rectified.

5 | AFM-Assembly Pipeline

The AFM-Assembly pipeline is a set of scripts and programs
designed to build multi-domain protein structures using a
high-resolution AFM topographic images and atomic coor-
dinates of the constituent protein domains [18]. Additionally,
AFM-Assembly can simply compute a fitting score between
an AFM topographic image and a single protein conformation
(Figure 2A) [113]. The main idea behind AFM-Assembly is to
convert AFM topographic images into volumetric data and
then fit all structural units within the created volume using
a six-dimensional full-space search [114]. This includes trans-
lation in three X, Y, and Z axes and the three rotation Euler
angles [18]. To use the AFM-Assembly pipeline, an AFM topo-
graphic image (usually a crop of a larger image) and structural
units of proteins of interest (usually in the form of a PDB file)
are required.

Small data crops are extracted from the corrected AFM image
using Gwyddion (Figure 3A-H) [85]. The final size of the crops
in pixels are adjusted to fit the computing grid using Gwyddion's
interpolation function (Schaum algorithm). It is not recom-
mended to scale beyond x4. To fit structural units under AFM
topography, the quality of the surface is crucial, and therefore
the highest possible raw AFM data resolution should be ac-
quired (0.5-1nm/pixel). The second set of inputs consists of the
structural units or individual macromolecules. The Cartesian
coordinates of the structural units are typically obtained from
the PDB [115]. To reduce the computational cost of reconstruc-
tion, individual unit structures can be extruded (Figure 5) by
removing buried atoms in the molecule using the Adepth server
[116] or simply selecting carbon alpha (Ca) reduced structures.
In any case, the resolution of AFM topography is insufficient for
precise positioning of flexible atoms on surface proteins. Despite
this limitation, full-atom fitting has been found to be successful
in several systems [36, 37]. This success is usually attributed to
the lower resolution of AFM topography compared with atomic
resolution data of protein structures. It is also important to note
that 3D coordinates obtained from the PDB represent a static
view of a protein structure. Therefore, there is no guarantee that
the side chains of protein structures in a 3D crystal will have a
similar orientation as in a single molecule deposited on mica.
However, this is not a major limitation for the fitting of atomic
coordinates under the nm-resolution AFM topographic images.
Recent developments suggest that using Ca protein structures
as input for the AFM assembly pipeline (unpublished data) can
also yield successful results.

To reconstruct a large protein structure from its constituent frag-
ments, it is necessary to map the AFM topographic surface onto

a 3D Cartesian grid. The topographic surface is interpolated to
contain the same number of pixels as used in the grid (docking
step). The conversion of DOT?2 [117] from a docking program to a
fitting program was made possible by converting the AFM topo-
graphic surface into a volume. The AFM data are then mapped
onto grid points. Points above the AFM topographic surface are
labeled as “forbidden”, while those below are labeled as “attrac-
tive.” The thickness of the attractive layer is user-defined and
typically ranges from 8 to 15A (Figure 5). Each protein struc-
tural unit is independently fitted under the AFM topographic
image using an exhaustive search with the FFT-based rigid body
docking software DOT2. Each unit of the protein structure is
translated to every node of the grid followed by a rotation step
(from 6° to 20°) and a restart of the translation search, thereby
defining a unique pose. A score is computed for each pose at each
grid point based on the number of atoms of the fitted structure
that are within the attractive layer. To reconstruct the complete
protein structure, it is necessary to assemble each constituent

EORBIDDEN: LAYER:

STATIONARY
NEUTRAL
ZONE <

MOVING

’ MOLECULE
(3A EXTRUDED
SHELL)

FIGURE 5 | Conversion principles of the DOT2 docking program
into a fitting program. The computations are performed on a cubic
grid. The grid is used to map atomic coordinates (illustrated by the
extruded green spheres beneath the orange molecular surface) and the
topographic data depicted here by the interface between an attractive
layer in cyan (favorable) and a forbidden layer in magenta. In all other
locations, the volume is considered to be a neutral zone. In the context
of the DOT2 docking language, the topographic surface is regarded as
the stationary system, whereas the atomic coordinates are designated
as the moving system. The thickness of both layers is user-defined and
depends on the shape of the molecular system (or the fitting purpose).
The computation is accelerated by a FFT that was optimized for three-
dimensional real transforms [114]. The orange molecule is translated
to each grid point in all directions. Subsequently, the orientation of the
orange molecule is altered, and the translation process is resumed. A
straightforward fitting score is calculated by counting the number of
green atoms that enter the attractive layer [18].
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fragment. Our homemade software, combine, is used to perform
the final assembly of all constituent fragments. In brief, a brute
force exhaustive search is performed between the N-top fitting
poses of each structural unit. The computation time increases
exponentially with the number of poses used for each constituent
fragment, resulting in a large number of possible combinations.
Currently, we use around 2000 poses for a structure composed
of three structural units to ensure reasonable computation time
reasonable (a few hours). Note that the total number of structural
units of a macromolecule should determine the number of poses.
Distance constraints can be defined to limit the number of pos-
sible combinations and avoid testing unrealistic configurations,
further reducing computation time. It is important to note that
when assembling a flexible multi-domain macromolecular sys-
tem or docking two macromolecular systems against each other,
the same computational search is used.

6 | Perspectives

This section presents potential ways to enhance the integration
of AFM data into modeling platforms. The basic concept of inte-
grative structural biology is to integrate more data from different
sources to achieve useful 3D models [6]. Integrative structural
biology aims to provide understanding of structural biology,
from atoms to molecules, from molecules to cells, and from cells
to tissues, through high-resolution 3D structures. Illustrative
works were pioneered in the realm of AFM imaging during the
1990s [70, 118-120]. The following paragraphs identify critical
topics that are perceived as obstacles to the introduction of AFM
in integrative structural biology.

How can an AFM-based pipeline be improved to become an
IMP? According to the founding principles, an IMP should
integrate data from multiple sources. Atomic coordinates can
be fitted for electron microscopy data using efficient flexible
fitting software [121, 122]. Can AFM-Assembly integrate data
from related biophysical sources like cryo-electron microscopy
(cryo-EM) or small-angle scattering techniques (such as x-ray,
SAXS, or neutrons, SANS)? In principle, the strategy of fitting
atomic coordinates beneath a topographic surface can handle
any volumetric data, such as an external surface density, pro-
vided by cryo-EM or SAXS. If a conversion tool is available,
such as the one present in the SITUS package [123], it is possi-
ble to convert a density volume into a PDB structure. The full
6D search can exhaustively place atomic coordinates within
the volume by centering the volumetric density in the cubic
grid of DOT2. Similar to AFM-Assembly, an attractive layer is
constructed inside the volume while a forbidden layer is placed
outside the volume boundary. Therefore, the AFM-Assembly
pipeline should be able to run with cryo-EM or SAXS-derived
data, with only a minor change in the input handling.

A critical aspect of a complex computer pipeline is to ensure
the delivery of data in a standard format. In other words, stan-
dardization is essential for computational pipelines. This was
accomplished successfully for 3D atomic structures with the
construction of the Protein Data Bank [124], its extension in-
cluding a pipeline for data collection, processing, archiving,
and query [115], and further refinement through the wwPDB
[125]. The PDB format provided a structured file format for

macromolecular structures, including proteins, DNA, sugars,
lipids, and small molecules. However, due to the amount of data
and the speed of its acquisition, the PDB format has become ob-
solete and has been replaced by the newer mmCIF file format
[126]. Unfortunately, there is currently no databank for AFM
data, yet. One of the main challenges in AFM is the variety of
data types, including images, force-distance curves, and force-
volume maps, as well as the different recording modes such as
height, phase, friction, or signal error. However, despite previous
standardization efforts in AFM [127-131], file format standard-
ization remains a major obstacle. It is important to recognize
that standardization efforts should not be underestimated, as
they require significant resources and efforts both on the meta-
data dictionary definition and on the computer pipelines. There
is a trade-off between flexibility and reliability in AFM data
standardization. Excessive flexibility creates a significant bar-
rier to mastering the pipeline, while strong reliability can limit
its applicability. Therefore, it is crucial to standardize AFM data
to achieve the same level of accessibility [132] as other structural
techniques such as PDB [124], EMDB for cryo-EM data [133], or
SASBDB for small angle scattering data [134].

The development of advanced systems requires well-controlled
pipeline automation. As previously mentioned, AFM image
processing has attempting automation, as demonstrated by the
TopoStats program [87]. The objective is to correct raw AFM
image data using a robust procedure. Subsequently, with a cor-
rected AFM image, the next step is to automatically extract to-
pography of isolated single molecules. The challenge lies not in
the technical aspect, but in the selectivity of this step. Classical
image segmentation tools such as thresholding, watershed,
and similar techniques [135], provide the basis extracting topo-
grams. One challenge is to screen for “unspecific” topograms
that do not accurately describe the surface of the molecule of
interest. This step is accessible to human vision, but requires
additional knowledge for an automated program. This includes
the expected molecular height, size, and the effect of the AFM
imaging mode. Additionally, it is important to consider the ex-
pected contamination of the sample, as this can greatly impact
the efficiency of segmentation. Segmentation of an AFM image
is straightforward for a pure sample and a recently developed
object detector gave interesting results on single DNA mole-
cules [136]. However, in the presence of denatured particles,
contaminating particles, or fuzzy topographic edges, this step
can be compromised, and manual picking may be necessary.
Therefore, even though image segmentation or picking is com-
monly used for EM data, there is a need to develop automated
picking features for AFM images.

The AFM-Assembly pipeline requires multiple sets of 3D co-
ordinates for the investigated molecule or coordinates of the
interacting molecules. The definition of structural units in pro-
tein structures is rather fuzzy and does not correspond to the
“standard” topological definition. Structural units in a multi-
meric system may include monomers, functional units such as
catalytic subunits, or regions of low flexibility (lacking flexible
linkers). Practical definitions, such as the use of tobacco mosaic
virus disks to assemble a larger section of TMV, are also possi-
ble [18]. Manual and automated computational approaches have
been developed to detect domains in protein structures [137-139]
and evolutionary-based domain identification has also been
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developed in Ecod [140]. Recent attempts to delineate domains
in protein structures include Chainsaw, a novel neural network
supervised learning approach [141], and Spectraldom that ap-
plies a graph coding inter-atomic fluctuations derived from
an elastic network model to delineate protein domains [142].
Spectraldom is built upon Spectrus that is efficient in providing
multiple subdivisions of a protein [143].

However, current sequence- and structure-based methodolo-
gies do not fully capture the visual classification of structural
units necessary for assembling large macromolecular sys-
tems. The identification of flexible linkers in proteins alone is
insufficient to meet this requirement. For instance, a standard
type G immunoglobulin (IgG) is composed of three units: two
Fabs and one Fc. Each Fab is composed of two chains, each
chain consisting of two domains, and each domain contain-
ing a single Ig-like fold. In this case, Pfam separates the two
Fv domains due to a short structural link between the two
consecutive Ig folds [144]. However, the structural flexibil-
ity of two consecutive Ig folds is rather limited compared to
the flexibility between a Fab and an Fc unit, essentially due
to the dimerization of the light and heavy chains of a Fab.
Additionally, the Spectrus approach has a limitation in the
input as it only accepts proteins based on their PDB chains
[143]. This is a limitation for antibody structures. Accurately
defining the structural unit at the start of the project, which
is currently a manual step, is crucial. For instance, the use of
metafolds is not a promising strategy, despite their potential
to simplify the fold space [145], similarly to use the definitions
employed in the CASP experiments, as they were intended to
classify targets based on prediction difficulty [146]. Manual
curation of protein folds is ongoing [139], with recent focus on
defining evolutionary domain [140]. A graph-spectral method
[147] may be a promising approach for identifying structural
units. Are the use of elastic network models or the identifica-
tion of deeply buried structural cores be promising avenues
for research? Therefore, although there are structural domain
predictors, further development is still needed to describe pro-
tein structures hierarchically and simplify three-dimensional
coordinates, such as expected by the definition of units within
AFM-Assembly.

The AFM-Assembly pipeline can also perform simple shape
fitting by limiting its activity to a 6D search of the atomic co-
ordinates beneath the topography image [113]. To take full
advantage of this mode, alternative protein structures should
be provided, and thus avoid the assembly (combine) part of
the pipeline (Figure 2B). The question is whether one protein
conformation fits better than another one under the experi-
mental topography image. The use of AlphaFold to provide
complete atomic structures of any protein is undoubtedly ad-
vantageous. However, to determine the best fit, it is preferable
to test hundreds or thousands of putative structures. There are
several approaches to provide alternative protein structures,
such as full-atom simulations (molecular dynamics [148] or
Monte Carlo search [149]) or normal mode analysis. The ad-
vantage of MD simulation is the physical-based quality of
the atomic structures, while the MC simulation offers larger
conformational space sampling. However, both methods have
a major drawback of intensive computational costs with a
rather low diversity of generated protein structures. A simple

method (Concoord) has been developed to obtain most prom-
inent collective structure variations [150], however, limited to
the concept of structural fluctuations. To study the collective
motion of atoms in a protein structure, normal mode analysis
is a computational method that can be used [151, 152]. Normal
mode analysis can provide insight into the flexibility and dy-
namics of a protein by calculating its vibrational modes. These
vibrational modes represent the different ways in which a pro-
tein can move without breaking covalent bonds. The normal
modes with the lowest frequency are associated with the sig-
nificant amplitude conformational changes in proteins. To
speed up the calculation of normal modes of large proteins,
various methods have been employed [153], such as the non-
linear rigid block method [154]. From these simulations, it
is possible to generate of a set of pseudo-random molecular
structures with a constant RMSD from a reference molecule
[155]. Additionally, the Gaussian mixture model, an extension
of normal modes, has been used to produce diverse protein
conformations from simulated AFM images [19]. Recent de-
velopments in elastic network models are enhancing the abil-
ity to predict the functional states of proteins [156]. Further
progress in characterizing conformational variability is prom-
ising [157]. Therefore, there is a need to develop techniques
that can generate alternative protein structure conformations,
including the possibility of generating an “equidistant beyond
fluctuation” set of protein structures, at least from an atomic
coordinate perspective rather than an energetic one.

An alternative approach to generating alternative protein
structure conformations is to directly image single molecules
in real time. This is currently accomplished through the use
of high-speed atomic force microscopy (HS-AFM). HS-AFM
is a technique that allows for rapid imaging of surfaces [158].
The instrument was designed to capture dynamic processes in
real-time with high spatial resolution. The principles of HS-
AFM are based on a meticulous optimization of the tip-sample
interactions, an enhanced feedback control system, and the
implementation of advanced imaging modes [159]. In particu-
lar, HS-AFM benefits from the improvement of small cantile-
vers [160], which allows for excitation frequencies in the MHz
range. Furthermore, the development of sample surface prepa-
ration techniques, such as streptavidin 2D crystals, which per-
mit the binding of biotinylated single proteins [161] has been
instrumental in enabling high-speed imaging. To cite a few
examples, HS-AFM has been used to visualize intrinsically
disordered regions of proteins [162], to image “walking” myo-
sin V [163], to image the growth and assembly of amyloid-like
fibers [164], to image rotary catalysis of F1-ATPase [165], to
characterize the motion of membrane proteins [166], to study
membrane deformation [167], or to image various systems as
transmembrane channels and transporters [168]. Additionally,
high-speed AFM is capable of providing information in high-
speed force spectroscopy [169], as demonstrated by Rico et al.
[170] or of studying single protein unfolding [171]. The con-
nection established between AFM topography and macromo-
lecular structures with the AFM-Assembly pipeline has been
already extended to HS-AFM data [172] where the authors
survey various methodologies, including simulations, rigid-
body fitting, and flexible fitting, which are used to construct
3D atomic structures from AFM images. Recently, an exten-
sion of an existing frame-by-frame rigid-body fitting analysis
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has been adapted to multiple frames in HS-AFM data [21].
Similarly to AFM data, a reverse strategy has also been applied
to HS-AFM data with 3D coordinates obtained from molecu-
lar dynamics simulations [173]. In such a reverse strategy, the
conformational space of the molecule of interest is extensively
covered. A transformation of such conformational poses into
simulated AFM images allows for a direct comparison with
AFM and HS-AFM experimental data. Once a fit between the
experimental and simulated images has been identified, the
corresponding conformational pose can be readily extracted
[22]. The integration of these flexible fitting methods into a
comprehensive modeling pipeline, along with the incorpora-
tion of HS-AFM data, remains the most exciting challenge
currently facing the field.

The most demanding pipeline step is undoubtedly the fitting
scoring function. This is because the ranking of conformational
poses critically influences the assembly of structural units into
complete molecules [6]. Additionally, the ranking is also essen-
tial for selecting alternative conformations, as explained above.
Alternative conformations are not necessarily uncertainties but
instead the expression of the dynamics in protein function. AFM
data present a challenge due to the difference in scale between
topography (in the nm range) and atomic coordinates (in the A
range). Recent developments using localization image recon-
struction algorithms allow the improvement of AFM topographic
image resolution beyond the limits imposed by the tip radius
[174]. Similar to super-resolution fluorescence microscopy, lo-
calization atomic force microscopy (LAFM) takes advantage of
the superposition of AFM images (trace, retrace, and averaging)
and the extraction of local maxima. It is then possible to assign
a probability function to these local maxima and produce im-
proved LAFM maps. This new family of AFM image processing
is likely to improve the integration of AFM data into structural
biology applications [175].

Smoothing and interpolation may also be applied, but as
demonstrated in the image processing section, these tech-
niques can introduce artifacts that negatively impact the
scoring function. To simplify matters, atomic structures can
be represented as coarse grains or simply a Ca trace. But, the
conversion to topography (simulated AFM images), or vice
versa becomes more arduous. In AFM-Assembly, scores differ
between fitting and assembly. The fitting score is proportional
to the number of atoms from the tested structure, that are
within the expanded volume under the topographic surface.
Consequently, this scoring function produces different scores
for the same molecule depending on whether a full atom or Ca
trace representation is used. To address this issue, a normal-
ization procedure should be developed. In the “combine” step,
the score is determined by the agreement with distance con-
straints as well as the height of pixel (i, j) on the experimental
image and the theoretical topographic image generated from
the evaluated assembled model [18]. Studying the impact of
different scoring functions, such as those used in simulated
AFM topographic images with known protein 3D structures,
can indicate the appropriate scaling to apply between the sur-
face and the atomic data. Therefore, there is a need for the
development of new scoring functions in the field of AFM in-
tegrative structural biology. Developments apply to both the
reconstruction process (combine) and the global fitting score

to validate the agreement between a predicted molecular con-
formation and an AFM topographic image of the molecule.

A crucial aspect to consider when designing advanced integra-
tive structural biology computational pipelines is their acces-
sibility. While open source is the preferred option, it may not
be sufficient. The strategy for using the pipeline is critical. Will
it be run on a remote server or locally? Does it contain third-
party software that taints the open source principle and makes
portability difficult? Can the pipeline be easily packaged for
installation on multiple computer architectures? How can fu-
ture pipeline developments be ensured by depositing the source
code on open-source platforms such as the GitHub or GitLab
repositories? Who will be responsible for maintaining the pack-
age? These are often overlooked details when starting a project,
but they can become limitations to the FAIR usage of integra-
tive modeling pipelines. From a long experience in laboratory
software development (as opposed to company software), I have
found that the user interface is constantly the most critical as-
pect in terms of both design and development time. It is essen-
tial to decouple the computational routines from the graphical
interface, especially for young scientists who are not computer
experts and are interested in developing laboratory software.
Graphical interfaces often rely on libraries that are constantly
evolving, sometimes resulting in a lack of backward compat-
ibility. Additionally, the graphical interface may become an
easy step for future Al-based programming. Therefore, it may
be more efficient to focus on computation under the command
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FIGURE 6 | Data workflow of an optimal integrative modeling

pipeline (IMP). The experimental data are symbolized by a medallion
above the funnel. A nonexhaustive list of data sources includes small
angle scattering (SAS), chemical cross-linking (XL), atomic force
microscopy (AFM), mass spectrometry (MS), x-ray crystallography
(X-ray), nuclear magnetic resonance spectroscopy (NMR), electron
microscopy (EM), alphafold server (AF), bioinformatics (bioinfo), and
any additional putative technique, which is listed under “?” An optimal
IMP would filter input data (reformat, correct, sort, rank, reject, etc.)
prior to computing theoretical models and finally assembling the
desired complex output. An optimal IMP will prioritize the ranking of
intermediate and final constructions, reintroduce these data sets into
the input, reject any inconsistent initial input data, and perform a virtue
cycle by reprocessing models anew. It is important to note that the
naming of experimental data is inclusive and does not restrict them to a
particular set of experiments or computer versions.
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line of the Linux environment before spending time choosing a
graphical interface.

What would the ideal integrative modeling platform look like?
In brief, it would be a self-deciding pipeline that recognizes the
quality of input data, automatically selects which data to include,
how to include it, and which technique to use when assembling
output computational models. The platform should enable contin-
uous improvement of a model by adding new data, rejecting some
unreliable previous data, and reformulating a new set of models
(Figure 6). This is a long wish list, but all these steps are critical
in producing useful models. Keep in mind that each step listed is
composed of a set of multiple tasks that each deserves a tight co-
operation. Also, remember that the goal of computational models
is to enlighten the function of biological molecules in the context
of the cell or tissue. Nice-looking pictures or movies do not suf-
fice. A main difficulty is the limited experience available in a single
laboratory. The greater challenge is the need to shift the protein
structure paradigm to accept that multiple conformations are not
a lack of decision (selection criteria) but the best representation of
functional molecules. Achieving this requires a concerted effort by
a conglomerate that agrees to develop a part of such an ideal plat-
form. This effort will require a high level of standardization and a
smooth communication between the participating teams. Perhaps
it is time for a young explorer to take up the pilgrim's staff and ex-
plore the possibility of forming such a conglomerate.

Author Contributions

J.-L.P. wrote this review.

Acknowledgments

IBS acknowledges integration into the Interdisciplinary Research
Institute of Grenoble (IRIG, CEA). This work acknowledges the AFM
platform at the IBS. The initial part of this work was supported by the
French ANR agency (grant ANR-07-PCVI-0002-01 to J.-L.P.). J.-L.P.
extends his gratitude to Shu-wen W. Chen for her invaluable assis-
tance and expertise in advanced AFM image processing and computa-
tional structural biology. J.-L.P. thanks Minh-Hieu Trinh for bringing
AFM-Assembly to life and for creating some original images of the
AFM-Assembly principles, and Rui C. Chaves for building the AFM-
Assembly pipeline. J.-L.P. thanks Elisabetta Boeri-Erba (IBS-EPIGEN)
for providing a MS spectrum, Florine Dupeux (IBS-VRM) for providing
an x-ray diffraction pattern, Grégory Effantin (IBS-MEM) for providing
a Cryo-EM image, Cédric Laguri (IBS-MP) for providing a NMR spec-
trum. The contribution of DeepL/write to improve the quality of the
manuscript is acknowledged. J.-L.P. thanks Sergei Grudinin and Felix
Rico for their constructive criticisms of the manuscript.

Conflicts of Interest

The author declares no conflicts of interest.

Data Availability Statement

Data sharing are not applicable to this article as no new data were cre-
ated or analyzed in this study.

References

1. R. Descartes, Discours de la méthode pour bien conduire sa raison,
et chercher la vérité dans les sciences (Grand'Salle du Palais: Girard
Théodore, 1668), https://gallica.bnf.fr/ark:/12148/bpt6k56982285.

2. M. Egli, “Diffraction Techniques in Structural Biology,” Current
Protocols in Nucleic Acid Chemistry 65 (2016): 7.13.1-7.13.41, https://doi.
org/10.1002/cpnc.4.

3.R. Nussinov, C. J. Tsai, A. Shehu, and H. Jang, “Computational
Structural Biology: Successes, Future Directions, and Challenges,”
Molecules 24 (2019): 637, https://doi.org/10.3390/molecules24030637.

4. W. Kuhlbrandt, “Biochemistry. The Resolution Revolution,” Science
343 (2014): 1443-1444.

5. F. Alber, S. Dokudovskaya, L. M. Veenhoff, et al., “Determining the
Architectures of Macromolecular Assemblies,” Nature 450 (2007): 683—
694, https://doi.org/10.1038/nature06404.

6. A. Sali, “From Integrative Structural Biology to Cell Biology,” Journal
of Biological Chemistry 296 (2021): 100743, https://doi.org/10.1016/j.
jbc.2021.100743.

7.D.S. Ziemianowicz and J. Kosinski, “New Opportunities in Integrative
Structural Modeling,” Current Opinion in Structural Biology 77 (2022):
102488, https://doi.org/10.1016/j.sbi.2022.102488.

8. A.B. Ward, A. Sali, and I. A. Wilson, “Integrative Structural Biology,”
Science 339 (2013): 913-915, https://doi.org/10.1126/science.1228565.

9. M. P. Rout and A. Sali, “Principles for Integrative Structural Biology
Studies,” Cell 177 (2019): 1384-1403, https://doi.org/10.1016/j.cell.2019.
05.016.

10. L. Cerofolini, M. Fragai, E. Ravera, C. A. Diebolder, L. Renault, and
V. Calderone, “Integrative Approaches in Structural Biology: A More
Complete Picture From the Combination of Individual Techniques,”
Biomolecules 9 (2019): 370, https://doi.org/10.3390/biom9080370.

11.S. J. Ziegler, S. J. B. Mallinson, P. C. St John, and Y. J. Bomble,
“Advances in Integrative Structural Biology: Towards Understanding
Protein Complexes in Their Cellular Context,” Computational and
Structural Biotechnology Journal 19 (2021): 214-225, https://doi.
org/10.1016/j.csbj.2020.11.052.

12. C. Dominguez, R. Boelens, and A. M. Bonvin, “HADDOCK: A
Protein-Protein Docking Approach Based on Biochemical or Biophysical
Information,” Journal of the American Chemical Society 125 (2003):
1731-1737, https://doi.org/10.1021/ja026939x.

13. D. Russel, K. Lasker, B. Webb, et al., “Putting the Pieces Together:
Integrative Modeling Platform Software for Structure Determination
of Macromolecular Assemblies,” PLoS Biology 10 (2012): 1001244,
https://doi.org/10.1371/journal.pbio.1001244.

14. B. Vallat, B. Webb, J. D. Westbrook, A. Sali, and H. M. Berman,
“Development of a Prototype System for Archiving Integrative/Hybrid
Structure Models of Biological Macromolecules,” Structure 26, no. 6
(2018): €892, https://doi.org/10.1016/j.str.2018.03.011.

15. A. C. Dumitru and M. Koehler, “Recent Advances in the Application
of Atomic Force Microscopy to Structural Biology,” Journal of Structural
Biology 215 (2023): 107963, https://doi.org/10.1016/j.jsb.2023.107963.

16. R. K. G. Tank, V. A. Lund, S. Kumar, et al., “Correlative Super-Resolution
Optical and Atomic Force Microscopy Reveals Relationships Between
Bacterial Cell Wall Architecture and Synthesis in Bacillus subtilis,” ACS
Nano 15 (2021): 16011-16018, https://doi.org/10.1021/acsnano.1c04375.

17. P. Fechner, T. Boudier, S. Mangenot, S. Jaroslawski, J. N. Sturgis, and
S. Scheuring, “Structural Information, Resolution, and Noise in High-
Resolution Atomic Force Microscopy Topographs,” Biophysical Journal
96 (2009): 38223831, https://doi.org/10.1016/j.bpj.2009.02.011.

18. M.-H. Trinh, M. Odorico, M. E. Pique, et al.,, “Computational
Reconstruction of Multidomain Proteins Using Atomic Force Microscopy
Data,” Structure 20 (2012): 113-120, https://doi.org/10.1016/j.str.2011.
10.023.

19. B. Dasgupta, O. Miyashita, and F. Tama, “Reconstruction of Low-
Resolution Molecular Structures From Simulated Atomic Force
Microscopy Images,” Biochimica et Biophysica Acta 1864 (2020): 129420,
https://doi.org/10.1016/j.bbagen.2019.129420.

11 of 16

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://gallica.bnf.fr/ark:/12148/bpt6k56982285
https://doi.org/10.1002/cpnc.4
https://doi.org/10.1002/cpnc.4
https://doi.org/10.3390/molecules24030637
https://doi.org/10.1038/nature06404
https://doi.org/10.1016/j.jbc.2021.100743
https://doi.org/10.1016/j.jbc.2021.100743
https://doi.org/10.1016/j.sbi.2022.102488
https://doi.org/10.1126/science.1228565
https://doi.org/10.1016/j.cell.2019.05.016
https://doi.org/10.1016/j.cell.2019.05.016
https://doi.org/10.3390/biom9080370
https://doi.org/10.1016/j.csbj.2020.11.052
https://doi.org/10.1016/j.csbj.2020.11.052
https://doi.org/10.1021/ja026939x
https://doi.org/10.1371/journal.pbio.1001244
https://doi.org/10.1016/j.str.2018.03.011
https://doi.org/10.1016/j.jsb.2023.107963
https://doi.org/10.1021/acsnano.1c04375
https://doi.org/10.1016/j.bpj.2009.02.011
https://doi.org/10.1016/j.str.2011.10.023
https://doi.org/10.1016/j.str.2011.10.023
https://doi.org/10.1016/j.bbagen.2019.129420

20. T.Niina, Y. Matsunaga, and S. Takada, “Rigid-Body Fitting to Atomic
Force Microscopy Images for Inferring Probe Shape and Biomolecular
Structure,” PLoS Computational Biology 17 (2021): €1009215, https://
doi.org/10.1371/journal.pcbi.1009215.

21.T. Ogane, D. Noshiro, T. Ando, A. Yamashita, Y. Sugita, and Y.
Matsunaga, “Development of Hidden Markov Modeling Method for
Molecular Orientations and Structure Estimation From High-Speed
Atomic Force Microscopy Time-Series Images,” PLoS Computational
Biology 18 (2022): e1010384, https://doi.org/10.1371/journal.pcbi.
1010384.

22.R. Amyot, N. Kodera, and H. Flechsig, “BioAFMviewer Software
for Simulation Atomic Force Microscopy of Molecular Structures and
Conformational Dynamics,” Journal of Structural Biology: X 7 (2023):
100086, https://doi.org/10.1016/j.yjsbx.2023.100086.

23.R. Vuillemot, J.-L. Pellequer, and S. Grudinin, “AFMfit:
Conformational Dynamics from AFM Data Using Fast Nonlinear
NMA and FFT-Based Search,” bioRxiv (2024), https://doi.org/10.1101/
2024.06.03.597083.

24.]. Moult, J. T. Pedersen, R. Judson, and K. Fidelis, “A Large-Scale
Experiment to Assess Protein Structure Prediction Methods,” Proteins
23(1995): 2-4, https://doi.org/10.1002/prot.340230303.

25. A. Tramontano, R. Leplae, and V. Morea, “Analysis and Assessment
of Comparative Modeling Predictions in CASP4,” Proteins S5 (2001):
S22-S38, https://doi.org/10.1002/prot.10015.

26.S. F. Altschul, T. L. Madden, A. A. Schaffer, et al., “Gapped BLAST
and PSI-BLAST: A New Generation of Protein Database Search
Programs,” Nucleic Acids Research 25 (1997): 3389-3402, https://doi.
org/10.1093/nar/25.17.3389.

27.]J. Jumper, R. Evans, A. Pritzel, et al.,, “Highly Accurate Protein
Structure Prediction With AlphaFold,” Nature 596 (2021): 583-589,
https://doi.org/10.1038/s41586-021-03819-2.

28.J. L. Pellequer, A. J. Gale, and E. D. Getzoff, “Blood Coagulation:
The Outstanding Hydrophobic Residues,” Current Biology 10 (2000):
R237-R240, https://doi.org/10.1016/S0960-9822(00)00373-0.

29.S.-w W. Chen and J.-L. Pellequer, “Identification of Functionally
Important Residues in Proteins Using Comparative Models,” Current
Medicinal Chemistry 11 (2004): 595-605, https://doi.org/10.2174/09298
67043455891.

30. A. Engel and D. J. Muller, “Observing Single Biomolecules at Work
With the Atomic Force Microscope,” Nature Structural Biology 7 (2000):
715-718, https://doi.org/10.1038/78929.

31.J.-L. Pellequer, J.-M. Teulon, L. Bellanger, C. Vidaud, M. Odorico, and
P. Parot, “Introduction of Morphological and Dynamical Constraints in
the Modeling of Protein Super-Complexes. 15th ITUPAB & 5th EBSA
International Biophysics Congress, Montpellier, France,” European
Biophysics Journal 34, no. 6 (2005): 743.

32.D. Kihara and J. Skolnick, “The PDB Is a Covering Set of Small
Protein Structures,” Journal of Molecular Biology 334 (2003): 793-802,
https://doi.org/10.1016/j,jmb.2003.10.027.

33.Y. Zhang and J. Skolnick, “The Protein Structure Prediction Problem
Could Be Solved Using the Current PDB Library,” Proceedings of the
National Academy of Sciences of the United States of America 102 (2005):
1029-1034, https://doi.org/10.1073/pnas.0407152101.

34. M. Gerstein, “How Representative Are the Known Structures of the
Proteins in a Complete Genome? A Comprehensive Structural Census,”
Folding & Design 3 (1998): 497-512, https://doi.org/10.1016/S1359
-0278(98)00066-2.

35.A. K. Dunker, J. D. Lawson, C. J. Brown, et al., “Intrinsically
Disordered Protein,” Journal of Molecular Graphics & Modelling 19
(2001): 26-59, https://doi.org/10.1016/S1093-3263(00)00138-8.

36. R. C. Chaves, J.-M. Teulon, M. Odorico, P. Parot, S.-w W. Chen, and
J.-L. Pellequer, “Conformational Dynamics of Individual Antibodies

Using Computational Docking and AFM,” Journal of Molecular
Recognition 26 (2013): 596-604, https://doi.org/10.1002/jmr.2310.

37.R. C. Chaves, S. Dahmane, M. Odorico, G. A. F. Nicolaes, and J.-L.
Pellequer, “Factor Va Alternative Conformation Reconstruction Using
Atomic Force Microscopy,” Thrombosis and Haemostasis 112 (2014):
1167-1173, https://doi.org/10.1160/TH14-06-0481.

38. A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux, and D. J.
Muller, “Imaging the Electrostatic Potential of Transmembrane
Channels: Atomic Probe Microscopy of OmpF Porin,” Biophysical
Journal 82 (2002): 1667-1676, https://doi.org/10.1016/S0006-3495
(02)75517-3.

39. D. M. Czajkowsky, E. M. Hotze, Z. Shao, and R. K. Tweten, “Vertical
Collapse of a Cytolysin Prepore Moves Its Transmembrane Beta-
Hairpins to the Membrane,” EMBO Journal 23 (2004): 3206-3215,
https://doi.org/10.1038/sj.emb0j.7600350.

40. E. Davies, K. S. Teng, R. S. Conlan, and S. P. Wilks, “Ultra-High
Resolution Imaging of DNA and Nucleosomes Using Non-Contact
Atomic Force Microscopy,” FEBS Letters 579 (2005): 1702-1706, https://
doi.org/10.1016/j.febslet.2005.02.028.

41.S. Scheuring, J. Busselez, and D. Levy, “Structure of the Dimeric
PufX-Containing Core Complex of Rhodobacter blasticus by In Situ
Atomic Force Microscopy,” Journal of Biological Chemistry 280 (2005):
1426-1431, https://doi.org/10.1074/jbc.M411334200.

42.8S. Scheuring, N. Buzhynskyy, S. Jaroslawski, R. P. Goncalves,
R. K. Hite, and T. Walz, “Structural Models of the Supramolecular
Organization of AQPO and Connexons in Junctional Microdomains,”
Journal of Structural Biology 160 (2007): 385-394, https://doi.
0rg/10.1016/j.jsb.2007.07.009.

43.S. Scheuring, T. Boudier, and J. N. Sturgis, “From High-Resolution
AFM Topographs to Atomic Models of Supramolecular Assemblies,”
Journal of Structural Biology 159 (2007): 268-276, https://doi.
0rg/10.1016/j.jsb.2007.01.021.

44.N. Buzhynskyy, M. Golczak, J. Lai-Kee-Him, et al., “Annexin-A6
Presents Two Modes of Association With Phospholipid Membranes. A
Combined QCM-D, AFM and Cryo-TEM Study,” Journal of Structural
Biology 168 (2009): 107-116, https://doi.org/10.1016/jjsb.2009.03.007.

45.D. M. Czajkowsky and Z. Shao, “The Human IgM Pentamer Is a
Mushroom-Shaped Molecule With a Flexural Bias,” Proceedings of the
National Academy of Sciences of the United States of America 106 (2009):
14960-14965, https://doi.org/10.1073/pnas.0903805106.

46. H. Asakawa, K. Ikegami, M. Setou, N. Watanabe, M. Tsukada, and
T. Fukuma, “Submolecular-Scale Imaging of Alpha-Helices and C-
Terminal Domains of Tubulins by Frequency Modulation Atomic Force
Microscopy in Liquid,” Biophysical Journal 101 (2011): 1270-1276,
https://doi.org/10.1016/j.bpj.2011.07.020.

47.S. A. Mari, J. Pessoa, S. Altieri, et al., “Gating of the MlotiK1
Potassium Channel Involves Large Rearrangements of the Cyclic
Nucleotide-Binding Domains,” Proceedings of the National Academy
of Sciences of the United States of America 108 (2011): 20802-20807,
https://doi.org/10.1073/pnas.1111149108.

48. E. T. Herruzo, H. Asakawa, T. Fukuma, and R. Garcia, “Three-
Dimensional Quantitative Force Maps in Liquid With 10 Piconewton,
Angstrom and Sub-Minute Resolutions,” Nanoscale 5 (2013): 2678-
2685, https://doi.org/10.1039/c2nr33051b.

49.J. G. Vilhena, A. C. Dumitru, E. T. Herruzo, et al., “Adsorption
Orientations and Immunological Recognition of Antibodies on
Graphene,” Nanoscale 8 (2016): 13463-13475, https://doi.org/10.1039/
c5nr07612a.

50. A. L. B. Pyne, A. Noy, K. H. S. Main, et al., “Base-Pair Resolution
Analysis of the Effect of Supercoiling on DNA Flexibility and Major
Groove Recognition by Triplex-Forming Oligonucleotides,” Nature
Communications 12 (2021): 1053, https://doi.org/10.1038/541467-021-
21243-y.

12 of 16

Journal of Molecular Recognition, 2024

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://doi.org/10.1371/journal.pcbi.1009215
https://doi.org/10.1371/journal.pcbi.1009215
https://doi.org/10.1371/journal.pcbi.1010384
https://doi.org/10.1371/journal.pcbi.1010384
https://doi.org/10.1016/j.yjsbx.2023.100086
https://doi.org/10.1101/2024.06.03.597083
https://doi.org/10.1101/2024.06.03.597083
https://doi.org/10.1002/prot.340230303
https://doi.org/10.1002/prot.10015
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/S0960-9822(00)00373-0
https://doi.org/10.2174/0929867043455891
https://doi.org/10.2174/0929867043455891
https://doi.org/10.1038/78929
https://doi.org/10.1016/j.jmb.2003.10.027
https://doi.org/10.1073/pnas.0407152101
https://doi.org/10.1016/S1359-0278(98)00066-2
https://doi.org/10.1016/S1359-0278(98)00066-2
https://doi.org/10.1016/S1093-3263(00)00138-8
https://doi.org/10.1002/jmr.2310
https://doi.org/10.1160/TH14-06-0481
https://doi.org/10.1016/S0006-3495(02)75517-3
https://doi.org/10.1016/S0006-3495(02)75517-3
https://doi.org/10.1038/sj.emboj.7600350
https://doi.org/10.1016/j.febslet.2005.02.028
https://doi.org/10.1016/j.febslet.2005.02.028
https://doi.org/10.1074/jbc.M411334200
https://doi.org/10.1016/j.jsb.2007.07.009
https://doi.org/10.1016/j.jsb.2007.07.009
https://doi.org/10.1016/j.jsb.2007.01.021
https://doi.org/10.1016/j.jsb.2007.01.021
https://doi.org/10.1016/j.jsb.2009.03.007
https://doi.org/10.1073/pnas.0903805106
https://doi.org/10.1016/j.bpj.2011.07.020
https://doi.org/10.1073/pnas.1111149108
https://doi.org/10.1039/c2nr33051b
https://doi.org/10.1039/c5nr07612a
https://doi.org/10.1039/c5nr07612a
https://doi.org/10.1038/s41467-021-21243-y
https://doi.org/10.1038/s41467-021-21243-y

51.A. A. Baker, W. Helbert, J. Sugiyama, and M. J. Miles, “High-
Resolution Atomic Force Microscopy of Native Valonia Cellulose I
Microcrystals,” Journal of Structural Biology 119 (1997): 129-138,
https://doi.org/10.1006/jsbi.1997.3866.

52.S. Scheuring, D. J. Muller, P. Ringler, J. B. Heymann, and
A. Engel, “Imaging Streptavidin 2D Crystals on Biotinylated
Lipid Monolayers at High Resolution With the Atomic Force
Microscope,” Journal of Microscopy 193 (1999): 28-35, https://doi.
0rg/10.1046/j.1365-2818.1999.00434.x.

53. C. Moller, M. Allen, V. Elings, A. Engel, and D. J. Muller, “Tapping-
Mode Atomic Force Microscopy Produces Faithful High-Resolution
Images of Protein Surfaces,” Biophysical Journal 77 (1999): 1150-1158,
https://doi.org/10.1016/S0006-3495(99)76966-3.

54.N. Persike, M. Pfeiffer, R. Guckenberger, M. Radmacher, and M.
Fritz, “Direct Observation of Different Surface Structures on High-
Resolution Images of Native Halorhodopsinl,” Journal of Molecular
Biology 310 (2001): 773-780, https://doi.org/10.1006/jmbi.2001.4782.

55.S. Scheuring, J. Seguin, S. Marco, et al., “AFM Characterization
of Tilt and Intrinsic Flexibility of Rhodobacter sphaeroides Light
Harvesting Complex 2 (LH2),” Journal of Molecular Biology 325 (2003):
569-580, https://doi.org/10.1016/s0022-2836(02)01241-x.

56.J. Mou, D. M. Czajkowsky, Y. Zhang, and Z. Shao, “High-
Resolution Atomic-Force Microscopy of DNA: The Pitch of the Double
Helix,” FEBS Letters 371 (1995): 279-282, https://doi.org/10.1016/0014-
5793(95)00906-p.

57.Z. Shao, “Probing Nanometer Structures With Atomic Force
Microscopy,” News in Physiological Sciences 14 (1999): 142-149, https://
doi.org/10.1152/physiologyonline.1999.14.4.142.

58. A.San Paulo and R. Garcia, “High-Resolution Imaging of Antibodies
by Tapping-Mode Atomic Force Microscopy: Attractive and Repulsive
Tip-Sample Interaction Regimes,” Biophysical Journal 78 (2000): 1599-
1605, https://doi.org/10.1016/S0006-3495(00)76712-9.

59.1. A. Mastrangelo, M. Ahmed, T. Sato, et al., “High-Resolution
Atomic Force Microscopy of Soluble Abeta42 Oligomers,” Journal
of Molecular Biology 358 (2006): 106-119, https://doi.org/10.1016/j.
jmb.2006.01.042.

60. L. Hamon, D. Pastre, P. Dupaigne, C. Le Breton, E. Le Cam, and O.
Pietrement, “High-Resolution AFM Imaging of Single-Stranded DNA-
Binding (SSB) Protein - DNA Complexes,” Nucleic Acids Research 35
(2007): €58, https://doi.org/10.1093/nar/gkm147.

61. C. Leung, A. Bestembayeva, R. Thorogate, et al., “Atomic Force
Microscopy With Nanoscale Cantilevers Resolves Different Structural
Conformations of the DNA Double Helix,” Nano Letters 12 (2012): 3846—
3850, https://doi.org/10.1021/n1301857p.

62. S. Ido, K. Kimura, N. Oyabu, et al., “Beyond the Helix Pitch: Direct
Visualization of Native DNA in Aqueous Solution,” ACS Nano 7 (2013):
1817-1822, https://doi.org/10.1021/nn400071n.

63.S. W. Chen, A. S. Banneville, J. M. Teulon, J. Timmins, and
J. L. Pellequer, “Nanoscale Surface Structures of DNA Bound to
Deinococcus radiodurans HU Unveiled by Atomic Force Microscopy,”
Nanoscale 12 (2020): 22628-22638, https://doi.org/10.1039/d0Onr0
5320a.

64. H. P. Lang, M. Hegner, E. Meyer, and C. Gerber, “Nanomechanics
From Atomic Resolution to Molecular Recognition Based on Atomic
Force Microscopy Technology,” Nanotechnology 13 (2002): R29-R36,
https://doi.org/10.1088/0957-4484/13/5/202.

65. G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,”
Physical Review Letters 56 (1986): 930, https://doi.org/10.1103/PhysR
evLett.56.930.

66. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by
Scanning Tunneling Microscopy,” Physical Review Letters 49 (1982): 57,
https://doi.org/10.1103/PhysRevLett.49.57.

67. B. Drake, C. B. Prater, A. L. Weisenhorn, et al., “Imaging Crystals,
Polymers, and Processes in Water With the Atomic Force Microscope,”
Science 243 (1989): 1586-1589, https://doi.org/10.1126/science.
2928794.

68.J. Vesenka, S. Manne, R. Giberson, T. Marsh, and E. Henderson,
“Colloidal Gold Particles as an Incompressible Atomic Force Microscope
Imaging Standard for Assessing the Compressibility of Biomolecules,”
Biophysical Journal 65 (1993): 992-997, https://doi.org/10.1016/S0006
-3495(93)81171-8.

69.J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber,
“Structural and Functional Imaging With Carbon Nanotube AFM
Probes,” Progress in Biophysics and Molecular Biology 77 (2001): 73-110,
https://doi.org/10.1016/s0079-6107(01)00011-6.

70.W. F. Kolbe, D. F. Ogletree, and M. B. Salmeron, “Atomic
Force Microscopy Imaging of T4 Bacteriophages on Silicon
Substrates,” Ultramicroscopy 42-44 (1992): 1113-1117, https://doi.
0rg/10.1016/0304-3991(92)90411-c.

71.J. V. Zoval, P. R. Biernacki, and R. M. Penner, “Implementation
of Electrochemically Synthesized Silver Nanocrystallites for the
Preferential SERS Enhancement of Defect Modes on Thermally Etched
Graphite Surfaces,” Analytical Chemistry 68 (1996): 1585-1592, https://
doi.org/10.1021/ac951114+.

72.H. J. Butt, K. H. Downing, and P. K. Hansma, “Imaging the
Membrane Protein Bacteriorhodopsin With the Atomic Force
Microscope,” Biophysical Journal 58 (1990): 1473-1480, https://doi.
0rg/10.1016/S0006-3495(90)82492-9.

73.Y. L. Lyubchenko, A. A. Gall, L. S. Shlyakhtenko, et al., “Atomic
Force Microscopy Imaging of Double-Stranded DNA and RNA,” Journal
of Biomolecular Structure & Dynamics 10 (1992): 589-606, https://doi.
0rg/10.1080/07391102.1992.10508670.

74.D. P. Allison, N. P. Mortensen, C. J. Sullivan, and M. J. Doktycz,
“Atomic Force Microscopy of Biological Samples,” WIREs Nanomedicine
and Nanobiotechnology 2 (2010): 618-634, https://doi.org/10.1002/
wnan.104.

75. P. Eaton and P. West, Atomic Force Microscopy (Oxford: Oxford
University Press, 2010).

76.S. Karrasch, R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel,
“Atomic Force Microscopy Produces Faithful High-Resolution Images
of Protein Surfaces in an Aqueous Environment,” Proceedings of the
National Academy of Sciences of the United States of America 91 (1994):
836, https://doi.org/10.1073/pnas.91.3.836.

77. A. Stylianou, S. V. Kontomaris, C. Grant, and E. Alexandratou,
“Atomic Force Microscopy on Biological Materials Related to
Pathological Conditions,” Scanning 2019 (2019): 8452851, https://doi.
org/10.1155/2019/8452851.

78.Z. Bednarikova, Z. Gazova, F. Valle, and E. Bystrenova, “Atomic
Force Microscopy as an Imaging Tool to Study the Bio/Nonbio
Complexes,” Journal of Microscopy 280 (2020): 241-251, https://doi.
org/10.1111/jmi.12936.

79. H. G. Hansma, J. Vesenka, C. Siegerist, et al., “Reproducible Imaging
and Dissection of Plasmid DNA Under Liquid With the Atomic Force
Microscope,” Science 256 (1992): 1180, https://doi.org/10.1126/scien
ce.256.5060.1180.

80. C. Godon, J.-M. Teulon, M. Odorico, et al., “Conditions to Minimize
Soft Single Biomolecule Deformation When Imaging With Atomic
Force Microscopy,” Journal of Structural Biology 197 (2017): 322-329,
https://doi.org/10.1016/j.jsb.2016.12.011.

81. E. Schrodinger, What Is Life? (Cambridge, UK: Cambridge Univ.
Press, 1944), https://doi.org/10.1017/CB09781139644129.

82.J.-L. Pellequer and S.-w W. Chen, “Multi-Template Approach to
Modeling Engineered Disulfide Bonds,” Proteins 65 (2006): 192-202,
https://doi.org/10.1002/prot.21059.

13 0of 16

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://doi.org/10.1006/jsbi.1997.3866
https://doi.org/10.1046/j.1365-2818.1999.00434.x
https://doi.org/10.1046/j.1365-2818.1999.00434.x
https://doi.org/10.1016/S0006-3495(99)76966-3
https://doi.org/10.1006/jmbi.2001.4782
https://doi.org/10.1016/s0022-2836(02)01241-x
https://doi.org/10.1016/0014-5793(95)00906-p
https://doi.org/10.1016/0014-5793(95)00906-p
https://doi.org/10.1152/physiologyonline.1999.14.4.142
https://doi.org/10.1152/physiologyonline.1999.14.4.142
https://doi.org/10.1016/S0006-3495(00)76712-9
https://doi.org/10.1016/j.jmb.2006.01.042
https://doi.org/10.1016/j.jmb.2006.01.042
https://doi.org/10.1093/nar/gkm147
https://doi.org/10.1021/nl301857p
https://doi.org/10.1021/nn400071n
https://doi.org/10.1039/d0nr05320a
https://doi.org/10.1039/d0nr05320a
https://doi.org/10.1088/0957-4484/13/5/202
https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1126/science.2928794
https://doi.org/10.1126/science.2928794
https://doi.org/10.1016/S0006-3495(93)81171-8
https://doi.org/10.1016/S0006-3495(93)81171-8
https://doi.org/10.1016/s0079-6107(01)00011-6
https://doi.org/10.1016/0304-3991(92)90411-c
https://doi.org/10.1016/0304-3991(92)90411-c
https://doi.org/10.1021/ac951114+
https://doi.org/10.1021/ac951114+
https://doi.org/10.1016/S0006-3495(90)82492-9
https://doi.org/10.1016/S0006-3495(90)82492-9
https://doi.org/10.1080/07391102.1992.10508670
https://doi.org/10.1080/07391102.1992.10508670
https://doi.org/10.1002/wnan.104
https://doi.org/10.1002/wnan.104
https://doi.org/10.1073/pnas.91.3.836
https://doi.org/10.1155/2019/8452851
https://doi.org/10.1155/2019/8452851
https://doi.org/10.1111/jmi.12936
https://doi.org/10.1111/jmi.12936
https://doi.org/10.1126/science.256.5060.1180
https://doi.org/10.1126/science.256.5060.1180
https://doi.org/10.1016/j.jsb.2016.12.011
https://doi.org/10.1017/CBO9781139644129
https://doi.org/10.1002/prot.21059

83.]J. L. Pellequer, R. Brudler, and E. D. Getzoff, “Biological Sensors:
More Than One Way to Sense Oxygen,” Current Biology 9 (1999):
R416-R418, https://doi.org/10.1016/S0960-9822(99)80257-7.

84.J. P. P. Starink and T. M. Jovin, “Background Correction in Scanning
Probe Microscope Recordings of Macromolecules,” Surface Science 359
(1996): 291-305, https://doi.org/10.1016/0039-6028(96)00367-6.

85.D. Necas and P. Klapetek, “Gwyddion: An Open-Source Software
for SPM Data Analysis,” Central European Journal of Physics 10 (2012):
181-188, https://doi.org/10.2478/s11534-011-0096-2.

86.B. W. Erickson, S. Coquoz, J. D. Adams, D. J. Burns, and G. E.
Fantner, “Large-Scale Analysis of High-Speed Atomic Force Microscopy
Data Sets Using Adaptive Image Processing,” Beilstein Journal of
Nanotechnology 3 (2012): 747-758, https://doi.org/10.3762/bjnano.3.84.

87.J. G. Beton, R. Moorehead, L. Helfmann, et al., “TopoStats - A
Program for Automated Tracing of Biomolecules From AFM Images,”
Methods 193 (2021): 68-79, https://doi.org/10.1016/j.ymeth.2021.01.008.

88. A. T. Winzer, C. Kraft, S. Bhushan, V. Stepanenko, and I. Tessmer,
“Correcting for AFM Tip Induced Topography Convolutions in
Protein-DNA Samples,” Ultramicroscopy 121 (2012): 8-15, https://doi.
org/10.1016/j.ultramic.2012.07.002.

89. P. Klapetek, M. Valtr, D. Necas, O. Salyk, and P. Dzik, “Atomic
Force Microscopy Analysis of Nanoparticles in Non-Ideal
Conditions,” Nanoscale Research Letters 6 (2011): 514, https://doi.
org/10.1186/1556-276X-6-514.

90. M.-H. Trinh, M. Odorico, L. Bellanger, M. Jacquemond, P. Parot,
and J.-L. Pellequer, “Tobacco Mosaic Virus as an AFM Tip Calibrator,”
Journal of Molecular Recognition 24 (2011): 503-510, https://doi.
org/10.1002/jmr.1118.

91. K. Onishi and D. Fujita, “Novel Tip Shape Reconstruction Method
for Restoration of AFM Topography Images Using Nano-Structures
With Given Shapes,” Analytical Sciences 27 (2011): 157, https://doi.
org/10.2116/analsci.27.157.

92. C. Fleischmann, K. Paredis, D. Melkonyan, and W. Vandervorst,
“Revealing the 3-Dimensional Shape of Atom Probe Tips by Atomic
Force Microscopy,” Ultramicroscopy 194 (2018): 221-226, https://doi.
org/10.1016/j.ultramic.2018.08.010.

93. Z. Chen,J. Luo, I. Doudevski, S. Erten, and S. H. Kim, “Atomic Force
Microscopy (AFM) Analysis of an Object Larger and Sharper Than the
AFM Tip,” Microscopy and Microanalysis 25 (2019): 1106-1111, https://
doi.org/10.1017/S1431927619014697.

94. L. Lutter, C. J. Serpell, M. F. Tuite, L. C. Serpell, and W. F. Xue,
“Three-Dimensional Reconstruction of Individual Helical Nano-
Filament Structures From Atomic Force Microscopy Topographs,”
Biomolecular Concepts 11 (2020): 102-115, https://doi.org/10.1515/
bmc-2020-0009.

95.1]. S. Villarrubia, “Algorithms for Scanned Probe Microscope Image
Simulation, Surface Reconstruction, and Tip Estimation,” Journal
of Research of the National Institute of Standards and Technology 102
(1997): 425-454, https://doi.org/10.6028/jres.102.030.

96.X. Qian and J. S. Villarrubia, “General Three-Dimensional Image
Simulation and Surface Reconstruction in Scanning Probe Microscopy
Using a Dexel Representation,” Ultramicroscopy 108 (2007): 29-42,
https://doi.org/10.1016/j.ultramic.2007.02.031.

97. L. K. S. Bonagiri, Z. Wang, S. Zhou, and Y. Zhang, “Precise Surface
Profiling at the Nanoscale Enabled by Deep Learning,” Nano Letters 24
(2024): 2589-2595, https://doi.org/10.1021/acs.nanolett.3c04712.

98.J. Schwartz, Y. Jiang, Y. Wang, et al., “Removing Stripes, Scratches,
and Curtaining With Nonrecoverable Compressed Sensing,” Microscopy
and Microanalysis 25 (2019): 705-710, https://doi.org/10.1017/S1431
927619000254.

99. M. Bouali and S. Ladjal, “Toward Optimal Destriping of MODIS
Data Using a Unidirectional Variational Model,” IEEE Transactions

on Geoscience and Remote Sensing 49 (2011): 2924-2935, https://doi.
org/10.1109/Tgrs.2011.2119399.

100. M. Schimmack and P. Mercorelli, “A Wavelet Packet Tree
Denoising Algorithm for Images of Atomic-Force Microscopy,” Asian
Journal of Control 20 (2018): 1367-1378, https://doi.org/10.1002/
asjc.1718.

101. L. Massimi, F. Brun, M. Fratini, I. Bukreeva, and A. Cedola, “An
Improved Ring Removal Procedure for In-Line X-Ray Phase Contrast
Tomography,” Physics in Medicine and Biology 63 (2018): 045007, https://
doi.org/10.1088/1361-6560/aaa706.

102. F. Golek, P. Mazur, Z. Ryszka, and S. Zuber, “AFM Image Artifacts,”
Applied Surface Science 304 (2014): 11-19, https://doi.org/10.1016/j.
apsusc.2014.01.149.

103. B. Miinch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and Ring
Artifact Removal With Combined Wavelet — Fourier Filtering,” Optics
Express 17 (2009): 8567-8591, https://doi.org/10.1364/0e.17.008567.

104. H. Wendt, N. Dobigeon, J. Y. Tourneret, M. Albinet, C. Goldstein,
and N. Karouche, “Detection and Correction of Glitches in a Multiplexed
Multichannel Data Stream-Application to the MADRAS Instrument,”
IEEE Transactions on Geoscience and Remote Sensing 54 (2016): 2803-
2811, https://doi.org/10.1109/Tgrs.2015.2505902.

105.S.-w W. Chen and J.-L. Pellequer, “DeStripe: Frequency-Based
Algorithm for Removing Stripe Noises From AFM Images,” BMC
Structural Biology 11 (2011): 7, https://doi.org/10.1186/1472-6807-11-7.

106. A. Pollatou, “An Automated Method for Removal of Striping
Artifacts in Fluorescent Whole-Slide Microscopy,” Journal of
Neuroscience Methods 341 (2020): 108781, https://doi.org/10.1016/j.
jneumeth.2020.108781.

107. M. Li, J. Rieck, B. Noheda, J. Roerdink, and M. H. F. Wilkinson,
“Stripe Noise Removal in Conductive Atomic Force Microscopy,”
Scientific Reports 14 (2024): 3931, https://doi.org/10.1038/s41598-024-
54094-w.

108. S.-w W. Chen, J.-M. Teulon, C. Godon, and J.-L. Pellequer, “Atomic
Force Microscope, Molecular Imaging, and Analysis,” Journal of Molecular
Recognition 29 (2016): 51-55, https://doi.org/10.1002/jmr.2491.

109. S.-w W. Chen, M. Odorico, M. Meillan, et al., “Nanoscale Structural
Features Determined by AFM for Single Virus Particles,” Nanoscale 5
(2013): 10877-10886, https://doi.org/10.1039/C3NR02706F.

110.S. F. Konrad, W. Vanderlinden, and J. Lipfert, “Quantifying
Epigenetic Modulation of Nucleosome Breathing by High-Throughput
AFM Imaging,” Biophysical Journal 121 (2022): 841-851, https://doi.
0rg/10.1016/j.bpj.2022.01.014.

111. G. Q. Han and B. Lin, “Optimal Sampling and Reconstruction of
Undersampled Atomic Force Microscope Images Using Compressive
Sensing,” Ultramicroscopy 189 (2018): 85-94, https://doi.org/10.1016/j.
ultramic.2018.03.019.

112. A. Malki, J.-M. Teulon, A. Camacho Zarco, et al., “Intrinsically
Disordered Tardigrade Proteins Self-Assemble Into Fibrous Gels in
Response to Environmental Stress,” Angewandte Chemie, International
Edition 61 (2022): €202109961, https://doi.org/10.1002/anie.202109961.

113.R. C. Chaves and J.-L. Pellequer, “DockAFM: Benchmarking
Protein Structures by Docking Under AFM Topographs,” Bioinformatics
29 (2013): 3230-3231, https://doi.org/10.1093/bioinformatics/btt561.

114.J. G. Mandell, V. A. Roberts, M. E. Pique, et al., “Protein Docking
Using Continuum Electrostatics and Geometric Fit,” Protein Engineering
14 (2001): 105, https://doi.org/10.1093/protein/14.2.105.

115. H. M. Berman, J. Westbrook, Z. Feng, et al., “The Protein Data Bank,”
Nucleic Acids Research 28 (2000): 235, https://doi.org/10.1093/nar/28.1.235.

116. S.-w W. Chen and J.-L. Pellequer, “Adepth: New Representation and
Its Implications for Atomic Depths of Macromolecules,” Nucleic Acids
Research 41 (2013): W412-W416, https://doi.org/10.1093/nar/gkt299.

14 of 16

Journal of Molecular Recognition, 2024

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://doi.org/10.1016/S0960-9822(99)80257-7
https://doi.org/10.1016/0039-6028(96)00367-6
https://doi.org/10.2478/s11534-011-0096-2
https://doi.org/10.3762/bjnano.3.84
https://doi.org/10.1016/j.ymeth.2021.01.008
https://doi.org/10.1016/j.ultramic.2012.07.002
https://doi.org/10.1016/j.ultramic.2012.07.002
https://doi.org/10.1186/1556-276X-6-514
https://doi.org/10.1186/1556-276X-6-514
https://doi.org/10.1002/jmr.1118
https://doi.org/10.1002/jmr.1118
https://doi.org/10.2116/analsci.27.157
https://doi.org/10.2116/analsci.27.157
https://doi.org/10.1016/j.ultramic.2018.08.010
https://doi.org/10.1016/j.ultramic.2018.08.010
https://doi.org/10.1017/S1431927619014697
https://doi.org/10.1017/S1431927619014697
https://doi.org/10.1515/bmc-2020-0009
https://doi.org/10.1515/bmc-2020-0009
https://doi.org/10.6028/jres.102.030
https://doi.org/10.1016/j.ultramic.2007.02.031
https://doi.org/10.1021/acs.nanolett.3c04712
https://doi.org/10.1017/S1431927619000254
https://doi.org/10.1017/S1431927619000254
https://doi.org/10.1109/Tgrs.2011.2119399
https://doi.org/10.1109/Tgrs.2011.2119399
https://doi.org/10.1002/asjc.1718
https://doi.org/10.1002/asjc.1718
https://doi.org/10.1088/1361-6560/aaa706
https://doi.org/10.1088/1361-6560/aaa706
https://doi.org/10.1016/j.apsusc.2014.01.149
https://doi.org/10.1016/j.apsusc.2014.01.149
https://doi.org/10.1364/Oe.17.008567
https://doi.org/10.1109/Tgrs.2015.2505902
https://doi.org/10.1186/1472-6807-11-7
https://doi.org/10.1016/j.jneumeth.2020.108781
https://doi.org/10.1016/j.jneumeth.2020.108781
https://doi.org/10.1038/s41598-024-54094-w
https://doi.org/10.1038/s41598-024-54094-w
https://doi.org/10.1002/jmr.2491
https://doi.org/10.1039/C3NR02706F
https://doi.org/10.1016/j.bpj.2022.01.014
https://doi.org/10.1016/j.bpj.2022.01.014
https://doi.org/10.1016/j.ultramic.2018.03.019
https://doi.org/10.1016/j.ultramic.2018.03.019
https://doi.org/10.1002/anie.202109961
https://doi.org/10.1093/bioinformatics/btt561
https://doi.org/10.1093/protein/14.2.105
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkt299

117. V. A. Roberts, E. E. Thompson, M. E. Pique, M. S. Perez, and
L. F. Ten Eyck, “DOT2: Macromolecular Docking With Improved
Biophysical Models,” Journal of Computational Chemistry 34 (2013):
1743-1758, https://doi.org/10.1002/jcc.23304.

118.Y. Kunioka and T. Ando, “Innocuous Labeling of the
Subfragment-2 Region of Skeletal Muscle Heavy Meromyosin With
a Fluorescent Polyacrylamide Nanobead and Visualization of
Individual Heavy Meromyosin Molecules,” Journal of Biochemistry
119 (1996): 1024-1032, https://doi.org/10.1093/oxfordjournals.jb-
chem.a021343.

119. H. J. Butt, E. K. Wolff, S. A. C. Gould, B. D. Northern, C. M.
Peterson, and P. K. Hansma, “Imaging Cells With the Atomic Force
Microscope,” Journal of Structural Biology 105 (1990): 54-61, https://
doi.org/10.1016/1047-8477(90)90098-W.

120. T. Ushiki, M. Shigeno, and K. Abe, “Atomic Force Microscopy of
Embedment-Free Sections of Cells and Tissues,” Archives of Histology
and Cytology 57 (1994): 427, https://doi.org/10.1679/aohc.57.427.

121.J. R. Lopéz-Blanco and P. Chacén, “iMODFIT: Efficient and
Robust Flexible Fitting Based on Vibrational Analysis in Internal
Coordinates,” Journal of Structural Biology 184 (2013): 261-270, https://
doi.org/10.1016/j.jsb.2013.08.010.

122.J. R. Lépez-Blanco and P. Chacén, “Structural Modeling From
Electron Microscopy Data,” WIREs Computational Molecular Science 5
(2015): 62-81, https://doi.org/10.1002/wcms.1199.

123. W. Wriggers, R. A. Milligan, and J. A. McCammon, “Situs: A
Package for Docking Crystal Structures Into Low-Resolution Maps
From Electron Microscopy,” Journal of Structural Biology 125 (1999):
185-195, https://doi.org/10.1006/jsbi.1998.4080.

124. F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, et al., “The Protein
Data Bank: A Computer-Based Archival File for Macromolecular
Structures,” Journal of Molecular Biology 112 (1977): 535-542, https://
doi.org/10.1016/S0022-2836(77)80200-3.

125. H. Berman, K. Henrick, and H. Nakamura, “Announcing the
Worldwide Protein Data Bank,” Nature Structural Biology 10 (2003):
980, https://doi.org/10.1038/nsb1203-980.

126. P. E. Bourne, H. M. Berman, K. Watenpaugh, J. D. Westbrook, and
P. M. D. Fitzgerald, “The Macromolecular Crystallographic Information
File (mmCIF),” Methods in Enzymology 277 (1997): 571-590, https://doi.
0rg/10.1016/S0076-6879(97)77032-0.

127. M. Sandal, F. Benedetti, M. Brucale, A. Gomez-Casado, and B.
Samori, “Hooke: An Open Software Platform for Force Spectroscopy,”
Bioinformatics 25 (2009): 1428-1430, https://doi.org/10.1093/bioin
formatics/btp180.

128.J. te Riet, A. J. Katan, C. Rankl, et al., “Interlaboratory Round
Robin on Cantilever Calibration for AFM Force Spectroscopy,”
Ultramicroscopy 111 (2011): 1659-1669, https://doi.org/10.1016/j.ultra
mic.2011.09.012.

129.J. E. Sader, R. Borgani, C. T. Gibson, et al., “A Virtual Instrument
to Standardise the Calibration of Atomic Force Microscope Cantilevers,”
Review of Scientific Instruments 87 (2016): 093711, https://doi.
0rg/10.1063/1.4962866.

130. H. Schillers, C. Rianna, J. Schipe, et al., “Standardized
Nanomechanical Atomic Force Microscopy Procedure (SNAP) for
Measuring Soft and Biological Samples,” Scientific Reports 7 (2017):
5117, https://doi.org/10.1038/s41598-017-05383-0.

131. J. Lopez-Alonso, M. Eroles, S. Janel, et al., “PyFMLab: Open-Source
Software for Atomic Force Microscopy Microrheology Data Analysis,”
Open Research Europe 3 (2024): 187, https://doi.org/10.12688/openreseur
ope.16550.2.

132. P. E. Bourne, J. Westbrook, and H. M. Berman, “The Protein Data
Bank and Lessons in Data Management,” Briefings in Bioinformatics 5
(2004): 23-30, https://doi.org/10.1093/bib/5.1.23.

133.C. L. Lawson, M. L. Baker, C. Best, et al., “EMDataBank.org:
Unified Data Resource for CryoEM,” Nucleic Acids Research 39 (2011):
D456-D464, https://doi.org/10.1093/nar/gkq880.

134. E. Valentini, A. G. Kikhney, G. Previtali, C. M. Jeffries, and D. I.
Svergun, “SASBDB, a Repository for Biological Small-Angle Scattering
Data,” Nucleic Acids Research 43 (2015): D357-D363, https://doi.
org/10.1093/nar/gkul047.

135. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
(New Jersey: Pearson Education, Inc., 2008).

136.J. Sotres, H. Boyd, and J. F. Gonzalez-Martinez, “Enabling
Autonomous Scanning Probe Microscopy Imaging of Single Molecules
With Deep Learning,” Nanoscale 13 (2021): 9193-9203, https://doi.
0rg/10.1039/d1nr01109;j.

137. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP:
A Structural Classification of Proteins Database for the Investigation
of Sequences and Structures,” Journal of Molecular Biology 247 (1995):
536-540, https://doi.org/10.1006/jmbi.1995.0159.

138. C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells,
and J. M. Thornton, “CATH - A Hierarchic Classification of Protein
Domain Structures,” Structure 5 (1997): 1093-1108, https://doi.
0rg/10.1016/S0969-2126(97)00260-8.

139.J. M. Chandonia, N. K. Fox, and S. E. Brenner, “SCOPe: Manual
Curation and Artifact Removal in the Structural Classification of
Proteins - Extended Database,” Journal of Molecular Biology 429 (2017):
348-355, https://doi.org/10.1016/j,jmb.2016.11.023.

140. H. Cheng, R. D. Schaeffer, Y. Liao, et al., “ECOD: An Evolutionary
Classification of Protein Domains,” PLoS Computational Biology 10
(2014): €1003926, https://doi.org/10.1371/journal.pcbi.1003926.

141.J. Wells, A. Hawkins-Hooker, N. Bordin, B. Paige, and C. Orengo,
“Chainsaw: Protein Domain Segmentation With Fully Convolutional
Neural Networks,” Bioinformatics 40 (2024): 296, https://doi.
org/10.1093/bioinformatics/btae296.

142. F. Cazals, J. Herrmann, and E. Sarti, “Simpler Protein Domain
Identification Using Spectral Clustering,” bioRxiv (2024), https://doi.
0rg/10.1101/2024.02.10.579762.

143. L. Ponzoni, G. Polles, V. Carnevale, and C. Micheletti,
“SPECTRUS: A Dimensionality Reduction Approach for Identifying
Dynamical Domains in Protein Complexes From Limited Structural
Datasets,” Structure 23 (2015): 1516-1525, https://doi.org/10.1016/].
str.2015.05.022.

144.E. L. Sonnhammer, S. R. Eddy, and R. Durbin, “Pfam: A
Comprehensive Database of Protein Domain Families Based on Seed
Alignments,” Proteins 28 (1997): 405-420, https://doi.org/10.1002/
(8ici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-1.

145. R. Day, D. A. Beck, R. S. Armen, and V. Daggett, “A Consensus
View of Fold Space: Combining SCOP, CATH, and the Dali Domain
Dictionary,” Protein Science 12 (2003): 2150-2160, https://doi.
0rg/10.1110/ps.0306803.

146. M. L. Tress, I. Ezkurdia, and J. S. Richardson, “Target Domain
Definition and Classification in CASPS8,” Proteins 77 (2009): 10-17,
https://doi.org/10.1002/prot.22497.

147. R. K. Sistla, K. V. Brinda, and S. Vishveshwara, “Identification
of Domains and Domain Interface Residues in Multidomain Proteins
From Graph Spectral Method,” Proteins 59 (2005): 616-626, https://doi.
0rg/10.1002/prot.20444.

148. L. Heo, C. F. Arbour, G. Janson, and M. Feig, “Improved Sampling
Strategies for Protein Model Refinement Based on Molecular Dynamics
Simulation,” Journal of Chemical Theory and Computation 17 (2021):
1931-1943, https://doi.org/10.1021/acs.jctc.0c01238.

149. P. Minary and M. Levitt, “Probing Protein Fold Space With a
Simplified Model,” Journal of Molecular Biology 375 (2008): 920-933,
https://doi.org/10.1016/j,jmb.2007.10.087.

150f 16

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://doi.org/10.1002/jcc.23304
https://doi.org/10.1093/oxfordjournals.jbchem.a021343
https://doi.org/10.1093/oxfordjournals.jbchem.a021343
https://doi.org/10.1016/1047-8477(90)90098-W
https://doi.org/10.1016/1047-8477(90)90098-W
https://doi.org/10.1679/aohc.57.427
https://doi.org/10.1016/j.jsb.2013.08.010
https://doi.org/10.1016/j.jsb.2013.08.010
https://doi.org/10.1002/wcms.1199
https://doi.org/10.1006/jsbi.1998.4080
https://doi.org/10.1016/S0022-2836(77)80200-3
https://doi.org/10.1016/S0022-2836(77)80200-3
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1016/S0076-6879(97)77032-0
https://doi.org/10.1016/S0076-6879(97)77032-0
https://doi.org/10.1093/bioinformatics/btp180
https://doi.org/10.1093/bioinformatics/btp180
https://doi.org/10.1016/j.ultramic.2011.09.012
https://doi.org/10.1016/j.ultramic.2011.09.012
https://doi.org/10.1063/1.4962866
https://doi.org/10.1063/1.4962866
https://doi.org/10.1038/s41598-017-05383-0
https://doi.org/10.12688/openreseurope.16550.2
https://doi.org/10.12688/openreseurope.16550.2
https://doi.org/10.1093/bib/5.1.23
https://doi.org/10.1093/nar/gkq880
https://doi.org/10.1093/nar/gku1047
https://doi.org/10.1093/nar/gku1047
https://doi.org/10.1039/d1nr01109j
https://doi.org/10.1039/d1nr01109j
https://doi.org/10.1006/jmbi.1995.0159
https://doi.org/10.1016/S0969-2126(97)00260-8
https://doi.org/10.1016/S0969-2126(97)00260-8
https://doi.org/10.1016/j.jmb.2016.11.023
https://doi.org/10.1371/journal.pcbi.1003926
https://doi.org/10.1093/bioinformatics/btae296
https://doi.org/10.1093/bioinformatics/btae296
https://doi.org/10.1101/2024.02.10.579762
https://doi.org/10.1101/2024.02.10.579762
https://doi.org/10.1016/j.str.2015.05.022
https://doi.org/10.1016/j.str.2015.05.022
https://doi.org/10.1002/(sici)1097-0134(199707)28:3%3C405::aid-prot10%3E3.0.co;2-l
https://doi.org/10.1002/(sici)1097-0134(199707)28:3%3C405::aid-prot10%3E3.0.co;2-l
https://doi.org/10.1110/ps.0306803
https://doi.org/10.1110/ps.0306803
https://doi.org/10.1002/prot.22497
https://doi.org/10.1002/prot.20444
https://doi.org/10.1002/prot.20444
https://doi.org/10.1021/acs.jctc.0c01238
https://doi.org/10.1016/j.jmb.2007.10.087

150. B. L. de Groot, D. M. van Aalten, R. M. Scheek, A. Amadei, G.
Vriend, and H. J. Berendsen, “Prediction of Protein Conformational
Freedom From Distance Constraints,” Proteins 29 (1997): 240-251,
https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot1
1>3.0.co;2-0.

151. N. Go, T. Noguti, and T. Nishikawa, “Dynamics of a Small Globular
Protein in Terms of Low-Frequency Vibrational-Modes,” Proceedings
of the National Academy of Sciences of the United States of America 80
(1983): 3696-3700, https://doi.org/10.1073/pnas.80.12.3696.

152. M. Levitt, C. Sander, and P. S. Stern, “Protein Normal-Mode
Dynamics - Trypsin-Inhibitor, Crambin, Ribonuclease and Lysozyme,”
Journal of Molecular Biology 181 (1985): 423-447, https://doi.org/10.
1016/0022-2836(85)90230-X.

153.F. Tama, F. X. Gadea, O. Marques, and Y. H. Sanejouand,
“Building-Block Approach for Determining Low-Frequency Normal
Modes of Macromolecules,” Proteins 41 (2000): 1-7, https://doi.
0rg/10.1002/1097-0134(20001001)41:1<1::aid-prot10>3.0.co;2-p.

154. A. Hoffmann and S. Grudinin, “NOLB: Nonlinear Rigid Block
Normal-Mode Analysis Method,” Journal of Chemical Theory and
Computation 13 (2017): 2123-2134, https://doi.org/10.1021/acs.jctc.
7b00197.

155. E. Neveu, P. Popov, A. Hoffmann, et al.,, “RapidRMSD: Rapid
Determination of RMSDs Corresponding to Motions of Flexible
Molecules,” Bioinformatics 34 (2018): 2757-2765, https://doi.org/10.
1093/bioinformatics/bty160.

156. E. Laine and S. Grudinin, “HOPMA: Boosting Protein Functional
Dynamics With Colored Contact Maps,” Journal of Physical Chemistry.
B125(2021): 2577-2588, https://doi.org/10.1021/acs.jpcb.0c11633.

157. V.Lombard, S. Grudinin, and E. Laine, “Explaining Conformational
Diversity in Protein Families Through Molecular Motions,” Scientific
Data 11 (2024): 752, https://doi.org/10.1038/s41597-024-03524-5.

158. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A.
Toda, “A High-Speed Atomic Force Microscope for Studying Biological
Macromolecules,” Proceedings of the National Academy of Sciences
of the United States of America 98 (2001): 12468-12472, https://doi.
org/10.1073/pnas.211400898.

159. T. Ando, T. Uchihashi, N. Kodera, et al., “High-Speed Atomic Force
Microscopy for Observing Dynamic Biomolecular Processes,” Journal
of Molecular Recognition 20 (2007): 448-458, https://doi.org/10.1002/
jmr.843.

160. M. B. Viani, T. E. Schiffer, G. T. Paloczi, et al., “Fast Imaging and
Fast Force Spectroscopy of Single Biopolymers With a New Atomic
Force Microscope Designed for Small Cantilevers,” Review of Scientific
Instruments 70 (1999): 4300-4303, https://doi.org/10.1063/1.1150069.

161. D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, and T. Ando,
“Streptavidin 2D Crystal Substrates for Visualizing Biomolecular
Processes by Atomic Force Microscopy,” Biophysical Journal 97 (2009):
2358-2367, https://doi.org/10.1016/j.bpj.2009.07.046.

162. A. Miyagi, Y. Tsunaka, T. Uchihashi, et al., “Visualization of
Intrinsically Disordered Regions of Proteins by High-Speed Atomic
Force Microscopy,” ChemPhysChem 9 (2008): 1859-1866, https://doi.
0rg/10.1002/cphc.200800210.

163. N.Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, “Video Imaging
of Walking Myosin V by High-Speed Atomic Force Microscopy,” Nature
468 (2010): 72-76, https://doi.org/10.1038/nature09450.

164. P. E. Milhiet, D. Yamamoto, O. Berthoumieu, et al., “Deciphering
the Structure, Growth and Assembly of Amyloid-Like Fibrils Using
High-Speed Atomic Force Microscopy,” PLoS One 5 (2010): 13240,
https://doi.org/10.1371/journal.pone.0013240.

165. T. Uchihashi, R. Iino, T. Ando, and H. Noji, “High-Speed Atomic
Force Microscopy Reveals Rotary Catalysis of Rotorless F(1)-ATPase,”
Science 333 (2011): 755-758, https://doi.org/10.1126/science.1205510.

166. I. Casuso, J. Khao, M. Chami, et al., “Characterization of the Motion
of Membrane Proteins Using High-Speed Atomic Force Microscopy,”
Nature Nanotechnology 7 (2012): 525-529, https://doi.org/10.1038/
nnano.2012.109.

167. N. Chiaruttini, L. Redondo-Morata, A. Colom, et al., “Relaxation of
Loaded ESCRT-III Spiral Springs Drives Membrane Deformation,” Cell
163 (2015): 866-879, https://doi.org/10.1016/j.cell.2015.10.017.

168. G. R. Heath and S. Scheuring, “Advances in High-Speed Atomic
Force Microscopy (HS-AFM) Reveal Dynamics of Transmembrane
Channels and Transporters,” Current Opinion in Structural Biology 57
(2019): 93-102, https://doi.org/10.1016/j.5bi.2019.02.008.

169. I. Casuso, L. Redondo-Morata, and F. Rico, “Biological Physics by
High-Speed Atomic Force Microscopy,” Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering Sciences 378 (2020):
20190604, https://doi.org/10.1098/rsta.2019.0604.

170. F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, and S. Scheuring,
“High-Speed Force Spectroscopy Unfolds Titin at the Velocity of
Molecular Dynamics Simulations,” Science 342 (2013): 741-743, https://
doi.org/10.1126/science.1239764.

171.F. Sumbul, A. Marchesi, H. Takahashi, S. Scheuring, and F.
Rico, “High-Speed Force Spectroscopy for Single Protein Unfolding,”
Methods in Molecular Biology 1814 (2018): 243-264, https://doi.
0rg/10.1007/978-1-4939-8591-3_15.

172. H. Flechsig and T. Ando, “Protein Dynamics by the Combination
of High-Speed AFM and Computational Modeling,” Current Opinion
in Structural Biology 80 (2023): 102591, https://doi.org/10.1016/j.
sbi.2023.102591.

173.S. Kato, S. Takada, and S. Fuchigami, “Particle Smoother to
Assimilate Asynchronous Movie Data of High-Speed AFM With MD
Simulations,” Journal of Chemical Theory and Computation 19 (2023):
4678-4688, https://doi.org/10.1021/acs.jctc.2c01268.

174. G. R. Heath, E. Kots, J. L. Robertson, et al., “Localization Atomic
Force Microscopy,” Nature 594 (2021): 385-390, https://doi.org/10.1038/
$41586-021-03551-x.

175. G. R. Heath, E. Micklethwaite, and T. M. Storer, “NanoLocz:
Image Analysis Platform for AFM, High-Speed AFM, and Localization
AFM,” Small Methods (2024): e2301766, https://doi.org/10.1002/
smtd.202301766.

176. G. Wang and R. L. Dunbrack, Jr., “PISCES: A Protein Sequence
Culling Server,” Bioinformatics 19 (2003): 1589-1591, https://doi.
org/10.1093/bioinformatics/btg224.

177. A. Bairoch, R. Apweiler, C. H. Wu, et al., “The Universal Protein
Resource (UniProt),” Nucleic Acids Research 33 (2005): D154-D159,
https://doi.org/10.1093/nar/gki070.

178. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular
Dynamics,” Journal of Molecular Graphics 14 (1996): 33-38, https://doi.
0rg/10.1016/0263-7855(96)00018-5.

179. E. A. Merritt and D. J. Bacon, “Raster3D: Photorealistic Molecular
Graphics,” Methods in Enzymology 277 (1997): 505-524, https://doi.
org/10.1016/s0076-6879(97)77028-9.

16 of 16

Journal of Molecular Recognition, 2024

851807 SUOWWIOD @A1Ie8.D 3(ed|(dde ayy Aq pausenob ke ssjoiie YO ‘@SN JO Sa|n. 1oy A%eiqT 8ul|UO AB]1/\ UO (SUORIPUOD-pUR-SUIBYWI0D" A3 1M ARe.q 1 Bu1|UOY/SAHY) SUORIPUOD Pue SWie | 84} 83S " [1202/60/62] U0 Areiqi8ulluo A1 ‘8oueld aUeIyo0D Aq ZOTE JWI/Z00T OT/I0pAw0d A 1M Areiq | uljuo//:Sdny ol papeojumod ‘0 ‘ZSETE60T


https://doi.org/10.1002/(sici)1097-0134(199710)29:2%3C240::aid-prot11%3E3.0.co;2-o
https://doi.org/10.1002/(sici)1097-0134(199710)29:2%3C240::aid-prot11%3E3.0.co;2-o
https://doi.org/10.1073/pnas.80.12.3696
https://doi.org/10.1016/0022-2836(85)90230-X
https://doi.org/10.1016/0022-2836(85)90230-X
https://doi.org/10.1002/1097-0134(20001001)41:1%3C1::aid-prot10%3E3.0.co;2-p
https://doi.org/10.1002/1097-0134(20001001)41:1%3C1::aid-prot10%3E3.0.co;2-p
https://doi.org/10.1021/acs.jctc.7b00197
https://doi.org/10.1021/acs.jctc.7b00197
https://doi.org/10.1093/bioinformatics/bty160
https://doi.org/10.1093/bioinformatics/bty160
https://doi.org/10.1021/acs.jpcb.0c11633
https://doi.org/10.1038/s41597-024-03524-5
https://doi.org/10.1073/pnas.211400898
https://doi.org/10.1073/pnas.211400898
https://doi.org/10.1002/jmr.843
https://doi.org/10.1002/jmr.843
https://doi.org/10.1063/1.1150069
https://doi.org/10.1016/j.bpj.2009.07.046
https://doi.org/10.1002/cphc.200800210
https://doi.org/10.1002/cphc.200800210
https://doi.org/10.1038/nature09450
https://doi.org/10.1371/journal.pone.0013240
https://doi.org/10.1126/science.1205510
https://doi.org/10.1038/nnano.2012.109
https://doi.org/10.1038/nnano.2012.109
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1016/j.sbi.2019.02.008
https://doi.org/10.1098/rsta.2019.0604
https://doi.org/10.1126/science.1239764
https://doi.org/10.1126/science.1239764
https://doi.org/10.1007/978-1-4939-8591-3_15
https://doi.org/10.1007/978-1-4939-8591-3_15
https://doi.org/10.1016/j.sbi.2023.102591
https://doi.org/10.1016/j.sbi.2023.102591
https://doi.org/10.1021/acs.jctc.2c01268
https://doi.org/10.1038/s41586-021-03551-x
https://doi.org/10.1038/s41586-021-03551-x
https://doi.org/10.1002/smtd.202301766
https://doi.org/10.1002/smtd.202301766
https://doi.org/10.1093/bioinformatics/btg224
https://doi.org/10.1093/bioinformatics/btg224
https://doi.org/10.1093/nar/gki070
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/s0076-6879(97)77028-9
https://doi.org/10.1016/s0076-6879(97)77028-9

	Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images
	ABSTRACT
	1   |   Integrative Structural Biology
	2   |   AFM Data and Integrative Structural Biology
	3   |   AFM Imaging
	4   |   Topographic Image Corrections
	5   |   AFM-­Assembly Pipeline
	6   |   Perspectives
	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement

	References


